Kombinatorika A A B C A C A C B

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kombinatorika A A B C A C A C B"

Átírás

1 . Egy ló, egy tehén, egy cica, egy nyúl és egy kakas megkéri a révészt, hogy vigye át őket a túlsó partra. Hányféle sorrendben szállíthatja át őket a révész, ha egyszerre vagy egy nagy testű állatot, vagy három kisebb méretű állatot tud átvinni? (a) (b) 4 (c) 5 (d) 6 2. Hányféleképpen lehet elhelyezni az alábbi -as ábrán egy dominót (a mérete 2 -es) úgy, hogy vagy egy A és C vagy egy B és C le legyen általa fedve? (b) 8 (c) 9 (d) 0 A A B C A C A C B. Egy fős osztály tagjai között különböző könyvet sorsolnak ki úgy, hogy egynél több könyvet senki sem kaphat. Hányféleképpen végződhet a sorsolás? (a) ( ) (b) (c) (d) 2 4. Egy nemzetközi tanácskozás résztvevői közül néhányan kézfogással köszöntik egymást. Mi a legkisebb létszám, amelynél megtörténhet, hogy 56 kézfogás történik? (a) 2 (b) (d) 9 5. Hány olyan sík van, amely egy téglatest csúcsai közül pontosan hármat tartalmaz? ( ) 8 (b) (c) 4 (d) 4 2

2 6. Nagy Anna és Kis Ica hét társukkal egymás melletti helyekre kaptak jegyet a moziban. Hányféle sorrendben ülhetnek úgy, hogy a két barátnő egymás mellé kerüljön? (a) 8 7! ( ) 9 (b) 2 7! 2 2 7! (d) 9! 2! 7. A Három testőr négy főhőse és hat társuk egymás mellé ülnek a színház első sorába. Hányféleképpen tehetik ezt meg, ha a főhősök csak egymás mellett ülhetnek? (a) 0! 4! (b) 6! 4! (c)! 6! (d) 7! 4! 8. Hány különböző négyjegyű szám írható fel a hármas számrendszerben? (a) 29 (b) (d) Bea busszal jár iskolába. Legfeljebb hány napot volt iskolában a tanévkezdet óta, ha a busza minden nap pontosan két megállóban - de soha nem ugyanabban a kettőben - állt meg az útközbeni hét megálló közül? (a) 7 (b) 5 (d) 2 0. Legalább hány tagú az a csoport, melynek minden tagja a lehetséges 6 fajta fagylaltból kétgombócosat kér, és így biztosan lesz köztük két olyan, aki a sorrendtől eltekintve ugyanolyat kap? (a) 2 (b) 6 (c) 22 (d) 8. A kilencre végződő háromjegyű számok közül hány osztható kilenccel? (a) (b) 9 (d) 0 2

3 2. Egy 5 5-ös táblán huszonöt katicabogár üldögél, minden mezőn pontosan egy. Adott jelre minden bogár átsétál egy szomszédos mezőre. (Két mező szomszédos, ha van közös oldaluk.) Ezután legfeljebb hány mezőn ülhet egy bogár? (a) 25 (b) 24 (c) 2 (d) Attól függ, hogy a csúcsokban lévő négyzetről merre indulnak el.. Azok a pozitív egész számok, amelyek számjegyeinek összege, a szerencsétlen számok, amelyeknek 2, azok a szerencsés számok. Hány olyan háromjegyű szerencsés szám van, amelynél az eggyel nagyobb szám szerencsétlen szám? (a) 2 (b) 6 (c) 7 (d) 4. Kétjegyű lottószámaimat egy piros és egy fehér kocka feldobásával határozom meg: a pirossal dobott az első, a fehérrel a második számjegy. Az így kapható számok hányadrésze lesz kilenccel osztható? (a) (b) 9 8 (c) 6 (d) 5 5. A hatnak melyik a legnagyobb hatványa, amelyikkel a 2! osztható? (a) hetedik (b) nyolcadik (c) kilencedik (d) tizedik 6. Hány olyan háromszög van, amelynek csúcsai a rajzon megadott 7 pont (A, B, C, D, E, F és G) közül valók? (a) 20 (b) 24 (d) 2

4 7. Egy szekrényben 0 fehér, 20 fekete és 0 zöld, egyforma méretű zokni van. Hány darabot kell véletlenszerűen kivenni ahhoz, hogy biztosan legyen pár fehér, 2 pár fekete és pár zöld zoknink? (a) 2 (b) 4 (c) 44 (d) Kovács Kata és hat barátja egymás mellé kaptak jegyet a moziba. Hányféle sorrendben ülhetnek egymás mellé, ha Kovács Kata középen ül?! (b) 7! (c) 7! 6! (d) 7! 6! 9. Flóra és hat barátja egymás mellé kaptak jegyet egy kis moziba, ahol minden sorban 7 ülés van. Hányféleképpen foglalhatnak helyet, ha Ákos és Flóra egymás mellett, és a sor valamelyik szélén szeretne ülni? (a) 4 4! (b) 2 5! (c) 5! + 2 5! (d) 4 5! 20. Egy baráti társaság ( fiú és 4 lány) Amerikából jöttünk... játékot szeretne játszani. A játék kezdetekor egy lányt és egy fiút kiválasztanak, akik kimennek a szobából. Hányféle kimenetele lehet a választásnak? (b) 7 (d) 2 2. Melyik tömeg nem mérhető meg egy kétkarú mérleg és a következő négy súly igénybevételével:, 4, 7, 0? (a) 9 (b) 4 (c) (d) Hány 5-tel osztható, ötjegyű, különböző számjegyekből álló szám képezhető a 0,,, 5, 7 számjegyek felhasználásával? (a) 7! (b) 2 4! (c) 4! (d) 5! 4

5 2. Egy cukorkatartóban négyfajta cukorka van, mindegyik fajtából ugyanannyi, összesen 80 darab. Hány cukorkát kell véletlenszerűen kivenni ahhoz, hogy valamelyik fajtából biztosan legyen 0? (a) 2 (b) (c) 7 (d) 40 5

71) A 32 lapos magyar kártyából kiosztunk 8 lapot. Hányféleképp lehet, hogy pontosan 3 hetes és 4 ász van közöttük? 72) A 32 lapos magyar kártyából

71) A 32 lapos magyar kártyából kiosztunk 8 lapot. Hányféleképp lehet, hogy pontosan 3 hetes és 4 ász van közöttük? 72) A 32 lapos magyar kártyából Permutációk: 1) Egy sakkverseny döntőjébe 6 játékos került be. Hányféleképp alakulhat a játékosok sorrendje, ha a döntőben mindenki azonos esélyekkel indul? 2) A Mekk Elek név betűiből hányféle (nem feltétlen

Részletesebben

Matematika C 10. osztály 9. modul Sorbanállás

Matematika C 10. osztály 9. modul Sorbanállás Matematika C 10. osztály 9. modul Sorbanállás Készítette: Kovács Károlyné Matematika C 10. évfolyam 9. modul: Sorbanállás Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg?

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg? KOMBINATORIKA FELADATSOR 1 1. Hányféleképpen rendezhető egy sorba egy óvodás csoport ha 9 lány és 6 fiú van és a lányokat mindig előre akarjuk állítani? 2. Hány 6-jegyű telefonszám van ahol mind 35-tel

Részletesebben

Megoldások 4. osztály

Megoldások 4. osztály Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,

Részletesebben

Ismétlés nélküli permutáció

Ismétlés nélküli permutáció Ismétlés nélküli permutáció Hányféleképpen lehet sorba rendezni n különböz elemet úgy, hogy a sorrend számít? (Ezt n elem ismétlés nélküli permutációjának nevezzük.) Például hány féleképpen lehet sorba

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Egy fa tövétől a fára mászik fel egy csiga. Nappalonként 3 métert mászik felfelé, de éjszakánként 2 métert visszacsúszik. Az indulástól számított 10. nap délutánjáig felér a csúcsra. Milyen

Részletesebben

PYTAGORIÁDA A járási forduló feladatai 34. évfolyam, 2012/2013-as tanév KATEGÓRIA P3

PYTAGORIÁDA A járási forduló feladatai 34. évfolyam, 2012/2013-as tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Két kalácsért 32 centet fizetnénk. Hány centet fizet Peti, ha saját magának és három testvérének is vesz egy-egy kalácsot? 2. Írjátok le egy szóval, hogy milyen műveleti jelet kell a példában

Részletesebben

A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140

A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140 1.) Melyik igaz az alábbi állítások közül? 1 A) 250-150>65+42 B) 98+24

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 16. lecke: Kombinatorika (alapfeladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát! 1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

MATEMATIKA FELADATGYŐJTEMÉNY 2. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás

MATEMATIKA FELADATGYŐJTEMÉNY 2. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás Soós Luca és Szári Laura MATEMATIKA FELADATGYŐJTEMÉNY. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás 0. 0.. Ő. JÁTÉK A FORMÁKKAL Nézd meg jól a képet! Mit gondolsz,

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

Valószínűség számítás

Valószínűség számítás Valószínűség számítás 1. Mennyi annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2. Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor mekkora

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 34. évfolyam 2012/2013-as tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 34. évfolyam 2012/2013-as tanév KATEGÓRIA P3 KATEGÓRIA P3 1. A mesebeli Barnabás bogárnak 28 lába van. Írjátok le, hogy összesen hány lába van Barnabás hat testvérének! 2. Írjátok le az összeadás eredményét: 5 + 15 + 25 + 35 = 3. A 2 és a 3 számok

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

Tehetséggondozás az általános iskola 4-6. osztályában Dr. Csóka Géza, Győr

Tehetséggondozás az általános iskola 4-6. osztályában Dr. Csóka Géza, Győr Dr. Csóka Géza: Tehetséggondozás az általános iskola 4-6. osztályában Tehetséggondozás az általános iskola 4-6. osztályában Dr. Csóka Géza, Győr Kilencedik éve vezetek győri és Győr környéki gyerekeknek

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban: SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:

Részletesebben

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24 . Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 4 B ) 20 C ) 2 D ) 24 2. Mennyi az alábbi művelet eredménye? 2 + 2 =? 5 6 A ) B ) C ) D ) 0. Egy könyvszekrénynek három polca

Részletesebben

TESZTEK. 1. feladatsor (C) 1 2. (E) 1 2. Mivel egyenlő 4 5 + 5 4? (A) 19 (C) 2 (D) 41 (C) 5 2. (E) 3 4. Mennyi az értéke az 1 2 1 3 + 1 6 1

TESZTEK. 1. feladatsor (C) 1 2. (E) 1 2. Mivel egyenlő 4 5 + 5 4? (A) 19 (C) 2 (D) 41 (C) 5 2. (E) 3 4. Mennyi az értéke az 1 2 1 3 + 1 6 1 TESZTEK. feladatsor. Mivel egyenlő 3 + 2 5? (A) 2 5 (B) 3 8 (C) 2 (D) 5 (E) 2. Mivel egyenlő 4 5 + 5 4? (A) 9 0 (B) 39 20 (C) 2 (D) 4 20 (E) 2 0 3. Mennyi az 3 + 2 5 összeg értéke? (A) 32 5 (B) 9 8 (C)

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

KOMBINATORIKA Permutáció

KOMBINATORIKA Permutáció Permutáció 1) Három tanuló, András, Gábor és Miklós együtt megy iskolába. Hányféle sorrendben léphetik át az iskola küszöbét? Írja fel a lehetséges sorrendeket! 2) Hány különböző négyjegyű számot alkothatunk

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben

(6/1) Valószínűségszámítás

(6/1) Valószínűségszámítás (6/1) Valószínűségszámítás 1) Mekkora annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2) Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

Felkészülés a Versenyvizsgára

Felkészülés a Versenyvizsgára Felkészülés a Versenyvizsgára Feladatok 6. osztályosoknak 1. Ha egy tégla 2 kg meg egy fél tégla, akkor hány kg két tégla? 2. Elköltöttem a pénzem felét, maradt 100 Ft-om. Mennyi pénzem volt eredetileg?

Részletesebben

835 + 835 + 835 + 835 + 835 5

835 + 835 + 835 + 835 + 835 5 Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az

Részletesebben

Kombinatorika Gyakorlat. Király Balázs

Kombinatorika Gyakorlat. Király Balázs Kombinatorika Gyakorlat Király Balázs 2 Tartalomjegyzék 1. Permutációk 5 2. Variációk 23 3. Kombinációk 37 4. Binomiális tétel, szitaformula 51 5. Összeszámlálási feladatok 67 6. Zárthelyi Dolgozat 73

Részletesebben

3) András és Béla életkorának összege 23 év. Mennyi lesz az életkoruk összege 15 év múlva?

3) András és Béla életkorának összege 23 év. Mennyi lesz az életkoruk összege 15 év múlva? PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály 40 rózsát el lehet-e osztani 5 lány között úgy, hogy mindegyik lánynak páratlan számú rózsa jusson? Nem lehet.(1 pont) Öt darab páratlan szám összege páratlan, a 40 páros (1 pont). Hogyan tudnátok

Részletesebben

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 WWW.ORCHIDEA.HU 1 1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 2.) Számítsd ki a végeredményt: 1 1 1 1 1

Részletesebben

Megoldások IV. osztály

Megoldások IV. osztály Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

Felkészülés a Versenyvizsgára

Felkészülés a Versenyvizsgára Felkészülés a Versenyvizsgára Feladatok 5. osztályosoknak 1. Mennyi a -10, -9, -8,..., 9, 10 számok összege? 2. Mennyi a -10, -9, -8,..., 9, 10 számok szorzata? 3. Mennyi az öt legkisebb természetes szám

Részletesebben

7. témakör: kombinatorika. Kidolgozott feladatok:

7. témakör: kombinatorika. Kidolgozott feladatok: 7. témakör: kombinatorika Kidolgozott feladatok:.) A színházba egy fős baráti társaság jegyei egymás mellé szólnak. Hányféleképpen ülhetnek le egymás mellé? Hányféleképpen ülhetnek le akkor, ha András

Részletesebben

A bemutató órák feladatai

A bemutató órák feladatai A bemutató órák feladatai 1, A dobozban van 7 narancsos, 4 epres, 3 szilvás, 2 banános cukorka. Becsukott szemmel hányat kell kivenned ahhoz, hogy biztosan legyen a) 1 db epres ízű b) 1 db narancsos ízű

Részletesebben

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93 . Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan

Részletesebben

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2015. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

4. A d és az e tetszőleges valós számot jelöl. Adja meg annak az egyenlőségnek a betűjelét, amelyik biztosan igaz (azonosság)!

4. A d és az e tetszőleges valós számot jelöl. Adja meg annak az egyenlőségnek a betűjelét, amelyik biztosan igaz (azonosság)! 005. október. Egyszerűsítse a következő törtet! (x valós szám, x 0 ) x x x. Peti felírt egy hárommal osztható hétjegyű telefonszámot egy cédulára, de az utolsó jegy elmosódott. A barátja úgy emlékszik,

Részletesebben

Gyakorló feladatok kombinatorikából. 1. Nóri, Robi, Sári, Klári egyszerre érnek a lifthez. Hányféle sorrendben szállhatnak be?

Gyakorló feladatok kombinatorikából. 1. Nóri, Robi, Sári, Klári egyszerre érnek a lifthez. Hányféle sorrendben szállhatnak be? A megoldásokat a lista végén találod meg. Gyakorló feladatok kombinatorikából 1. Nóri, Robi, Sári, Klári egyszerre érnek a lifthez. Hányféle sorrendben szállhatnak be? 2. Réka 3 szelet süteményt szeretne

Részletesebben

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I. 1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon

Részletesebben

Kombinatorika alapjai összefoglaló

Kombinatorika alapjai összefoglaló Kombinatorika alapjai összefoglaló Permutációk, variációk, kombinációk száma 1. Permutációk: akkor beszélünk permutációról, ha valahány konkrét elemet sorba rendezünk. Pl. a fogorvosnál várakozók beengedésének

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Érettségi feladatok: Sorozatok

Érettségi feladatok: Sorozatok Érettségi feladatok: Sorozatok 2005. május 10. 8. Egy mértani sorozat első tagja 8, hányadosa 2. Számítsa ki a sorozat ötödik tagját! 14. Egy számtani sorozat második tagja 17, harmadik tagja 21. a) Mekkora

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Róka Sándor. 137 számrejtvény. Megoldások

Róka Sándor. 137 számrejtvény. Megoldások Róka Sándor számrejtvény Megoldások Budapest, 008 A könyv megjelenését a Varga Tamás Tanítványainak Közhasznú Emlékalapítványa támogatta. Róka Sándor, Typotex, 008 ISBN 98 9 9 89 0 Témakör: matematika

Részletesebben

PYTAGORIÁDA Súťažné úlohy okresného kola maďarský preklad 35. ročník, školský rok 2013/2014 KATEGÓRIA P 3

PYTAGORIÁDA Súťažné úlohy okresného kola maďarský preklad 35. ročník, školský rok 2013/2014 KATEGÓRIA P 3 KATEGÓRIA P 3 1. Misi két csomag rágógumiért 4 eurót fizetne. Írjátok le, hogy hány eurót fog Misi fizetni, ha mindhárom testvérének egy-egy csomag, saját magának pedig két csomag rágógumit vett! 2. Írjátok

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam 01/01 1. Ha egy kétjegyű szám számjegyeit felcseréljük, akkor a kapott kétjegyű szám értéke az eredeti szám értékénél 108 %-kal nagyobb. Melyik ez a kétjegyű szám? Jelölje a kétjegyű számot xy. 08 A feltételnek

Részletesebben

2013. május 16. MINIVERSENY Csapatnév:

2013. május 16. MINIVERSENY Csapatnév: 1. Az ábrán látható ötszög belsejében helyezzetek el 3 pontot úgy, hogy az ötszög bármely három csúcsa által meghatározott háromszög belsejébe pontosan egy pont kerüljön! El lehet-e helyezni 4 pontot ugyanígy?

Részletesebben

SZÁMELMÉLET FELADATSOR

SZÁMELMÉLET FELADATSOR SZÁMELMÉLET FELADATSOR Oszthatóság 1. Az 123x4 számban milyen számjegy állhat x helyén, ha a szám osztható a) 3-mal; e) 6-tal; b) 9-cel; f) 24-gyel; c) 4-gyel; g) 36-tal; d) 8-cal; h) 72-vel? 2. Határozd

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Szent István Tanulmányi Verseny Matematika 3.osztály

Szent István Tanulmányi Verseny Matematika 3.osztály SZENT ISTVÁN RÓMAI KATOLIKUS ÁLTALÁNOS ISKOLA ÉS ÓVODA 5094 Tiszajenő, Széchenyi út 28. Tel.: 56/434-501 OM azonosító: 201 669 Szent István Tanulmányi Verseny Matematika 3.osztály 1. Hányféleképpen lehet

Részletesebben

térképet, és válaszolj a kérdésekre római számokkal!

térképet, és válaszolj a kérdésekre római számokkal! A római számok 1. Budapesten a kerületeket római számokkal jelölik. Vizsgáld meg a térképet, és válaszolj a kérdésekre római számokkal! Hányadik kerületben található a Parlament épülete? Melyik kerületbe

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. február 21. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. február 21. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan TOLLAL DOLGOZZ, SZÁMOLÓGÉPET NEM HASZNÁLHATSZ, A LAPRA SZÁMOLJ! 1. A következő ábrán egy

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika Kombinatorika Modulok: A kombinatorikai feladatok megoldásához három modult használunk: Permutáció (Sorba rendezés) Kombináció (Kiválasztás) Variáció (Kiválasztás és sorba rendezés) DEFINÍCIÓ: (Ismétlés

Részletesebben

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.

Részletesebben

Fordította: Uncleszotyi

Fordította: Uncleszotyi Fordította: Uncleszotyi Kiegészítette: Adhemar EL GRANDE 1 Összetevők Egy játéktábla 5 Grande (vezetők - nagy kockák) öt különböző színben 155 Caballero (lovagok - kis kockák) 5 színben (31 db színenként)

Részletesebben

. Próba érettségi feladatsor 2015. április 17. I. RÉSZ

. Próba érettségi feladatsor 2015. április 17. I. RÉSZ Név: Osztály: Próba érettségi feladatsor 2015 április 17 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű

Részletesebben

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK!

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 4. MODUL: OSZTOZZUNK! TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

VERSENYFELADATOK 6 12. évfolyam részére IV. FELADATSOR

VERSENYFELADATOK 6 12. évfolyam részére IV. FELADATSOR VERSENYFELADATOK 6 12. évfolyam részére IV. FELADATSOR 6. osztály 1. Kati és Pali szeptemberben elhatározta, hogy takarékoskodni fog, ezért zsebpénzükből minden hónapban félretettek egy bizonyos összeget.

Részletesebben

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató 1. feladat: VII. Apáczai Matematika Kupa 7. osztály 011. Pontozási útmutató Egy szöcske ugrál a számegyenesen. Ugrásainak hossza egység. A számegyenesen a 10-et jelölő pontból a 1-et jelölő pontba ugrással

Részletesebben

Érettségi feladatok: Kombinatorika, valószínűség számítás

Érettségi feladatok: Kombinatorika, valószínűség számítás Érettségi feladatok: Kombinatorika, valószínűség számítás 2003. Próba 6. Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen? Válaszát

Részletesebben

Kenguru 2013 Maljuk, 2. osztály (75 perc)

Kenguru 2013 Maljuk, 2. osztály (75 perc) Kenguru 2013 Maljuk, 2. osztály (75 perc) Az 1. 5. feladatok 3 pontot érnek 1. Péter lemásolta a táblára felírt számjegyeket. Melyiket hagyta ki? А: 2 Б: 3 В: 4 Г: 5 Д: 6 2. A könyvespolcon 12 könyv volt.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

Nyitott mondatok Bennfoglalás maradékkal

Nyitott mondatok Bennfoglalás maradékkal Matematika A 2. évfolyam Nyitott mondatok Bennfoglalás maradékkal 35. modul Készítette: Szitányi Judit 2 modulleírás A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés

Részletesebben

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik 1991. évi verseny, 1. nap 1. Számold össze, hány pozitív osztója van 16 200-nak! 2. Bontsd fel a 60-at két szám összegére úgy, hogy az egyik szám hetede egyenlő legyen a másik szám nyolcadával! 3. Van

Részletesebben

JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap

JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap JAVÍTÓKULCS 6. osztályosok számára B-2 feladatlap 2001. február 7. 1. A jéghegyeknek csak 1/9 része van a vízfelszín felett. Hány tonnás az a jéghegy, amelynek víz alatti része 96 tonna tömegű? A válasz:

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. Bevezetés

VALÓSZÍNŰSÉGSZÁMÍTÁS. Bevezetés VALÓSZÍNŰSÉGSZÁMÍTÁS Bevezetés A világban való vizsgálódásunk során alapvetően kétféle jelenséggel találkozhatunk. Az egyik az, amikor előre meg tudjuk mondani, hogy mi fog történni. Például, ha egy alma

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Gráfok 1) Egy gráfban 4 csúcs van. z egyes csúcsokból 3; 2; 2; 1 él indul. Hány éle van a gráfnak? Egy lehetséges ábrázolás: gráfnak 4 éle van. (ábra

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

5. osztály. (A) 0 cm (B) 10 cm (C) 20 cm (D) 30 cm (E) 40 cm. Hány háromszög látható a mellékelt ábrán? (A) 6 (B) 9 (C) 11 (D) 13 (E) 15

5. osztály. (A) 0 cm (B) 10 cm (C) 20 cm (D) 30 cm (E) 40 cm. Hány háromszög látható a mellékelt ábrán? (A) 6 (B) 9 (C) 11 (D) 13 (E) 15 5. osztály 1. Zsuzsi édesapja egy régimódi hintához (a hintázó a kötélre ül rá) 3 m 40 cm kötelet vásárolt. A hinta tartóoszlopa két és fél méter magas. Milyen távol kell egymástól a kötél két végét felfüggeszteni,

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

2) Anna, Bori és Cili moziba mentek. Hányféle sorrendben ülhetnek le egymás mellé? Írja le a megoldás menetét!

2) Anna, Bori és Cili moziba mentek. Hányféle sorrendben ülhetnek le egymás mellé? Írja le a megoldás menetét! (9/1) Kombinatorika 1) Egy Audi, egy BMW és egy Citroen márkájú autó rendszámtábla párjait leszerelik. Hányféleképpen rakhatja vissza a párokat a feledékeny autószerelő? 2) Anna, Bori és Cili moziba mentek.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Érettségi eredmények 2005-től (Békéscsabai Andrássy Gyula Gimnázium és Kollégium)

Érettségi eredmények 2005-től (Békéscsabai Andrássy Gyula Gimnázium és Kollégium) 2005/db közép 2005/db emelt 2005/db összes 2005/jegy közép 2005/jegy emelt 2005/jegy összes 2005/% közép 2005/% emelt 2005/% összes 51 119 170 3,53 5,00 4,42 59,90 99,17 84,27 22 17 39 4,45 4,94 4,7 75,68

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben