12. Trigonometria I.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "12. Trigonometria I."

Átírás

1 Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát mérhetjük az egységsugarú kör kerületén is Az α szög ívmértéke egyenlő az egységsugarú körben az α középponti szöghöz tartozó körív hosszával Az ívmérték egysége az radián A teljesszöghöz az egységsugarú körben tartozó körív hossza, így a teljesszög ívmértéke Tehát a és a 0 ugyanazt a szöget méri, az első esetben radiánban, a második esetben fokban mértünk Így ( rad) = 0, (rad) = 80 Ha fokban mért szöget váltunk át radiánra, akkor elegendő azt tudnunk, hogy ez a szög a 80 -nak hányszorosa, mert ugyanennyiszerese lesz a -nek is (radiánban) Például a 8 a 80 -nak tizedrésze, ezért 8 = ( rad) Ha a szög radiánban mérve, ez a -nek kilencede, így fokban mérve a szög a 80 kilenced része: ( ) = 0 9 rad 0 9 α α Az átváltások képlete: α( ) ( rad) rad = és α = Legyünk figyelemmel a fok és a radián használatára Nem ugyanazt jelenti a sin 80 és a sin 80 Hegyesszögek szögfüggvényei Ha két derékszögű háromszögnek ugyanakkora az egyik hegyesszöge, akkor a háromszögek hasonlók (Hiszen mindkét háromszögnek van még egy derékszöge, így a harmadik szögükben is megegyeznek) Ezért ha két derékszögű háromszögnek ugyanakkora az egyik hegyesszöge, akkor a két háromszögben bármely két megfelelő oldal aránya ugyanakkora, mindegy, mekkorák az oldalak Derékszögű háromszögben az oldalak aránya csak a háromszög hegyesszögétől függ Ezek az arányok csak az α szögtől függenek, ezért nevezzük ezeket az α szög szögfüggvényeinek A lehetséges hat arányból négy arányt használunk, ezek az α szög szinusz, koszinusz, tangens és kotangens függvényei

2 a sin α = = c szöggel szemközti átfogó befogó a tg α = = b szöggel szemközti befogó szög melletti befogó b cos α = = c szög melletti befogó átfogó b ctg α = = a szög melletti befogó szöggel szemközti befogó A pótszögek szögfüggvényeit könnyű leolvasni az ábráról ( β = 90 α) : sin ( 90 α) = cos ( 90 α) = tg ( 90 α) = ctgα ctg ( 90 α) = tgα Nevezetes szögek szögfüggvényei Tekintsük a egység oldalú szabályos háromszöget Az ábráról leolvashatók a 0 és a 0 szögfüggvényei: sin 0 = cos0 = sin 0 = cos0 = tg 0 = ctg 0 = = tg 0 = ctg 0 =

3 Vegyünk egy derékszögű háromszöget, melynek a befogói egység hosszúak, az átfogó hoszsza ekkor hosszú Az ábráról leolvashatjuk a szögfüggvényeit: sin = cos = = tg = ctg = Gyakran használt kapcsolatok a szögfüggvények között: sin α + cos α = tg α = cos α tg α = ctg α ctg α = Szögfüggvények értelmezése forgásszögre A koordinátarendszer origója körül forgatott egységvektornak az x tengellyel bezárt szögét jelölje α A sin α és cos α szögfüggvényeket ennek az egységvektornak a koordinátáival azonosítjuk, és ezzel a derékszögű háromszögben definiált sin α, cos α szögfüggvényeket hegyesszögnél nagyobb szögekre is értelmezzük, összhangban az eddigi definíciókkal Az α szög koszinusza az egységvektor első koordinátája; az α szög szinusza az egységvektor második koordinátája

4 α szöggel elforgatott egységvektor egyenese az origó körüli egységsugarú kör ( ) Tetszőleges szögekre a tangens és kotangens függvényeket kétféle módon is definiálhatjuk, mely definíciók ekvivalensek Az α szög tangense a koordinátasíkon annak a pontnak a második koordinátája, amelyet az ; 0 pontjához húzott érintőből kimetsz ezt látjuk az előző oldalon levő ábrán (A metszéspont akkor létezik, ha α 90 + k 80, k Z ) α szöggel elforgatott egységvektor egyenese az origó körüli egységsugarú kör ( ) Az α szög kotangense a koordinátasíkon annak a pontnak az első koordinátája, amelyet az 0 ; pontjához húzott érintőből kimetsz ezt látjuk az előző oldalon levő ábrán (A metszéspont akkor létezik, ha α 0 + k 80, k Z ) A másik értelmezés: tg α =, ahol 0, azaz α 90 + k 80, k Z cos α ctg α =, ahol 0, azaz α 0 + k 80, k Z Ha ismerjük a szögfüggvények értékeit az első síknegyedben, abból ki tudjuk számolni a szögfüggvények értékét más síknegyedben is Az α szög helyett vegyük azt az α ' hegyesszöget, amelyet az α szög az x tengellyel bezár Az α ' szöghöz tartozó függvényérték, vagy annak az ellentettje lesz az α szöghöz tartozó függvényérték Negyed Szög Hegyesszög sin α cos α tg α ctg α I 0 < α < 90 α ' = α ' II 90 < α < 80 α' = 80 α ' ' tg α' ctg α' ' tgα' ctgα' III 80 < α < 70 α ' = α 80 ' ' tg α' ctg α' IV 70 < α < 0 α' = 0 α ' ' tgα' ctgα' Példa: Mennyi sin 0 értéke? A 0 a III síknegyedben van, ez a szög az x tengellyel 0 = os hegyesszöget zár be, így a táblázat szerint sin 0 = sin 0 = A szögfüggvények értékeit 0, 90, 80, 70 szögekre a táblázat mutatja ( 0 -hoz ugyanolyan függvényértékek tartoznak, mint a 0 -hoz) sin α cos α tg α ctg α α = Nincs értelmezve α = 90 0 Nincs értelmezve 0 α = Nincs értelmezve α = 70 0 Nincs értelmezve 0

5 Összefüggések a szögfüggvények között Az egységvektor 90 -kal való elforgatása felcseréli a koordinátákat és az egyiknek megváltoztatja az előjelét Ezt használva láthatóak a következő összefüggések: ( α + 90 ) cos( α + 90 ) = ( α 90 ) = cos ( α 90 ) = ( α+ 90 ) = ctgα ctg( α+ 90 ) = tgα ( α 90 ) = ctgα ctg( α 90 ) = tgα sin = sin tg tg Az egységvektor 80 -kal való elforgatása megváltoztatja a koordináták előjelét Erre gondolva kapjuk a következő összefüggéseket: sin ( α + 80 ) = cos( α + 80 ) = ( α+ 80 ) tgα ctg ( α+ 80 ) = ctgα tg = A hegyesszögekre megismert összefüggések (például sin α + cos α =, vagy a pótszögek szögfüggvényei) érvényesek a hegyesszögnél nagyobb szögekre is Geometriai feladatokban nagy segítséget nyújthatnak a szögfüggvények Két hasznos összefüggés: Ha egy háromszög két oldala a és b, a közbezárt szög γ, akkor a háromszög területe absinγ t = Ha egy háromszög a oldalával szemközti szöge α, a köré írt kör sugara R, akkor fennáll az a = R összefüggés II Kidolgozott feladatok Töltse ki a táblázatot! Egy-egy szögnek a nagyságát megadtuk fokban, határozza meg a nagyságát radiánban, illetve fordítva: adott a szög nagysága radiánban, határozza meg, hogy az hány fokos szög! Fok Radián Fok Radián Fok Radián Fok Radián

6 Megoldás: 00 a 80 -nak -szorosa, így a 00 radiánban mérve a -nek - szorosa Arányosság helyett kényelmesen számolhatunk az átváltó képletekkel is: α α α( ) ( rad) 7 rad = és α = 80 Például 7 =,9 ( rad ), illetve,( rad ) = 80 70, 7 A kitöltött táblázat: 80 80, Fok Radián Fok Radián Fok Radián Fok Radián 0 0 0, 70 00,, , 0, , 7, 98 Mennyi az alábbi kifejezések értéke? sin 0 + sin + sin + K+ sin 90 a) cos0 + cos + cos + K+ cos90 b) tg tg tg K tg89 0,7,0 c) ( tg ) ( tg ) ( tg ) K ( tg89 ) d) sin 0 + sin 0 + sin 0 + K + sin 90 e) cos cos cos Megoldás: sin α = cos 90 α, így sin 0 = cos90, sin = cos89, sin = cos88, K a) ( ) A számlálóban és a nevezőben ugyanazon számok összege áll, ezért a tört értéke sin b) ( ) ( 90 α) tg α tg 90 α = = =, ezért tg tg89 =, cos 90 α ( ) tg tg88 =, tg tg87 =,, tg tg = és tg =, a szorzat értéke c) tg = 0, tehát a szorzat értéke 0 lesz d) α = cos( 90 α) sin sin sin sin és sin α + cos α = miatt 0 + sin 80 = sin 0 + cos 0 =, 0 + sin 70 = sin 0 + cos 0 =, 0 + sin 0 = sin 0 + cos 0 =, sin 0 + sin 0 = sin 0 + cos 0 = és sin 90 = Ezért az összeg = e) cos = 0, ezért a szorzat értéke 0 0

7 Mekkora lehet sin α értéke, ha ctg α =? I Megoldás: ctg α = =, azaz cos α = Mivel sin α + cos α =, így sin α + ( ) =, innen sin α =, sin α = ± 0 0 II Megoldás: Tegyük fel, hogy α hegyesszög, majd vegyünk fel egy és egység befogójú, α hegyesszögű derékszögű háromszöget Ennek átfogója a Pitagorasz-tétel alapján sin α = 0 0, innen definíció alapján leolvashatók a keresett szögfüggvényérték, A ctg = ctg( α+ 80 ) α tulajdonság miatt még a III síknegyedben is van egy megoldás, ekkor = 0 Mekkora annak a rombusznak a nagyobbik belső szöge, amelynek rövidebb átlója egység, oldala egység hosszúságú? Megoldás A nagyobbik belső szög a rombusz nagyobbik átlójával szemben fekszik cos α =, ezért α =, A rombusz legnagyobb szöge: α =, 8 7

8 Az ABCD egyenlő szárú trapéz hosszabbik alapján fekvő szögei 0 -osak, a trapézba írt, az oldalakat érintő kör sugara cm Mekkora a trapéz kerülete? Megoldás: A trapéz oldalait a beírt kör négy pontban érinti, közülük hármat megneveztünk az ábrán, ezek a K, M, N pontok A BKO derékszögű háromszögben BK = OK ctg 0 = = 9 cm A CKO derékszögű háromszögben CK = OK ctg 0 = = cm AD= BC = 9 + = cm Az ABCD négyszög érintőnégyszög, ezért a szemközti oldalak összege egyenlő: AB+ CD= AD+ BC = + = cm, a trapéz kerülete + = 8 cm Egy háromszög legkisebb oldala egység Szögeinek nagysága, 0, 7 a) Mekkora a háromszög köré írt körének sugara? b) Mekkora a háromszög területe? c) Mekkora a háromszög kerülete? Megoldás: a) A -os szöggel szemben van az egység hosszúságú oldal, hiszen a legkisebb oldal a legkisebb szöggel szemben van Az a= R összefüggésből (ahol a a háromszög egyik oldala, R a köré írt kör sugara, α az a-val szemközti szög) = R sin adódik R = 0, 707 egység 8

9 Ugyanezt a képletet használva a 0 -os szöggel szemközti oldal sin 0 = egység hosszú Ismét az előbbi képletet használjuk, így a 7 -os szöggel szemközti oldal hossza + sin 7 = sin( + 0 ) = egység ( sin 7 értékét számolhatjuk a megfelelő addíciós képlettel, vagy úgy, ahogyan ezt a 7 ajánlott feladatban tesz- szük Választhatjuk az egyszerűbb utat is: használjunk számológépet!) b) A háromszög területe: ( + 0 ) ab sinγ sin 7 sin + T = = = = 0,9 területegység c) A kerület K = + + = =, 9 egység 7 Egy négyzet egyik csúcsát és a szemközti oldalak felezőpontjait összekötöttük, így kaptunk egy egyenlő szárú háromszöget Mekkora a háromszög szárszöge? I Megoldás: Válasszuk a négyzet oldalát egységnek A Pitagorasz-tétel segít kiszámolni az egyenlő szárú háromszög szárának hosszát: A háromszög területe: t = = A háromszög területét megkaphatjuk úgy is, hogy a négyzet területéből elhagyjuk a felesleges területrészeket: t = + + = Ezekből: t = =, így sin α = és α =, 8 (közelítőleg) 9

10 II Megoldás: Ha a négyzet oldala egység, akkor (Pitagorasz tétellel számolva) a háromszög oldalai:,, A háromszöget az alaphoz tartozó magassággal két derékszögű háromszögre bontjuk: α sin = α 0,, így = 8, (közelítőleg), és α =, 8 III Ajánlott feladatok Melyik a legnagyobb a sin, cos, tg,, számok közül? Válaszát számológép segítsége nélkül indokolja! sin cos Számolja ki az alábbi műveletsorok értékét! (Számológép használata nélkül) cos sin a) b) sin tg cos + sin c) cos sin + tg ctg d) cos ctg sin e) tg 0 ctg 0 f) cos 0 sin 70 g) cos 0 + sin + sin sin 00 h) cos 0 + cos0 + cos90 + cos0 + cos70 0

11 Az állítások közül melyik igaz, melyik hamis? Válaszát számológép segítsége nélkül indokolja! a) sin + sin 89 > b) sin < cos c) sin sin < cos cos d) sin 0 cos 0 < sin 0 Számológép segítsége nélkül döntse el, melyik szám a nagyobb: a) sin 0 vagy cos 0? b) cos vagy sin? Számológép segítsége nélkül mutassa meg, hogy a) sin 0 + cos 0 > b) sin 0 + cos 0 > Mekkora szöget zár be egymással a kocka két különböző testátlója? 7 Igazoljuk a sin α tgα = azonosságot, ahol 0 < α < + cos α 8 Mennyi sin 7 pontos értéke? Számológép nélkül számoljon! 9 Mutassa meg, hogy igazak a következő azonosságok, ahol α hegyesszög tgα ctgα = = = = + tg α + ctg α + ctg α + tg α 0 Mutassa meg, hogy az r sugarú körbe írt szabályos -szög területe r Egy templomtorony magasságának meghatározása céljából egy, a torony alappontján átmenő vízszintes egyenes A pontjából a torony α, egy másik B pontjából β szögben látszik Ha az A és B pontok távolsága x méter, akkor milyen magas a torony?

12 Az ABC háromszög A csúcsánál levő szög 0, az innen induló szögfelező a szemközti oldalt az E pontban metszi Mekkora az AEC háromszög területe, ha AB =, AC =? Mutassa meg, hogy az ABC háromszög A csúcsából induló szögfelezőjének hossza α bc cos f a = b+ c

13 Az ajánlott feladatok megoldásai Melyik a legnagyobb a sin, cos, tg,, számok közül? Válaszát számológép segítsége nélkül indokolja! sin cos Megoldás: Ha 0 < α <, akkor sin α <, így sin < cos <, és innen sin < <, továbbá tg = < cos sin cos Tehát az öt szám közül a legnagyobb szám: sin Számolja ki az alábbi műveletsorok értékét! (Számológép használata nélkül) cos sin a) b) sin tg cos + sin c) cos sin + tg ctg d) cos ctg sin e) tg 0 ctg 0 f) cos 0 sin 70 g) cos 0 + sin + sin sin 00 h) cos 0 + cos0 + cos90 + cos0 + cos70 Megoldás: a) cos = sin, így a tört értéke 0 b) = c) 0 ( ) + = d) ( ) = 0 e) tg α ctgα = f) 0 = sin( 90 0 ) = sin 70 cos, így a tört értéke g) + = 0 + h) cos 0 + cos70 = 0, cos 0 + cos0 = 0, cos 90 = 0, ezért az összeg értéke 0

14 Az állítások közül melyik igaz, melyik hamis? Válaszát számológép segítsége nélkül indokolja! a) sin + sin 89 > b) sin < cos c) sin sin < cos cos d) sin 0 cos 0 < sin 0 Megoldás: a) IGAZ A baloldali összeg két tagja egy egység átfogójú derékszögű háromszög két befogójának hossza (ahol az egyik hegyesszög 89 ), így azok összege nagyobb - nél Másképp: sin + sin89 = sin + cos > sin + cos = (Felhasználtuk, hogy > > 0, így sin α > sin α ) b) HAMIS Ugyanis sin α >, ha < α < c) IGAZ sin sin < = cos0= cos cos d) IGAZ sin 0 cos 0 < sin0 < sin 0 Számológép segítsége nélkül döntse el, melyik szám a nagyobb: a) sin 0 vagy cos 0? b) cos vagy sin? Megoldás: a) sin 0 > sin 0 = cos0 b) cos = sin Számológép segítsége nélkül mutassa meg, hogy a) sin 0 + cos 0 > b) sin 0 + cos 0 > Megoldás: Ha 0 < sin x <, akkor sin x < sin x< sin x <, ugyanígy ha 0 < cos x <, akkor cos x < cos x< cos x < Továbbá sin x + cos x= Ezeket használjuk a bizonyításban a) sin 0 + cos 0 > sin 0 + cos 0 = b) sin 0 + cos 0 > sin 0 + cos 0 > sin 0 + cos 0 =

15 Mekkora szöget zár be egymással a kocka két különböző testátlója? Megoldás: Vegyük a kockának azt a síkmetszetét, melyen rajta van két testátló Ez a síkmetszet egy téglalap, a téglalap rövidebb oldala a kocka éle, hosszabb oldala a kocka lapátlója, átlója a kocka testátlója Ha a kocka éle egység, akkor a lapátlója, a testátlója hosszú A síkmetszet, a téglalap két szomszédos csúcsát és középpontját összekötve (lásd az ábrát) kapunk egy hegyesszögű, egyenlő szárú háromszöget Ennek területe a téglalap területének negyede: t =, másrészt t = =, így = =, α 70, Megjegyzés: Kényelmesen számolhatunk a szinusz definícióját felhasználva: α sin =, α,, így α 70, sin α 7 Igazoljuk a tgα = azonosságot, ahol 0 < α < + cos α Megoldás: Vegyünk fel egy egységsugarú kört, majd egyik átmérőjén a középpontból mérjünk fel α nagyságú szöget Az ábráról leolvasható az összefüggés

16 8 Mennyi sin 7 pontos értéke? Számológép nélkül számoljon! Megoldás: A -os szöget tartalmazó derékszögű háromszög átfogója a Pitagorasz- tétel alapján: ( ) + = 8+ = + + Ebben a derékszögű háromszögben számolhatjuk a keresett szögfüggvényértéket: + cos = = + + = + és sin 7 = cos, így sin 7 = + = ( + ) + =, 9 Mutassa meg, hogy igazak a következő azonosságok, ahol α hegyesszög tgα ctgα = = = = + tg α + ctg α + ctg α + tg α I Megoldás: Vegyünk fel egy olyan derékszögű háromszöget, ahol az α hegyesszög melletti befogó egység Ekkor a szemközti befogó tg α, az átfogó a Pitagorasz-tétel szerint + tg α Innen tgα =, + tg α = + tg α Majd vegyünk fel egy olyan derékszögű háromszöget, ahol az α hegyesszöggel szemközti befogó egység Ekkor a szög melletti befogó ctg α, az átfogó a Pitagorasz-tétel szerint Innen =, + ctg α + ctg α ctgα = + ctg α

17 II Megoldás: Használjuk a tg α = azonosságot cos α tgα + tg = α = sin α + cos α cos α + sin cos α = α = cos α = Hasonló átalakítással megkapjuk a másik, igazolásra váró összefüggést is 0 Mutassa meg, hogy az r-sugarú körbe írt szabályos -szög területe r Megoldás: A sokszög területe -szerese az OAB egyenlő szárú háromszög területének A háromszög szárszöge γ = = 0 0 A háromszög területe r r sin 0 r = r r = A -szög területe: = r Megjegyzés: Kürschák József (8 9) ezt az állítást egy elegáns átdarabolással bizonyította Egy templomtorony magasságának meghatározása céljából egy, a torony alappontján átmenő vízszintes egyenes A pontjából a torony α, egy másik B pontjából β szögben látszik Ha az A és B pontok távolsága x méter, akkor milyen magas a torony? 7

18 Megoldás: m tg α = és x+ a m tg β = a m = x+ a tg = a tg Ezekből: ( ) α β, így x tgα a = tgβ tgα x tgα tgβ A torony magassága: m = a tgβ = tgβ tgα Az ABC háromszög A csúcsánál levő szög 0, az innen induló szögfelező a szemközti oldalt az E pontban metszi Mekkora az AEC háromszög területe, ha AB =, AC =? Megoldás t = t + t, azaz ABC ABE AEC sin 0 = AE sin + AE sin Ezért AE = sin t AEC = AE sin = sin =, egység sin 8

19 Mutassa meg, hogy az ABC háromszög A csúcsából induló szögfelezőjének hossza α bc cos f a = b+ c Megoldás A háromszöget a szögfelező két kisebb háromszögre vágja Ezek területének összege egyenlő a háromszög területével, azaz α sin sin sin α α α bc α = bf a + cf a, azaz bc = bf a sin + cf a sin α α A = sin cos összefüggést használva, rendezés után kapjuk az α bc cos f a = összefüggést b+ c IV Ellenőrző feladatok Számolja ki az alábbi műveletsorok értékét! (Számológép használata nélkül) a) cos 0 tg b) sin 0 + cos 0 c) tg sin cos + cos 90 d) tg sin 90 e) g) sin 70 cos f) sin 0 + cos 0 tg + tg0 cos80 cos 0 cos + sin h) cos cos 9

20 Töltse ki a táblázatot számológép segítsége nélkül, ha 0 < α < 90 sin α cos α tg α ctg α 8 Egy háromszög két szöge 0 és A -os szöggel szemközti oldal hossza egység Mekkora a 0 -os szöggel szemközti oldal? Az ABC egyenlő szárú háromszög BC szárához tartozó súlyvonal egység, az AB alaphoz tartozó magasság egység Mekkora a háromszög szárszöge? Egy egység sugarú kör kerületének egyik felén az A, B és C pontok ebben a sorrendben helyezkednek el AB =, BC = Milyen hosszú az AC szakasz? Az ellenőrző feladatok megoldásai Számolja ki az alábbi műveletsorok értékét! (Számológép használata nélkül) a) cos 0 tg b) sin 0 + cos 0 c) tg sin cos + cos 90 d) tg sin 90 e) g) sin 70 cos f) sin 0 + cos 0 tg + tg0 cos80 cos 0 cos + sin h) cos cos Megoldás: a) = 0 b) + = 0

21 c) = + 0 d) = 0 e) ( ) 0+ + = 0 + f) ( ) = g) sin α + cos α = h) = Töltse ki a táblázatot számológép segítsége nélkül, ha 0 < α < 90 sin α cos α tg α ctg α 8 Megoldás: sin α cos α tg α ctg α 8 8 8

22 Egy háromszög két szöge 0 és A -os szöggel szemközti oldal hossza egység Mekkora a 0 -os szöggel szemközti oldal? m Megoldás: Az ábra alapján sin 0 =, így m = m sin =, tehát x x = = Az ABC egyenlő szárú háromszög BC szárához tartozó súlyvonal egység, az AB alaphoz tartozó magasság egység Mekkora a háromszög szárszöge? Megoldás Az egyenlő szárú háromszög alaphoz tartozó magassága egyben súlyvonal is, a súlyvonalak harmadolják egymást Így AS =, SE = A Pitagorasz-tétel alapján AE = tgcae =, CAE = 7, 7 A szárszög 0,8

23 Egy egység sugarú kör kerületének egyik felén az A, B és C pontok ebben a sorrendben helyezkednek el AB =, BC = Milyen hosszú az AC szakasz? Megoldás sin α =, így α =, 87 és sin β =, így β =, 8 Az AOC háromszög O-nál lévő szöge α+ β CD sin = CO CD Mivel α + β = 0,, így sin 0, = 0,87=, tehát AC = CD= 8, 7 Az AC húr felezőpontja D, ( α+β)

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok 10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

1. Trigonometria. 1.1. Bevezetés

1. Trigonometria. 1.1. Bevezetés . Trigonometria.. Bevezetés Elöljáróban csak annyit: A szögekkel ideje lenne megtanulni rendesen számolni. Láttuk: Két vektor, vagy ha úgy tetszik, két erő összege igen kényes arra, hogy az összegzendők

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M) Matematika PRÉ megoldókulcs 04. január 8. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi feladat megoldása kötelező volt! ) Adja meg az x+ y = 3 és az y = egyenletű egyenesek metszéspontjának

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont)

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont) 1997 Írásbeli érettségi-felvételi feladatok 1. Oldja meg a következő egyenletet a valós számok halmazán: 3 2 x 1 2 2 x 1 + 2 2x 1 3 2 x 1 = 5. (9 pont) 2 2. Mekkora a szabályos kilencszög kerülete és területe,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

MATEMATIKA ÉRETTSÉGI 2010. október 19. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2010. október 19. EMELT SZINT 1) MATEMATIKA ÉRETTSÉGI 010. október 19. EMELT SZINT a) Mely valós számok elégítik ki az alábbi egyenlőtlenséget? 3 3 1 1 8 b) Az alábbi f és g függvényt is a f 3 és g 0,5,5 I. 3;6. intervallumon értelmezzük.

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR

VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR 5. osztály 1. Az ötödik osztályban 13 fiúból négy szemüveges. A lányok harmada visel szemüveget. Összesen nyolc szemüveges van az osztályban. Mennyi

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka

Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka MAGYARÁZAT Az ajánlott Mértan 0 osztály feladatgyűjtemény a középiskolák 0-es tanulóinak általános iskolai tudásszintjének felmérését szolgálja. A felmérés célja a tízedikes tanulók általános iskolában

Részletesebben

4. modul Hasonlóság és alkalmazásai

4. modul Hasonlóság és alkalmazásai Matematika A 10. szakiskolai évfolyam 4. modul Hasonlóság és alkalmazásai Készítette: Vidra Gábor Matematika A 10. szakiskolai évfolyam 4. modul: Hasonlóság és alkalmazásai Tanári útmutató 2 A modul célja

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

11. Geometriai transzformációk

11. Geometriai transzformációk 11. Geometriai transzformációk I. Elméleti összefoglaló Geometriai transzformációknak nevezzük azokat a függvényeket, amelyeknek az értelmezési tartománya és értékkészlete is ponthalmaz. Ha a transzformáció

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

19. Területszámítás. Minden sokszöghöz hozzárendelünk egy pozitív valós számot. A hozzárendelés az alábbi tulajdonságokkal rendelkezik:

19. Területszámítás. Minden sokszöghöz hozzárendelünk egy pozitív valós számot. A hozzárendelés az alábbi tulajdonságokkal rendelkezik: 19. Területszámítás I. Elméleti összefoglaló Sokszög területe: Minden sokszöghöz hozzárendelünk egy pozitív valós számot. A hozzárendelés az alábbi tulajdonságokkal rendelkezik: Az egység (oldalú) négyzet

Részletesebben

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése.

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése. Matematika 10. első kötet Témák Az óra témája (tankönyvi 1. Bevezető óra (101. Ismerkedés a tankönyvvel 2. Nyílt végű feladat: Szálloda tervezése (102. 3. Matematikai logika: Igaz vagy hamis (103. 4. Matematikai

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT 1. FELADATSOR Felhasználható idő: 40 perc I. rész 1.1.) Oldja meg grafikusan az alábbi egyenlőtlenséget! x + 1 + 1 x + x + 11 1..) Mekkora legyen az x valós szám értéke, hogy az alábbi három mennyiség

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük:

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük: 14. Vektorok I. Elméleti összefoglaló Vektor Az irányított szakaszokat vektoroknak nevezzük: Jelölés: a kezdő és a végpont megadásával: AB ; egy kisbetűvel: v, írásban aláhúzás is szokásos: a; nyomtatásban

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

I. Síkgeometriai alapfogalmak, szögek, szögpárok

I. Síkgeometriai alapfogalmak, szögek, szögpárok 15. modul: SÍKIDOMOK 7 I. Síkgeometriai alapfogalmak, szögek, szögpárok Módszertani megjegyzés: A jelen modult többnyire kibővített ismétlésnek szántuk, és fő célja az alapfogalmak és az alapismeretek

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0631 É RETTSÉGI VIZSGA 006. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Geometria. 9 10. évfolyam. Szerkesztette: Hraskó András, Surányi László. 2015. augusztus 4.

Geometria. 9 10. évfolyam. Szerkesztette: Hraskó András, Surányi László. 2015. augusztus 4. Geometria 9 10. évfolyam Szerkesztette: Hraskó András, Surányi László 2015. augusztus 4. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Nagy Ilona 2013.06.01.

Nagy Ilona 2013.06.01. Bevezető matematika példatár Kádasné Dr. V. Nagy Éva Nagy Ilona 0.06.0. Tartalomjegyzék Bevezető. Gyakorlatok.. Műveletek törtekkel, hatványokkal, gyökökkel................. A logaritmus fogalma; arány-

Részletesebben

Játéktól a kutatásig. Írta: Bozóki Gergő Zoltán és Polereczki Fanni

Játéktól a kutatásig. Írta: Bozóki Gergő Zoltán és Polereczki Fanni Játéktól a kutatásig Írta: Bozóki Gergő Zoltán és Polereczki Fanni A fő témánk a Geometria és a geometriai földrajz. Diákokat 3 csoportra szedtük szét. Az első csoport Általános iskola alsó, körülbelül

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

Koordináta-rendszerek

Koordináta-rendszerek Koordináta-rendszerek Térkép: a Föld felszín (részletének) ábrázolása síkban Hogyan határozható meg egy pont helyzete egy síkon? Derékszögű koordináta-rendszer: a síkban két, egymást merőlegesen metsző

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

I. Vektor fogalma, tulajdonságai

I. Vektor fogalma, tulajdonságai 6 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató I. Vektor fogalma, tulajdonságai Módszertani megjegyzés: Az 1. és. fejezet az eddig tanultak rendszerezett és kibővített átismétlése. Bevezetőként kereshetünk

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

A csúszóvágásról, ill. - forgácsolásról

A csúszóvágásról, ill. - forgácsolásról A csúszóvágásról, ill. - forgácsolásról A vágás, ill. a forgácsolás célja: anyagi részek egymástól való elválasztása. A vágás, ill. a forgácsolás hagyományos eszköze: a kés. A kés a v haladási irányhoz

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

ZIPERNOWSKY MATEMATIKA KUPA

ZIPERNOWSKY MATEMATIKA KUPA ZIPERNOWSKY MATEMATIKA KUPA VERSENY 99 0 KÉSZÜLT A ZIPERNOWSKY KÁROLY MŰSZAKI SZAKKÖZÉPISKOLA FENNÁLLÁSÁNAK 00. ÉVFORDULÓJA ALKALMÁBÓL A FELADATSOROKAT ÖSSZEÁLLÍTOTTA: GOMBOCZ ERNŐ SZERKESZTETTE: KISS

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1313 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

Fedélszerkezet kivitelezése

Fedélszerkezet kivitelezése Fedélszerkezet kivitelezése Összeállította: Kreinbacher Imre Nemes András - 1 - Fedélszerkezeti elemek gyártás előkészítése Fedélszerkezet kivitelezésének feltétele, hogy a fed élszerkezet alkotó elemeit

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012.

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Fodor Csaba, Szeged Név:..... Iskola:. Beküldési határidő:

Részletesebben

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ 5. osztály Jelölje a 20-as és az 50-es közötti számokat a és b, a 20-as és a 80-as közöttieket c és d, az 50-es és a 80- as közöttieket pedig e és f. Ekkor tudjuk, hogy a+ b= 130, c+ d = 100 és e+ f =

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA Dr`avni izpitni center *P05C10113M* ŐSZI IDŐSZAK MATEMATIKA ÉRTÉKELÉSI ÚTMUTATÓ 005. augusztus 9., hétfő SZAKMAI ÉRETTSÉGI VIZSGA RIC 005 P05-C101-1-3M ÚTMUTATÓ a szakmai írásbeli érettségi vizsga feladatainak

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. Az ezekhez tartozó. egyenlet megoldásai: k 360. forgásszögek a. Két különböz egységvektor van, amelyek els koordinátája

1. Az ezekhez tartozó. egyenlet megoldásai: k 360. forgásszögek a. Két különböz egységvektor van, amelyek els koordinátája 8. modu: EGYSERBB TRIGONOMETRIKUS EGYENLETEK, EGYENLTLENSÉGEK 5 III. Trigonometrius egyenete Azoat az egyeneteet és egyentenségeet, ameyeben az ismereten vaamiyen szögfüggvénye szerepe, trigonometrius

Részletesebben

Matematikai tehetséggondozás Heves megyében Bíró Bálint, Eger

Matematikai tehetséggondozás Heves megyében Bíró Bálint, Eger Matematikai tehetséggondozás Heves megyében Bíró Bálint, Eger 1. Bevezetés: A matematikai tehetséggondozás egyik alapja a tehetségek felkutatása. Ahhoz pedig, hogy matematikai tehetségeket találjunk, olyan

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel 6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög

Részletesebben

Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam

Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Matematikából a tanulónak írásbeli és szóbeli osztályozó vizsgán kell részt vennie. Az írásbeli vizsga időtartama 60 perc, a szóbelié 20 perc.

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások

V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások V. osztály 1. feladat. Ha leejtünk egy labdát, akkor az fele akkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödik alkalommal 10cm magasra pattant fel?

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 081 É RETTSÉGI VIZSGA 009. október 0. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Melléklet a Matematika című részhez

Melléklet a Matematika című részhez Melléklet a Matematika című részhez Az arányosság bemutatása Az első könyvsorozatban 7. osztály, Tk-2 és Tk-3-ban 6. osztály, Tk-3b-ben 5. osztály(!), Tk-4-ben ismét 6. osztály, és végül Tk-4b-ben 5-6.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

oldalhoz van közelebb. Igazold, hogy a BDE és EDC szögek egyenlők!

oldalhoz van közelebb. Igazold, hogy a BDE és EDC szögek egyenlők! 1980. évi verseny 1. Kilenc egyforma könyv még nem kerül 100 Ft-nál többe, de tíz ilyen könyv már 110 Ft-nál is többe kerül. Mennyi az ára egy könyvnek? (A könyvek árát 10 fillérre kerekítve adják meg.)

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben