A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly
|
|
- Virág Tóth
- 7 évvel ezelőtt
- Látták:
Átírás
1 A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly 5. osztály 1. A MATEK szó minden betűjének megfeleltetünk egy-egy számjegyet a következők szerint: M + A + T + E + K = 25, M + A = 8, A + T = 10, T + E = 14, E + K = 8. Melyik ötjegyű szám rejtőzködik a MATEK szó mögött? 2. Írd fel a 42-t hat darab pozitív egész szám összegeként úgy, hogy az összeg első három tagja három egymást közvetlenül követő szám legyen, a másik három tag pedig ugyancsak három egymást közvetlenül követő szám legyen, valamint az első három tag összege kisebb legyen, mint a másik három tag összege! Keress több megoldást! 3. Az ábrán látható, 7 egybevágó négyzetből álló alakzat kerülete 16 cm. A négyzetek rajzolását az alakzatnak megfelelően tovább folytatva (az újabb négyzeteket felváltva az előző négyzet jobb felső, illetve jobb alsó oldalához csatlakoztatva) addig végezzük, amíg összesen 2014 négyzetből áll. Hány centiméter lesz az így kapott alakzat kerülete? 4. A síkidomot a rácsvonalak mentén bontsd fel két egyenlő területű síkidomra! Keresd meg az összes megoldást! (Két megoldás nem különbözik, ha a kapott síkidomok az egyikben ugyanolyan alakúak, mint a másikban.) 5. Panni egyszerre dobott egy piros, egy sárga és egy zöld dobókockával, és a dobott pontok összege 9 lett. Hányféleképpen alakulhatott ez az eredmény? 1. Gergő 3 3-as négyzetrácsos lapokból 4-4 kis négyzetet vágott ki úgy, hogy a megmaradt 5-5 kis négyzetből álló síkidomok kerülete megegyezett az eredeti 3 3-as négyzet kerületével. Rajzold le az összes különböző megfelelő síkidomot! 2. Egy kocka hat lapjára egy-egy egész számot írtunk úgy, hogy bármelyik két szomszédos lapon lévő szám különbsége legfeljebb 15. Mennyi a kocka lapjaira írt számok összegének legkisebb értéke, ha az egyik lapon a 100 szerepel? 3. Három szám összege A három számból ugyanazt a számot vontuk ki, így eredményül a 15, a 369 és a 631 számokat kaptuk. Melyik számot vontuk ki? Mi a három szám? 4. Az ábrán látható szabályos ötszög mind az öt oldalát piros vagy zöld színnel színezzük ki úgy, hogy egy oldal színezéséhez egy színt használunk. Hányféleképpen színezhetjük ki az ötszöget, ha a forgatással egymásba vihető eseteket nem tekintjük különbözőnek? 5. Az 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 számok közül alkalmasan válassz ki 9 különbözőt, majd helyezd el azokat egy 3 3-as bűvös négyzetbe úgy, hogy minden sorban, minden oszlopban és mindkét átlóban 21 legyen a számok összege! Keress több megoldást!
2 6. osztály 1. Egy számsorozat első tagja A sorozat következő tagjait az alábbi szabály szerint képezzük: ha a számsorozat egy tagja 2015-nél kisebb, akkor a számjegyeinek összegét hozzáadjuk a taghoz, és ez az összeg lesz a számsorozat következő tagja, ha a számsorozat egy tagja legalább 2015, akkor a számjegyeinek összegét kivonjuk a tagból, és ez a különbség lesz a számsorozat következő tagja. Mennyi a számsorozat tagja? 2. A 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 számok közül alkalmasan válassz ki 9 különbözőt, majd helyezd el azokat egy 3 3-as bűvös négyzetbe úgy, hogy minden sorban, minden oszlopban és mindkét átlóban 51 legyen a számok összege! Keress több megoldást! 3. Sári egy 1 dm élű kockára egyforma aranyszínű négyzeteket ragasztott az ábrán látható mintát követve. (A kocka minden lapja azonosan van aranyozva.) Hány cm 2 lett a kocka felszínéből aranyszínű (a képen szürke)? 4. A 2013 olyan évszám, amelyben az első három számjegy összege egyenlő a negyedik számjeggyel. Hány ilyen évszám van a harmadik évezredben? A harmadik évezred év elejétől a év végéig tart.) 5. A táblára egy háromjegyű természetes számot írtunk. Ezután felírtuk az összes többi olyan háromjegyű természetes számot, amelyet az először felírt szám számjegyeinek felcserélésével kaptunk. Ekkor a táblára az eredetivel együtt 4 szám került. A négy szám közül a két legkisebb összege Milyen számjegyekből állt az eredeti szám? 1. Helyettesítsd a betűket számjegyekkel úgy, hogy a mellékelt összeadás helyes legyen! (Az azonos betűk azonos, a különböző betűk különböző számjegyeket jelentenek.) 2. Hány olyan pozitív egész szám van, amelynek egyharmada is és háromszorosa is háromjegyű egész szám? 3. Négy szám összege 91. Ha az első számhoz hozzáadunk 4-et, a második számból kivonunk 4-et, a harmadikat megszorozzuk 4-gyel, akkor minden esetben a negyedik számot kapjuk eredményül. Melyik ez a négy szám? 4. A 3 egység oldalú nagy háromszög 9 darab kis háromszögébe beírtuk az 1, 2, 3, 4, 5, 6, 7, 8 és 9 számjegyeket úgy, hogy minden 2 egység oldalú (4 kis háromszögből álló) háromszögben azonos a beírt számok összege. Lehet-e az összeg 20? Lehet-e az összeg 24? 5. Az ábrán látható szabályos hatszög mind a hat oldalát piros vagy zöld színnel színezzük ki úgy, hogy egy oldal színezéséhez egy színt használunk. Hányféleképpen színezhetjük ki a hatszöget, ha a forgatással egymásba vihető eseteket nem tekintjük különbözőnek? 7. osztály
3 1. Egy 17-tel kezdődő számsorozat minden következő tagját úgy kapjuk, hogy az azt megelőző tag számjegyeinek harmadik hatványát összeadjuk. A sorozat második tagja például = 344. Melyik szám lesz a sorozat tagja? 2. Egy kereskedő egy terméket 20%-os árengedménnyel árul, és a beszerzési árhoz képest még így is 20%-os a haszna. Hány %-os volt a haszna az árleszállítás előtt? 3. Egy természetes szám 5-ös és 6-os maradéka 4. Ha a számot 5-tel osztjuk, akkor a hányados 67-tel nagyobb lesz, mint amikor 6-tal osztjuk. Melyik ez a szám? 4. Egy derékszögű háromszög átfogóhoz tartozó magassága és a derékszög szögfelezője 20 -os szöget zár be. Mekkorák a háromszög hegyesszögei? darab 1 cm 3 térfogatú fakockából építünk egy négyzetes hasábot. Mekkora ennek felszíne? Keresd meg az összes különböző megoldást! 1. Egy családi összejövetelen 33-an voltak jelen, felnőttek (nők és férfiak), valamint gyerekek (lányok és fiúk). A férfiak és a fiúk összesen 15-en voltak. A nők kétszer annyian voltak, mint a fiúk, és 2-vel kevesebben, mint a lányok. Hány nő vett részt az összejövetelen? 2. Hét természetes szám összege Ezek közül háromnak az összege Igazoljuk, hogy a hét szám szorzata osztható 4-gyel! 3. Az ábrának megfelelően 3 egybevágó téglalapot illesztettünk össze. Az így kapott nagy téglalap területe 1350 cm 2. Mennyi a nagy téglalap kerülete? 4. Az ABC háromszög AB oldalán úgy vettük fel az M és N pontot, hogy AN = AC és BM = BC. Tudjuk még, hogy az NCM szög = 43. Hány fokos a BCA szög? 5. Töltsd ki a bűvös négyzet üres mezőit! A bűvös négyzet minden sorában, minden oszlopában és mindkét átlójában lévő 3-3 szám összege egyenlő. 8. osztály 1. Legyen A = 5n + 3, ahol n N. Bizonyítsd be, hogy A nem négyzetszám, akármennyi is az n természetes szám! Határozd meg az n legkisebb értékét, amelyre A osztható 2012-vel! 2. Egy iskolai sakkbajnokságon 32 tanuló vett részt. A verseny egyes szakaszaiban 4 tanuló alkotott egy csoportot, amelyben mindenki mindenkivel játszott. Minden csoportból az első kettő jutott a verseny következő szakaszába. Végül ketten maradtak, és egyikük megnyerte a bajnokságot. Hány játszmát játszottak összesen a bajnokságon? 3. Négy egybevágó téglalapot az ábrán látható módon illesztünk össze. A téglalapok egy külső és egy belső négyzetet határoznak meg. A keletkező belső négyzet kerülete megegyezik az egyik téglalap kerületével. Mennyi a külső négyzet és a belső négyzet területének aránya? 4. Egy derékszögű háromszögben a derékszögű csúcsot az átfogó felezőpontjával összekötő szakasz 20 -os szöget zár be a derékszögű háromszög átfogóhoz tartozó magasságával. Mekkorák a derékszögű háromszög hegyesszögei?
4 5. Két háromjegyű szám összege 999. Ha a két számot egymás mellé írjuk, és tizedesvesszővel elválasztjuk, akkor az egyik esetben (amikor a nagyobb szám van a tizedesvessző előtt) hatszor akkora számot kapunk, mint a másik esetben. Melyik ez a két szám? 1. Töltsd ki az üres négyzeteket úgy, hogy az első és utolsó számot kivéve, minden szám a szomszédos számok számtani közepe legyen! 2. Töltsd ki a bűvös négyzet üres mezőit! A bűvös négyzet minden sorában, minden oszlopában és mindkét átlójában lévő 3-3 szám összege egyenlő. 3. András és Csaba kiválasztott két várost, és külön-külön megtippelték légvonalbeli távolságukat. Ezután a térképen megmérték a távolságot és a méretarány alapján kiszámították a tényleges értéket. Azt tapasztalták, hogy a tényleges érték 10%-kal kisebb, mint András tippje, Csaba tippje pedig 10%-kal kisebb, mint a tényleges érték. Milyen távol van légvonalban a két város egymástól, ha a két tipp eltérése 38 km? Mennyi a fiúk tippje külön-külön? 4. Tekintsük a mellékelt ábrán látható számpiramist! Határozd meg, hogy az 1001 hányszor szerepel! Számítsd ki a középső oszlopban lévő számok összegét! 5. Az ABC egyenlő szárú háromszögben a C csúcsnál lévő szárszög 20 -os. A B csúcshoz tartozó belső szögfelező a szemközti oldalt D pontban metszi. Az A csúcsból a BD egyenesre állított merőleges a szemközti oldalt E pontban metszi. Mekkora a DEA szög? 9. osztály 1. Egy számsorozat első tagja 1, a második tag 2, az összes többi tag pedig az előző két tag szorzatának 5-tel való osztási maradéka. Milyen számjegyre végződik a sorozat első 2014 tagjának szorzata? 2. Az a és b pozitív egész számokat társaknak nevezzük, ha 3a = 4b vagy 4a = 3b. Keresd meg 2012 egy társát! Keresd meg azt a számot, amelynek két társa van és ezek összege Határozd meg azt az abcd négyjegyű természetes számot, amelyre igaz a következő: abcd + abc + ab + a = Az ABC háromszögben a B csúcsnál 60 -os szög van. Az A csúcsból induló magasság és a BC oldal metszéspontja a D pont, a B csúcshoz tartozó belső szögfelező az AD magasságot az M pontban metszi. Milyen hosszú a BM szakasz, ha AD = 3 cm? tálat egy kör mentén helyeztek el, majd valamelyik táltól kezdve az óramutató járásával ellentétes irányban 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 golyót helyeztek el a tálakba. Ez a feladat kiinduló helyzete. Egy lépés abból áll, hogy két szomszédos tálba egy-egy golyót beteszünk, vagy két szomszédos tálból amennyiben egyik sem üres egy-egy golyót kiveszünk. Elérhető-e véges sok lépés során, hogy mindegyik tálban pontosan 2013 golyó legyen? (Megjegyzés: A tálakon kívül tetszőleges sok golyóval rendelkezünk.) 1. Egy varázskönyv oldalszámozása során kihagyták az összes olyan oldalszámot, amiben szerepelnek azonos számjegyek. Az első oldalon az 1-es szám szerepelt, az utolsón pedig a 987. Hány oldalas a varázskönyv?
5 2. 27 darab szabályos dobókockából egy nagy kockát raktunk össze úgy, hogy a nagy kocka felületén látható pöttyök számának összege a lehető legkisebb legyen. Hány pötty látható a nagy kocka felületén? (A szabályos dobókocka szemközti lapjain lévő pöttyök számának összege 7.) 3. Egy 150 sorból és 150 oszlopból álló táblázat sorait és oszlopait növekvő sorrendben megszámoztuk. Az első sorban minden mezőt besatíroztunk, a második sorban minden második mezőt, a harmadik sorban miden harmadik mezőt, és így tovább, a 150-edik sorban a 150-edik mezőt. Melyik oszlopban lesz a legtöbb besatírozott mező? (A mellékelt ábra csak egy részletet illusztrál.) 4. Két darab 12 cm oldalhosszúságú négyzetet úgy helyezünk el, hogy az egyik csúcsa a másik középpontjára illeszkedjen (lásd ábra). Számítsd ki a besatírozott négyszög területét! 5. Egy sakkversenyen mindenki mindenkivel egyszer játszik. Ha a résztvevők csak feleannyian lennének, akkor az eredetileg tervezett játszmáknak csak a 24%-ára kerülne sor. Hány versenyző indult eredetileg a versenyen?
BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK
1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!
Részletesebben1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4
. Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :
RészletesebbenHASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
Részletesebben48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.
8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük
RészletesebbenGeometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
RészletesebbenÉrettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Részletesebben2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.
Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.
RészletesebbenVI. Vályi Gyula Emlékverseny november
VI. Vályi Gyula Emlékverseny 1999. november 19-1. VI. osztály 1. Ki a legidősebb, ha Attila 10 000 órás, Balázs 8 000 napos, Csanád 16 éves, Dániel 8000000 perces, Ede 00 hónapos. (A) Attila (B) Balázs
RészletesebbenVIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege?
VIII. Vályi Gyula Emlékverseny 001 november 3-5 VI osztály Csak az eredmény kérjük! 1. Frédi 3 naponként, Béni 4 naponként jár az uszodába, mindig pontosan délután 4-től 6-ig. Kedden találkoztak az uszodában.
RészletesebbenTémák: geometria, kombinatorika és valósuínűségszámítás
Matematika BSc Elemi matematika 3 Témák: geometria, kombinatorika és valósuínűségszámítás Kitűzött feladatok Geometria 1. Egy ABD háromszög szögei rendre α, β, γ. Mekkora szöget zár be egymással a) az
RészletesebbenMinden feladat teljes megoldása 7 pont
Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,
RészletesebbenEGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
RészletesebbenIV. Vályi Gyula Emlékverseny november 7-9.
IV. Vályi Gyula Emlékverseny 997. november 7-9. VII. osztály LOGIKAI VERSENY:. A triciklitolvajokat a rendőrök biciklin üldözik. Összesen tíz kereken gurulnak. Hány triciklit loptak el. (A) (B) 2 (C) 3
Részletesebben3. feladat Hány olyan nél kisebb pozitív egész szám van, amelyben a számjegyek összege 2?
Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat A tengeren léket kapott egy hajó, de ezt csak egy óra múlva vették észre. Ekkorra már 3 m 3 víz befolyt a hajóba. Rögtön mőködésbe hoztak
RészletesebbenLehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2017. NOVEMBER 18.) 3. osztály
3. osztály Két polcon összesen 72 könyv található. Miután az első polcról a másodikra áttettünk 14 könyvet, mindkét polcon ugyanannyi könyv lett. Hány könyv volt eredetileg az első polcon? Helyezzetek
Részletesebben1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
RészletesebbenELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E!
Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat Kata egy dobozban tárolja 20 darab dobókockáját. Mindegyik kocka egyszínő, piros, fehér, zöld vagy fekete. 17 kocka nem zöld, 12 nem fehér,
Részletesebben1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
Részletesebben(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.
Euklidész tételei megoldások c = c a + c b a = c c a b = c c b m c = c a c b 1. Számítsuk ki az derékszögű ABC háromszög hiányzó oldalainak nagyságát, ha adottak: (a) c a = 1,8; c b =, (b) c = 10; c a
RészletesebbenFOLYTATÁS A TÚLOLDALON!
Országos döntő Első nap ÖTÖDIK OSZTÁLY 1. Az összes háromjegyű számot felírtuk egy-egy kártyára, és ezeket mind beledobtuk egy zsákba. Hányat kell kihúznunk a zsákból bekötött szemmel, hogy a kihúzottak
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
RészletesebbenIII. Vályi Gyula Emlékverseny december
III. Vályi Gyula Emlékverseny 1996. december 14 15. VI osztály A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül csak pontosan egy helyes. A helyes válasz betűjelét
Részletesebben1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:
1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)
RészletesebbenII. forduló, országos döntő május 22. Pontozási útmutató
Apáczai Nevelési és Általános Művelődési Központ 76 Pécs, Apáczai körtér 1. II. forduló, országos döntő 01. május. Pontozási útmutató 1. feladat: Két természetes szám összege 77. Ha a kisebbik számot megszorozzuk
RészletesebbenSzabolcs-Szatmár-Bereg megyei Ambrózy Géza Matematikaverseny 2012/2013 II. forduló 5. osztály
5. osztály 1. Hány olyan téglalap van, amelynek minden oldala centiméterben kifejezve egész szám, és a területe 60 cm 2? 2. Adott a síkon egy ABC szabályos háromszög. Keresd meg a síkon az összes olyan
RészletesebbenXVIII. Nemzetközi Magyar Matematika Verseny
9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100
RészletesebbenEgyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
Részletesebben8. OSZTÁLY ; ; ; 1; 3; ; ;.
BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat
RészletesebbenFOLYTATÁS A TÚLOLDALON!
ÖTÖDIK OSZTÁLY 1. Egy négyjegyű számról ezeket tudjuk: (1) van 3 egymást követő számjegye; (2) ezek közül az egyik duplája egy másiknak; (3) a 4 db számjegy összege 10; (4) a 4 db számjegy szorzata 0;
Részletesebben54. Mit nevezünk rombusznak? A rombusz olyan négyszög,
52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes
RészletesebbenPitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2
1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
RészletesebbenI. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!
Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,
Részletesebben43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. A 2014-et felírtuk három természetes szám összegeként úgy, hogy ha az első számot elosztjuk
RészletesebbenAz egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
RészletesebbenFeladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?
Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet
Részletesebben46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY
6. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Írd be az 1, 2, 5, 6, 7, 8, 9, 10, 11 és 12 számokat a kis körökbe úgy, hogy a szomszédos számok különbsége
RészletesebbenFeladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint
TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.
RészletesebbenSzámlálási feladatok
Számlálási feladatok Ezek olyan feladatok, amelyekben a kérdés az, hogy hány, vagy mennyi, de a választ nem tudjuk spontán módon megadni, csak számolással? ) Ha ma szombat van, milyen nap lesz 200 nap
Részletesebben3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
RészletesebbenHasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika
Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki
RészletesebbenA lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)
A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer
RészletesebbenCurie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 08.04.07. Curie Matematika Emlékverseny. évfolyam Országos döntő Megoldása 07/08... Feladat.. 3. 4... összesen Elérhető 4 7
RészletesebbenMegyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000
RészletesebbenGyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6
Gyakorló feladatok 1. Ismertesd a matematikai indukció logikai sémáját, magyarázzuk meg a bizonyítás lényegét. Bizonyítsuk be, hogy minden n természetes számra 1 + 3 + + (n 1) = n.. Matematikai indukcióval
RészletesebbenXXII. Vályi Gyula Emlékverseny április 8. V. osztály
V. osztály 1. Egy anya éveinek száma ugyanannyi, mint a lánya életkora hónapokban kifejezve. Mennyi idősek külön-külön, ha az anya 23 évvel és 10 hónappal idősebb a lányánál? 2. Melyek azok a 2016-nál
RészletesebbenAdd meg az összeadásban szereplő számok elnevezéseit!
1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok
RészletesebbenHasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)
Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba
Részletesebben835 + 835 + 835 + 835 + 835 5
Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az
RészletesebbenMegoldások 4. osztály
Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,
Részletesebben44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy
RészletesebbenFeladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
RészletesebbenI. A négyzetgyökvonás
Definíció: Négyzetgyök a ( a : a a 0 I. A négyzetgyökvonás a ) jelenti azt a nem negatív számot, amelynek a négyzete a. a 0 b : b b R A négyzetgyök-függvény értéke is csak nem negatív lehet. Ha a b-t abszolút
RészletesebbenA TERMÉSZETES SZÁMOK
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.
RészletesebbenGyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!
1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a
RészletesebbenHasonlóság 10. évfolyam
Hasonlóság Definíció: A geometriai transzformációk olyan függvények, melyek értelmezési tartománya, és értékkészlete is ponthalmaz. Definíció: Két vagy több geometriai transzformációt egymás után is elvégezhetünk.
Részletesebben+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93
. Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan
RészletesebbenIV. RADÓ FERENC EMLÉKVERSENY. Kolozsvár, június 3. V. osztály
Kolozsvár, 000. június 3. V. osztály. Határozd meg az 999 99...9 szorzás eredményében a számjegyek összegét! 999 db 9 es. Egy kerek asztal köré 6 széket helyeztünk el. Számozd meg a székeket a 0,,, 3,
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenXXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.
XXIV. NEMZETKÖZI MGYR MTEMTIKVERSENY Szabadka, 05. április 8-. IX. évfolyam. Egy -as négyzetháló négyzeteibe a bal felső mezőből indulva soronként sorra beirjuk az,,3,,400 pozitív egész számokat. Ezután
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
RészletesebbenMegyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. különbözı pozitív egész szám átlaga. Legfeljebb mekkora lehet ezen számok közül a legnagyobb? (A) (B) 8 (C) 9 (D) 78 (E) 44. 00 009 + 008 007 +... + 4
RészletesebbenA) 0 B) 2 C) 8 D) 20 E) 32
1. X és Y egyjegyű nemnegatív számok. Az X378Y ötjegyű szám osztható 72-vel. Mennyi X és Y szorzata? A) 0 B) 2 C) 8 D) 20 E) 32 2. Hány valós gyöke van a következő egyenletnek? (x 2 1) (x + 1) (x 2 1)
RészletesebbenFeladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András
Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenArany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
Részletesebben1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3
RészletesebbenRacionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q
Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N
RészletesebbenBartha Gábor feladatjavaslatai az Arany Dániel Matematika Versenyre
Bartha Gábor feladatjavaslatai az Arany Dániel Matematika Versenyre Kérem, hogy a megoldásokat elektronikus (lehetőleg doc vagy docx) formában is küldjétek el a következő e- mail címre: balgaati@gmail.com
RészletesebbenXXVI. Erdélyi Magyar Matematikaverseny Zilah, február II. forduló osztály
. feladat: Szupercsiga egy függőleges falon mászik felfelé. Első nap 4 cm-t tesz meg, éjszaka cm-t visszacsúszik. Második napon 9 cm-t tesz meg, éjszaka 4 cm-t csúszik vissza, harmadik napon 6 cm-t mászik,
RészletesebbenSZÁMTANI SOROZATOK. Egyszerű feladatok
SZÁMTANI SOROZATOK Egyszerű feladatok. Add meg az alábbi sorozatok következő három tagját! a) ; 7; ; b) 2; 5; 2; c) 25; 2; ; 2. Egészítsd ki a következő sorozatokat! a) 7; ; 9; ; b) 8; ; ; 9; c) ; ; ;
RészletesebbenPYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?
Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =
RészletesebbenKockaKobak Országos Matematikaverseny osztály
KockaKobak Országos Matematikaverseny 9-10. osztály 015. november 6. A feladatsort készítette: RÓKA SÁNDOR Lektorálta: DR. KISS GÉZA www.kockakobak.hu A válaszlapról másold ide az azonosítódat az eredmény
Részletesebben( ) ( ) Bontsuk fel a zárójeleket: *1 pont Mindkét oldalon vonjunk össze, majd rendezzük az egyenletet: 34 = 2 x,
1. Egy 31 fős osztály játékos rókavadászaton vett részt. Az erdőben elrejtett papír rókafejeket kellett összegyűjteniük. Minden lány 4 rókafejet talált, a fiúk mindegyike pedig 5 darabot. Ha minden lány
RészletesebbenMATEMATIKA C 12. évfolyam 4. modul Még egyszer!
MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok
RészletesebbenDr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-2.
5. osztály 1. feladat: Éva egy füzet oldalainak számozásához 31 számjegyet használt fel. Hány lapja van a füzetnek, ha az oldalak számozását a legelső oldalon egyessel kezdte? 2. feladat: Janó néhány helység
RészletesebbenMegoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára
Megoldások 1. feladat: A testvérek, Anna, Klára és Sanyi édesanyjuknak ajándékra gyűjtenek. Anna ötször, Klára hatszor annyi pénzt gyűjtött, mint Sanyi. Anna az összegyűjtött pénzének 3/10 részéért, Klára
Részletesebben4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?
PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.
Részletesebben3. előadás. Elemi geometria Terület, térfogat
3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt
RészletesebbenSíkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik
Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala
Részletesebben2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály
A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat a kialakult tanári gyakorlat alapján, az
RészletesebbenVERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR
VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR 5. osztály 1. Az ötödik osztályban 13 fiúból négy szemüveges. A lányok harmada visel szemüveget. Összesen nyolc szemüveges van az osztályban. Mennyi
Részletesebbenn+12 < 1 3? 4 < n amelynek harmadik csúcsa Z. A Z pont 1. Melyek azok az n természetes számok, amelyekre igaz, hogy
1980. évi verseny 1. A következő díszítő elemet félkörökből raktuk öszsze. A bevonalkázott rész területe hányad része a nagy félkör területének? 2. Azonos a 7. osztályosok 1980. évi versenyének megyei
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2018. NOVEMBER 24.) 3. osztály
3. osztály Milyen számot írnátok az üres háromszögbe? Miért? Számpiramist kezdtünk építeni valamilyen szabály szerint (lásd az ábrán). Keressétek meg, mi lehet a szabály, és írjátok a betűk helyére a megfelelő
RészletesebbenArany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.
RészletesebbenHatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
RészletesebbenKoordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
Részletesebbena b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat!
1 PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! a b a b x y a a b x b y 17 25 13 10 5 7 3 6 7 10 2 4 2 3 9 5 2.) Az ábrán lévő paralelogramma oldalai a) AB=26 cm,
Részletesebben1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
RészletesebbenPYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6
Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica
RészletesebbenSzámokkal kapcsolatos feladatok.
Számokkal kapcsolatos feladatok. 1. Egy tört számlálója -tel kisebb, mint a nevezője. Ha a tört számlálójához 17-et, a nevezőjéhez -t adunk, akkor a tört reciprokát kapjuk. Melyik ez a tört? A szám: 17
Részletesebben45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló ÖTÖDIK OSZTÁLY 1. Többet eszel, mint én! mondta méltatlankodva Hernyó Álteknőcnek. Nem is igaz! válaszolta felháborodva Álteknőc. Mindketten
RészletesebbenGyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
RészletesebbenNÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre
RészletesebbenKisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
RészletesebbenAz egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
RészletesebbenMinden feladat teljes megoldása 7 pont
Telefon: 7-8900 Fax: 7-8901 4. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. 9 kg mogyorót vásároltunk,
Részletesebben