Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint"

Átírás

1 TÁMOP / A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010. június összeállította: Nagy András

2 Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály 1) A táblázat egy-egy sora egy-egy háromszög adatait tartalmazza a szokásos jelölésekkel (az oldalak mértéke cm). Számítsd ki a hiányzó adatokat! a b c α β γ a) b) c) 13,4 11,7 79 d) e) ) Egy háromszög leghosszabb oldala 13 cm és a vele szemközti szög 83 -os. A háromszög legkisebb szöge 6 -os. Határozd meg a háromszög hiányzó oldalainak hosszát! 3) Egy hegyesszögű háromszög egyik szöge 70 -os, a vele szemközti oldal 3,5 cm hosszú. A háromszög egy másik oldalának hossza 10 cm. Mekkora a hiányzó oldal hossza és a szögek nagysága? 4) Egy háromszög egyik szöge 50 -os, a vele szemközti oldal 3,5 cm hosszú. A háromszög egy másik oldalának hossza 7 cm. Mekkora a hiányzó oldal hossza és a szögek nagysága? 5) Egy háromszögben a = 55 mm, b = 7 cm és α = Mekkorák az ismeretlen szögek és a harmadik oldal? 6) Egy háromszög kerülete 0 cm, szögei 40, 60 és 80. Mekkorák az oldalai? 7) Egy háromszög két oldalának összege 15 cm és e két oldallal szemközti szögek nagysága 49 és 73. Mekkorák a háromszög oldalai? 8) Adott a háromszögben a = 3 m, b = 6 m és α = 30. Határozd meg a háromszög ismeretlen oldalait és szögeit! 9) Szabályos ötszög átlója 8,5 cm. Mekkorák az ötszög oldalai? 10) Egy paralelogramma egyik oldala 13 cm, átlója 0 cm és egyik belső szöge 53. Mekkora a paralelogramma területe? 11) Egy trapéz hosszabbik alapja 1,48 cm, az egyik szára 7,7 cm. Az ismert szár és a hosszabb alap szöge 43. Az alapon fekvő másik szög 65. Mekkorák a trapéz ismeretlen szögei és oldalai? 1) Határozd meg annak az általános négyszögnek az oldalait, melynek BD átlója 0 cm hosszú. Ez az átló a β szöget egy 55 -os és egy 31 -os részre, a δ szöget pedig egy 43 -os

3 és egy 6 -os részre bontja úgy, hogy az 55 -os és a 43 -os szög az átló azonos oldalán van. 13) Egy torony magasságát kell meghatározni. A torony aljától kiinduló egyenesen, egymástól 50 m távolságra kijelöltünk két pontot. A közelebbi pontból a torony csúcsa 84 -ban látszik, a távolabbi pontból 51 -ban. Milyen magas a torony? 14) A táblázat egy-egy sora egy-egy háromszög adatait tartalmazza a szokásos jelölésekkel (az oldalak mértéke cm). Számítsd ki a hiányzó adatokat! a b c α β γ a),4 5 4, b) c) d) e) ) Egy háromszög két oldalának hossza 15 cm és 0 cm, az általuk bezárt szög Mekkora a háromszög harmadik oldala? 16) Egy háromszögben az oldalak hossza 10 dm, 4 dm és 5 dm. Mekkorák a háromszög szögei? 17) Egy háromszögben a = 30 cm, b = 4 dm és c = 500 mm. Mekkorák a háromszög szögei? 18) Egy háromszög oldalai 5 cm, 6 cm és 5 cm. Mekkorák a háromszög szögei? 19) Egy háromszög oldalainak hossza 1000 mm, 000 mm és 3000 mm. Mekkorák a háromszög szögei? 0) Egy háromszögben a:b = 3:4, γ = 78, c = 1 cm. Mekkorák a háromszög ismeretlen oldalai? 1) Egy háromszög területe 37 cm. Két oldala 10 cm és 145 mm. Mekkora a háromszög harmadik oldala? ) Egy paralelogramma oldalainak hossza 0 m, 41 m és az egyik átló 37 m hosszú. Milyen hosszú a másik átló? 3) Egy paralelogramma oldalai 10 cm és 1 cm, az egyik szöge 11. Mekkora a rövidebb átlója? 3

4 4) Egy konvex négyszög oldalainak hossza rendre 5 cm, 55 mm, 8 cm és 0,7 dm, a 8 cm-es és az 55 mm-es oldal szöge 7. Mekkorák a négyszög ismeretlen szögei? 5) Egy szabályos hatszög oldalának hossza 8 cm. Határozd meg az átlóinak hosszát! 6) Egy háromszög két oldala 9 cm és 1 cm, közbezárt szögük 71. Milyen hosszú a 9 cm-es oldalhoz tartozó súlyvonal? 7) Egy repülőtérről két repülőgép száll fel azonos időpontban. Az egyik kelet felé repül km km 750 sebességgel, míg a másik délnyugati irányba repül 680 sebességgel. Milyen h h távol lesznek egymástól 45 perc múlva? 8) Milyen hosszúak az óra mutatói, ha végpontjaik 1 órakor 3,3 cm-re, 9 órakor 7, cm-re vannak egymástól? 9) Egy háromszög két oldala a és b, az általuk bezárt szög γ. Határozd meg a háromszög harmadik oldalának hosszát és a másik két szög nagyságát, ha: a) a = 10 cm, b = 15 cm, γ = 60 ; b) a = 5 cm, b = 8 cm, γ = ) Az ABC háromszögben a = 6 cm, b = 1 cm és γ = 96,38. Az A B C háromszögben b = 18 cm, c = 1 cm és β = 58,41. Hasonló-e illetve egybevágó-e a két háromszög? 31) Egy háromszög egyik oldala 15 cm, a másik két oldal különbsége cm. A 15 cm-es oldallal szemben lévő szög 139. Mekkorák a háromszög oldalai és szögei? 3) Egy háromszögben az egyik oldal hossza 8,4 cm és az oldalhoz tartozó súlyvonal hossza 68 mm. Az oldal és a súlyvonal szöge 58. Mekkorák a háromszög szögei? 33) Egy trapéz két párhuzamos oldala 48,36 cm és 13,41 cm. Az egyik szár 57,8 cm. Ennek a nagyobbik alappal bezárt szöge 68,3. Határozd meg a trapéz negyedik oldalát és a trapéz ismeretlen szögeit! 34) Egy trapéz keresztmetszetű töltés alul + 5 m, felül m széles, oldalainak hossza m és 3 m. Mekkora a két oldal emelkedési szöge? 35) Egy domb tetején álló kilátó magasságát keressük. A kilátó tövétől induló lejtős úton lefelé haladva 30 métert, a kilátó 44,47 -os szögben látszik. További 50 métert haladva a kilátó 55 alatt látszik. Milyen magas a torony? 36) A pisai ferdetorony csúcsa a torony hajlásának irányában az aljától 0 méterre 73,99 -os emelkedési szögben látszik, az ellenkező irányba 11 métert haladva pedig 75,13 -os szögben látszik. Milyen magasan volt eredetileg a torony csúcsa a talajtól? 4

5 Megoldások 1) Alkalmazzuk a szinusztételt. A megoldás során vegyük figyelembe: egy háromszögben hosszabb oldallal szemben nagyobb szög van és viszont; a háromszög belső szögösszege 180 ; háromszög-egyenlőtlenség tétele. a b c α β γ a) ,49 47, ,79 b) 5,89 10, ,75 c) 13,4 11,7 sin α >1 79 d) 5 6 c 1 = 9,94 β 3 1 = 7,96 γ 1 = 19,04 c = 1,11 β 1 = 15,04 γ = 4,96 e) 9 16,8 13, ) Készítsünk vázlatrajzot és alkalmazzuk az ábra jelöléseit! sin 6 b = b 5,74 cm. sin83 13 γ = 180 ( ) = 71. sin 71 c = c 1,38 cm. sin83 13 A háromszög hiányzó oldalainak hossza 5,74 cm és 1,38 cm. 3) A vázlatrajz alapján: sin β 10 = β 3,57. (β 156,43, mert b < a β < α = 70 ). sin 70 3,5 γ 180 (3, ) = 86,43. 5

6 sin86,43 c c 4,96 cm. sin 70 3,5 A háromszög ismeretlen oldala 4,96 cm, szögei 86,43 és 3,57. 4) Készítsünk ábrát és alkalmazzuk a jelöléseit! sin β 7 = sin β 0,8801 β 1 61,66 illetve β 118,34. sin 50 3,5 γ 1 68,34 illetve γ 11,66. sin 68,34 c1 sin11,66 c = c 1 8,51 cm, illetve = c 6,0 cm. sin 50 3,5 sin 50 3,5 A feladatnak kettő megoldása van: az ismeretlen oldal hossza 8,51 cm, a szögek 61,66 és 68,34 illetve az ismeretlen oldal hossza 6,0 cm, a szögek 118,34 és 11,66. 5) Alkalmazzuk a szinusztételt! sin β 70 = sin β 1,01 A feladatnak nincs megoldása. sin 5 30' 55 6) Alkalmazzuk a szinusztételt! sin 40 : sin 60 : sin 80 = a : b : c. sin 40 a = a 0,74b. sin 60 b sin80 c = c 1,137b. sin 60 b A kerületbe visszahelyettesítve: 0,74b + b + 1,137b = 0 b 6,95 cm, a 5,16 cm, c 7,90 cm. A háromszög oldalainak hossza megközelítőleg 6,95 cm, 5,16 cm és 7,90 cm. 6

7 7) Alkalmazzuk az ábra jelöléseit, írjuk fel a szinusztételt! sin 49 a = 15 a 8,38 cm, és b 6,6 cm. sin 73 a γ = 180 ( ) = 58. sin 58 c = c 7,43 cm. sin 73 8,38 A háromszög oldalainak hossza 8,38 cm, 6,6 cm és 7,43 cm. 8) Alkalmazzuk a szinusztételt! sin β 6 = β = 90, azaz a háromszög derékszögű. sin 30 3 γ = = 60. A hiányzó oldal hosszát Pitagorasz-tétellel vagy szögfüggvénnyel határozzuk meg. Így c = 3 3 cm 5,0 cm. A háromszög ismeretlen oldala 5, cm, szögei 60 és 90. 9) Alkalmazzuk az ábra jelöléseit! A szabályos ötszög átlói egyenlő hosszúságúak ε = = Az ADE háromszög egyenlő szárú, ezért α = δ = sin 36 a = a 5,5 cm. sin108 8,5 Az ötszög oldalának hossza 5,5 cm. 10) Alkalmazzuk az ábra jelöléseit! = 36. 7

8 β = = 17. sinδ 13 = δ 31,7. sin17 0 ε 180 ( ,7 ) = 1,73. a e sinε T = T ABC = 96,6 cm. Vagy a b oldalt határozzuk meg szinusztétellel: sin 1,73 b = b 9,7 cm. sin17 0 T = a b sin 53 96,4 cm. A paralelogramma területe megközelítően 96,5 cm. 11) Készítsünk ábrát és alkalmazzuk a jelöléseit! γ = = 137, δ = = 115. Toljuk el a d szárat a C csúcsba! A C BC háromszögben: sin 43 d = d 5,47 cm. sin 65 7,7 ε = 180 ( ) = 7. sin 7 1,48 c = c 4,85 cm. sin 65 7,7 A trapéz ismeretlen szögei 137 és 115, szára 5,47 cm, rövidebb alapja 4,85 cm. 1) Az ábra jelöléseit használva: 8

9 Az ábra alapján α = 180 ( ) = 13 és γ = 180 ( ) = 8. sin55 c A BCD háromszögben: = sin8 0 c 16,54 cm. sin 43 b = sin8 0 b 13,77 cm. sin 31 d A BDA háromszögben: = sin13 0 d 1,8 cm. sin 6 a = sin13 0 a 10,45 cm. A négyszög oldalai 10,45 cm, 13,77 cm, 16,54 cm és 1,8 cm. 13) Az ábra alapján ε = = 33. x sin 51 Az ABC háromszögben: = x 71,35 m. 50 sin 33 m A TAC háromszögben: sin 84 = m 70, 96 m. 71,35 A torony magassága megközelítőleg 71 méter. 14) Alkalmazzuk a koszinusztételt! A további lépések során alkalmazhatjuk a szinusztételt és a belső szögösszegre vonatkozó összefüggést. A c) esetben határozzuk meg a γ szöget, majd alkalmazzunk szögfüggvényt! A d) feladatnál alkalmazhatjuk a szinusztételt. Az e) feladatnál vegyük észre, hogy a háromszög szabályos! a b c α β γ a),4 5 4, 8,59 94,55 56,86 b) 11, ,39 60,61 c) ,40 43,60 90 d) 6, , ,1 e)

10 15) Az ábra alapján íjuk fel a keresett oldalra a koszinusztételt: a = cos 4 15 a 13,45 cm. A háromszög harmadik oldala 13,45 cm. 16) Íjuk fel a keresett oldalra a koszinusztételt: Az ábra alapján: 10 = cos α α 39,19. sin β 4 β 53,06. sin 39,19 10 γ 180 (39, ,06 ) = 87,75. A háromszög szögei 39,19, 53,06 és 87,75. 17) Vegyük észre, hogy a háromszög derékszögű (Pitagorasz-tétel). γ = 90. sin α = 5 3 α 36,87, β 90 36,87 = 53,13. A háromszög szögei 36,87, 53,13 és

11 18) A háromszög egyenlő szárú, így alkalmazhatunk szögfüggvényt: 3 cos α = α 53,13 ; 5 β ,13 = 73,74. A háromszög alapon fekvő szögei 53,13, szárszöge 73,74. 19) 1 cm + cm 3 cm nem létezik ilyen háromszög. 0) Legyen a = 3x és b = 4x. Írjuk fel a koszinusztételt c oldalra! 1) 1 = (3x) + (4x) 3x 4x cos78 x,86 cm, így a 8,05 cm és b 10,73 cm. A háromszög ismeretlen oldalai 8,05 cm és 10,73 cm ,5 sinγ A terület képlet alapján: 37 = γ 1 30,69 és γ 149,31 (két megoldás!). Alkalmazzuk a koszinusztételt! c = , ,5 cos 30,69 c 1 7,80 cm. 1 c = , ,5 cos 149,31 c 3,66 cm. A háromszög harmadik oldala 7,8 cm vagy 3,66 cm. 11

12 ) A vázlatrajz alapján: Az ABD háromszögben: 37 = cos α α 65,. β , = 114,78. Az ABC háromszögben: f = cos 114,78 f 9, m. A paralelogramma másik átlója 9, m. 3) Készítsünk vázlatrajzot! α = = 68. e = cos 68 e 1,41 cm. A paralelogramma rövidebb átlója 1,41 cm. 4) Készítsünk vázlatrajzot: Alkalmazzuk a koszinusztételt a DAB háromszögben: e = 5, ,5 8 cos 7 e 8,19 cm. Szinusztétellel: 1

13 sin β 1 8 = β 1 68,8, β 1 111,7, mert e > a α > β 1. sin 7 8,19 Alkalmazzuk a koszinusztételt a DBC háromszögben: 7 = 5 + 8,19 5 8,19 cos β β 58,7. β β 1 + β = 16,7. 8,19 = cos γ γ 84,3. δ 360 (7 + 16,7 + 84,3 ) = 77,41. A négyszög ismeretlen szögei 16,7, 84,3 és 77,41. 5) A vázlatrajz alapján: A szabályos hatszög köréírható körének sugara és a hatszög oldala egyenlő és átmérője megegyezik a hatszög hosszabbik átlójával, így: f = AD = 8 cm = 16 cm. A szimmetria miatt e 1 = e. Az ABC háromszögben írjuk fel a koszinusztételt. e = cos 10 e = 13,86 cm. A szabályos hatszög átlói 13,86 cm és 16 cm. 6) Alkalmazzuk az ábra jelöléseit! Írjuk fel az AFC háromszögben a koszinusztételt: s = 1 + 4,5 1 4,5 cos 71 s 11,36 cm. A keresett súlyvonal hossza 11,36 cm. 13

14 7) A keleti és a délnyugati irányok által bezárt szög 135. A kelet felé repülő repülőgép által megtett út hossza: s 1 = 750 A nyugat felé repülő repülőgép által megtett út hossza: s = 680 A koszinusztételt felírva: t = 56, ,5 510 cos 135 t 991,06 km. km 45 h = 56,5 km. h 60 km 45 h = 510 km. h 60 8) A két repülőgép 991,06 km távolságra lesz egymástól 45 perc múlva. 9 órakor az óramutatók szöge derékszög, így alkalmazható Pitagorasz tétele. 1 órakor az óramutatók szöge 30, alkalmazzuk a koszinusztételt. Írjunk fel egyenletrendszert: 7, = n + k 3,3 = n + k nk cos30 3,91 A két egyenletet egymásból kivonva, rendezés után n =. k Visszahelyettesítve az első egyenletbe: 3,91 + k = 51,84 k 1 3,99 cm és n 1 5,99 cm, illetve k k 5,99 cm és n 3,99 cm, nem lehetséges, mert n > k. Tehát az óra mutatói 6 cm és 4 cm hosszúak. 14

15 9) Írjuk fel az a és b oldalakra a koszinusztételt! Majd alkalmazzuk a szinusztételt és a belső szögösszegre vonatkozó összefüggést! a. c = cos 60 c = 175 = ,3 cm. sinα 10 = α 40,89, β 79,11 ; sin b. c = cos 135 c = 1,07 cm sinα 5 = α 17,03, β 7,97 ; sin135 1,07 30) Alkalmazzuk az ábra jelöléseit! A két háromszög biztosan nem egybevágó, mert b b. Az ABC háromszögben koszinusztételt alkalmazva: c = cos 96,38 c 14 cm. Szinusztétellel: sin β 1 = β 58,41. (β 11,59, mert β < γ = 96,38 ) sin 96,38 14 α 180 (96, ,41 ) = 5,1. Az A B C háromszögben koszinusztételt alkalmazva: 18 = 1 ' + ( a ) 1 a cos 58,41 ' a 1 13 cm illetve Ha a = 13 cm, akkor a két háromszög nem hasonló, hiszen Ha a = 9 cm, akkor a két háromszög hasonló, mert: ' ' ' a b c 3 = = =. a b c a 9 cm. ' ' ' a b. a b 15

16 31) Az ábra jelölését használva: b = c +. Koszinusztételt felírva: 15 = c + (c + ) c (c + ) cos 139 c = 7 cm és b = 9 cm. Alkalmazzuk a szinusztételt (csak hegyes szög lehet a megoldás, hiszen α tompaszög): sinγ 7 = γ 17,83. sin β 180 ( ,83 ) = 3,17. A háromszög keresett oldalai 7 cm és 9 cm, szögei 17,83 és 3,17. 3) Használjuk az ábra jelöléseit! Az FBC háromszögben koszinusztétellel: a = 6,8 + 4, 6,8 4, cos 58 a 5,8 cm. Szinusztétellel: sin β 6,8 = β 83,86. sin 58 5,8 (β 96,14, mert 6,8 < 5,8 + 4, a háromszög hegyesszögű.) Az AFC háromszögben koszinusztétellel: b = 6,8 + 4, 6,8 4, cos 1 b 9,7 cm. Szinusztétellel: sinα 6,8 = α 36,48. sin1 9,7 γ 180 (36, ,86 ) = 59,66. A háromszög szögei 36,48, 83,86 és 59,66. 16

17 33) γ ,3 = 111,7. A trapéz AD szárát toljuk el, képe legyen PC! PB = x = 48,36 cm 13,41 cm = 34,95 cm. Az PBC háromszögben koszinusztételt alkalmazva: d = 34, ,8 34,95 57,8 cos 68,3 d 55,41 cm. Szinusztételt alkalmazva: sinα 57,8 = α 75,8. sin 68,3 55,41 δ ,83 = 104,18. A trapéz szára 55,41 cm, ismeretlen szögei 111,7, 104,18 és 75,8. 34) A trapéz AD szárát toljuk el, képe legyen A C! Az A BC háromszögben koszinusztételt alkalmazva: = cos β β 39,3. Szinusztétellel: sinα 3 = α 50,86. sin 39,9 Az oldalak emelkedési szöge 50,86 illetve 39,3. 17

18 35) δ = ,47 = 135,53. ε = 44, ,55. A P 1 P C háromszögben szinusztétellel: x sin 55' = x 53 m. 50 sin 1,55 TP 1 C háromszögben a koszinusztétel alapján: m = cos 44,47 m 37,94 m. A torony magassága megközelítően 38 m. 36) γ = 180 (75, ,99 ) = 30,88 Az ABC háromszögben szinusztételt alkalmazva: sin 73,99 b = b 58,06 m sin 30,88 31 Az ATC háromszögben alkalmazzuk a koszinusztételt: t = , ,06 cos 75,13 t 56,5 m. A torony eredeti magassága megközelítőleg 56,5 m. (Mj.: a torony dőlési szöge megközelítőleg 3,97, a csúcsánál megközelítőleg 3,9 méterrel tér el a függőlegestől.) 18

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: 1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram)

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram) Telepítő programok Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram) Súgó Menü Súgó Visszalépés a főmenübe Visszalépés a kiválasztott

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok 10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

19. Területszámítás. Minden sokszöghöz hozzárendelünk egy pozitív valós számot. A hozzárendelés az alábbi tulajdonságokkal rendelkezik:

19. Területszámítás. Minden sokszöghöz hozzárendelünk egy pozitív valós számot. A hozzárendelés az alábbi tulajdonságokkal rendelkezik: 19. Területszámítás I. Elméleti összefoglaló Sokszög területe: Minden sokszöghöz hozzárendelünk egy pozitív valós számot. A hozzárendelés az alábbi tulajdonságokkal rendelkezik: Az egység (oldalú) négyzet

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát. I.

A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát. I. Orosz Gyula, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Orosz Gyula; dátum: 005. november A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó Gyakorló

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Feladatok megoldása. Sorozatok

Feladatok megoldása. Sorozatok Feladatok megoldása Sorozatok I /.. a = 5, a =, a = -, a = -7, a 5 = -, a 6 = -6 b =, b =, b = 5, b =, b5 = 5 7, b6 = I /. c =, c = d = -, d =, d =, c = 0, c = -, c5 = - c6 = 0 8, d =,6, d 5 = 7 e =, e

Részletesebben

I. Síkgeometriai alapfogalmak, szögek, szögpárok

I. Síkgeometriai alapfogalmak, szögek, szögpárok 15. modul: SÍKIDOMOK 7 I. Síkgeometriai alapfogalmak, szögek, szögpárok Módszertani megjegyzés: A jelen modult többnyire kibővített ismétlésnek szántuk, és fő célja az alapfogalmak és az alapismeretek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Gyakorló feladatsor 11. osztály

Gyakorló feladatsor 11. osztály Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT MATEMATIKA ÉRETTSÉGI 008. október. EMELT SZINT ) Oldja meg a valós számok halmazán az alábbi egyenleteket: a) b) lg 8 0 6 I. (5 pont) (5 pont) a) A logaritmus értelmezése alapján: 80 ( vagy ) Egy szorzat

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Végeredmények, feladatok részletes megoldása

Végeredmények, feladatok részletes megoldása Végeredmények, feladatok részletes megoldása I. Kombinatorika, gráfok Sorba rendezési problémák (Ismétlés). Részhalmaz-kiválasztási problémák, vegyes összeszámlálási feladatok (Ismétlés). Binomiális együtthatók,

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria ) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria A szürkített hátterű feladatrzek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban: SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA

MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA EMIR azonosító: TÁMOP-3.1.8-09/1-2010-0004 Név: MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA I. ÍRÁSBELI VIZSGA 1412 Ideje: 2014. április 24. 14:00 Időtartama: 45 perc Fontos tudnivalók 1. A feladatok

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

Vektoralgebra. 1.) Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s 2?

Vektoralgebra. 1.) Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s 2? Vektoralgebra Elmélet: http://digitus.itk.ppke.hu/~b_novak/dmat/vektorfolcop.pdf Mikor érdemes más, nem ortonormált bázist alkalmazni? Fizikában a ferde hajításoknál megéri úgynevezett ferdeszögű koordináta-rendszert

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT 1. FELADATSOR Felhasználható idő: 40 perc I. rész 1.1.) Oldja meg grafikusan az alábbi egyenlőtlenséget! x + 1 + 1 x + x + 11 1..) Mekkora legyen az x valós szám értéke, hogy az alábbi három mennyiség

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR

VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR 5. osztály 1. Az ötödik osztályban 13 fiúból négy szemüveges. A lányok harmada visel szemüveget. Összesen nyolc szemüveges van az osztályban. Mennyi

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök. Szalóki Dezső

Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök. Szalóki Dezső Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök Szalóki Dezső matematika, fizika, ábrázoló-geometria és biológia szakos vezetőtanár Lektorálta:

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával

Részletesebben

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük:

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük: 14. Vektorok I. Elméleti összefoglaló Vektor Az irányított szakaszokat vektoroknak nevezzük: Jelölés: a kezdő és a végpont megadásával: AB ; egy kisbetűvel: v, írásban aláhúzás is szokásos: a; nyomtatásban

Részletesebben

Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka

Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka MAGYARÁZAT Az ajánlott Mértan 0 osztály feladatgyűjtemény a középiskolák 0-es tanulóinak általános iskolai tudásszintjének felmérését szolgálja. A felmérés célja a tízedikes tanulók általános iskolában

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0631 É RETTSÉGI VIZSGA 006. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont)

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont) 1997 Írásbeli érettségi-felvételi feladatok 1. Oldja meg a következő egyenletet a valós számok halmazán: 3 2 x 1 2 2 x 1 + 2 2x 1 3 2 x 1 = 5. (9 pont) 2 2. Mekkora a szabályos kilencszög kerülete és területe,

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály 40 rózsát el lehet-e osztani 5 lány között úgy, hogy mindegyik lánynak páratlan számú rózsa jusson? Nem lehet.(1 pont) Öt darab páratlan szám összege páratlan, a 40 páros (1 pont). Hogyan tudnátok

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

Színes érettségi feladatsorok matematikából középszint írásbeli

Színes érettségi feladatsorok matematikából középszint írásbeli Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 081 É RETTSÉGI VIZSGA 009. október 0. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. október 15. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2013. október 15. EMELT SZINT MATEMATIKA ÉRETTSÉGI 0. október 5. EMELT SZINT ) Oldja meg a valós számok halmazán a következő egyenleteket! a) b) ( )( ) I. ( pont) (7 pont) a) A négyzetgyök függvény értelmezési tartománya és értékkészlete

Részletesebben

Matematika PRÉ megoldókulcs 2013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

Matematika PRÉ megoldókulcs 2013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT Matematika PRÉ megoldókulcs 013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Adott A( 1; 3 ) és B( ; ) 7 9 pont. Határozza meg

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I PRÓBAÉRETTSÉGI FELADATSOR EGYENES ÚT AZ EGYETEMRE 11 FELADATSOR 11 FELADATSOR I rész Felhasználható idő: 45 perc 6x 1 111) Melyik állítás igaz az alábbi egyenlet

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1313 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY

KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY Név:.Iskola: KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY 2012. november 12. 12. évfolyam I. forduló Pótlapok száma db Matematika 12. évfolyam 1. forduló 1. Az alábbiakban számtani sorozatokat adtunk

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 101 ÉRETTSÉGI VIZSGA 010. május 4. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2010. október 19. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2010. október 19. EMELT SZINT 1) MATEMATIKA ÉRETTSÉGI 010. október 19. EMELT SZINT a) Mely valós számok elégítik ki az alábbi egyenlőtlenséget? 3 3 1 1 8 b) Az alábbi f és g függvényt is a f 3 és g 0,5,5 I. 3;6. intervallumon értelmezzük.

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Matematika Gyakorló feladatok vizsgára 12. évf. emelt szint

Matematika Gyakorló feladatok vizsgára 12. évf. emelt szint Matematika Gyakorló feladatok vizsgára. évf. emelt szint Egyenletek, egyenlőtlenségek, paraméteres egyenletek. Oldd meg az alábbi egyenleteket! 4 c) d) e) 4. Oldd meg az alábbi egyenleteket! = c) =8 d)

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA Dr`avni izpitni center *P05C10113M* ŐSZI IDŐSZAK MATEMATIKA ÉRTÉKELÉSI ÚTMUTATÓ 005. augusztus 9., hétfő SZAKMAI ÉRETTSÉGI VIZSGA RIC 005 P05-C101-1-3M ÚTMUTATÓ a szakmai írásbeli érettségi vizsga feladatainak

Részletesebben

4. A d és az e tetszőleges valós számot jelöl. Adja meg annak az egyenlőségnek a betűjelét, amelyik biztosan igaz (azonosság)!

4. A d és az e tetszőleges valós számot jelöl. Adja meg annak az egyenlőségnek a betűjelét, amelyik biztosan igaz (azonosság)! 005. október. Egyszerűsítse a következő törtet! (x valós szám, x 0 ) x x x. Peti felírt egy hárommal osztható hétjegyű telefonszámot egy cédulára, de az utolsó jegy elmosódott. A barátja úgy emlékszik,

Részletesebben