13. Trigonometria II.
|
|
- Marcell Molnár
- 9 évvel ezelőtt
- Látták:
Átírás
1 Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája Tetszőleges α szög koszinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor első koordinátája Az α szöget az e vektor irányszögének nevezzük Ez a szög 0 -nál nagyobb is lehet Szoktuk használni a forgásszög megnevezést is Ha az e vektort az óramutató járásával azonos irányban forgatjuk akkor α < 0 Az x a sin x függvény jellemzése: értelmezve van tetszőleges x valós számra (A függvény értelmezési tartománya a valós számok halmaza)
2 értékkészlete: [ ; ] a függvény szerint periodikus azaz sin x sin( x+ ) zérushelyei x k ahol k tetszőleges egész szám maximuma maximumhelyei + k ahol k tetszőleges egész szám minimuma minimumhelyei + k ahol k tetszőleges egész szám páratlan függvény azaz sin( x) sin x (a függvény az origóra szimmetrikus) a függvény szigorúan monoton növekedő a szigorúan monoton csökkenő a + k + k intervallumon ahol k tetszőle- ges egész szám + k + k intervallumon Az x a cos x függvény jellemzése: értelmezve van tetszőleges x valós számra (A függvény értelmezési tartománya a valós számok halmaza) értékkészlete: [ ; ] a függvény zérushelyei szerint periodikus azaz cos( x+ ) x + k ahol k tetszőleges egész szám maximuma maximumhelyei k ahol k tetszőleges egész szám minimuma minimumhelyei + k ahol k tetszőleges egész szám páros függvény azaz cos ( x) (a függvény az y-tengelyre szimmetrikus) + intervallumon szigorú- a függvény szigorúan monoton csökkenő a [ 0 k + k] an monoton növekedő a [ k + k] szám + intervallumon ahol k tetszőleges egész
3 Az sin x x a tg x (ahol 0 azaz x + k k Z ) tangens függvény jellemzése: értelmezési tartománya minden olyan x valós szám amelyre értékkészlete a valós számok halmaza tg x tg x+ a függvény szerint periodikus azaz ( ) x + k k Z zérushelyei x k ahol k tetszőleges egész szám szélsőértékei nincsenek így nem korlátos függvény páratlan függvény azaz tg( x) tg x (a függvény az origóra szimmetrikus) a függvény szigorúan monoton növekedő a + k + k intervallumon ahol k tetszőleges egész szám Az x a ctg x (ahol sin x 0 azaz x k k Z ) kotangens függvény jellemzése: sin x értelmezési tartománya minden olyan x valós szám amelyre értékkészlete a valós számok halmaza ctg x ctg x+ a függvény szerint periodikus azaz ( ) zérushelyei + k ahol k tetszőleges egész szám szélsőértékei nincsenek így nem korlátos függvény x k k Z
4 páratlan függvény azaz ctg( x) ctg x a függvény szigorúan monoton csökkenő a ] + k ; + k [ 0 intervallumon ahol k tetszőleges egész szám (a függvény az origóra szimmetrikus) Néhány összefüggés a szögfüggvények között Addíciós tételek: sin sin tg ( α + β) sinα cosβ + cosα sinβ cos( α + β) cosα cosβ sinα sinβ ( α β) sinα cosβ cosα sinβ cos( α β) cosα cosβ + sinα sinβ tgα + tgβ tgα tgβ ( α + β) tg( α β) tgα tgβ + tgα tgβ Kétszeres szög szögfüggvényei: sin α sinα cosα cos α cos α sin α Összegek szorzattá alakítása: α + β α β sinα + sinβ sin cos α β α + β sinα sinβ sin cos α + β α β cosα + cosβ cos cos α + β α β cosα cosβ sin sin
5 Szorzatok összeggé alakítása: sin α sinβ + [ cos( α β) cos( α β) ] cos α cosβ + [ cos( α β) + cos( α β) ] sin α cosβ + [ sin( α β) + sin( α β) ] A háromszög oldalai és szögei között két jól ismert összefüggés van Szinusztétel: A háromszög két oldalának aránya egyenlő az oldalakkal szemközti szögek szinuszainak arányával: a : b sinα : sinβ Koszinusztétel: A háromszög valamely oldalának négyzetét megkaphatjuk ha a másik két oldal négyzetösszegéből kivonjuk ugyanezen két oldal és az általuk bezárt szög koszinuszának kétszeres szorzatát: c a + b ab cosγ II Kidolgozott feladatok Pozitív vagy negatív szám sin 55? Megoldás: < 55< + és 0 sin > sin 55> sin + 5
6 Melyik nagyobb: sin vagy sin? Megoldás: sin sin( ) így az a kérdés sin( ) vagy sin a nagyobb? Mindkét szög az első síknegyedben van ahol a szinusz függvény szigorúan monoton növekszik Ezért azt kell vizsgálnunk hogy vagy a nagyobb? Tegyük fel hogy az első érték a nagyobb vizsgáljuk ezt > 0( ) > 59 > 80 > és ez igaz mert > > Tehát a feltevés igaz ezért sin a nagyobb 59 Mennyi a cos70 cos0 + cos80 cos 0 cos9 cos9 + cos8 cos kifejezés értéke? Megoldás: cos α sin( 90 α) és a cos( α β) cos0 cos0 -ra ismert addíciós tétel miatt cos70 cos0 + cos80 cos 0 cos70 cos0 + sin0 sin 70 cos cos9 cos9 + cos8 cos cos9 cos9 + sin 9 sin 9 cos ( 70 0 ) ( 9 9 ) Igazolja az alábbi egyenlőségeket! a) sin 5 + sin 5 sin 75 b) cos 0 cos 0 cos80 8 a) I Megoldás: sin 5 sin( 5 0 ) sin 5 cos0 cos5 sin 0 azaz sin 75 sin ( ) sin5 Továbbá sin 5 cos0 + cos 5 sin 0 + sin 5 és tehát + sin 75 Ezeket az értékeket helyettesítsük a sin 5 + sin 5 sin 75 kifejezésbe és látjuk hogy helyes az egyenlőség a) II Megoldás: sin 5 + sin5 sin cos sin 0 cos5 sin( 90 5 ) sin 75
7 b) A sin α sinα cosα azonosságot alkalmazzuk az átalakítások során ( sin 0 cos 0 ) cos 0 cos80 sin 0 cos 0 cos80 cos 0 cos 0 cos80 sin 0 sin 0 sin 0 cos 0 cos80 ( sin 0 cos 0 ) cos80 sin 80 cos80 így folytatva sin 0 sin 0 sin 0 sin 80 cos80 sin 80 cos80 sin0 sin 0 továbbá sin 0 8sin 0 8sin 0 8sin Igazolja az alábbi állításokat! a) sin 0 sin 50 cos0 b) + + > 5 sin 0 cos 0 Megoldás: a) sin α sinβ [ cos( α β) cos( α + β) ] miatt sin 0 sin 50 ( cos0 cos90 ) cos0 cos0 cos0 cos0 b) mivel sin 0 cos 0 sin 0 cos 0 sin 0 cos 0 > > és > ezekből sin 0 cos 0 sin 0 cos 0 sin 0 cos 0 sin 80 adódik a kívánt egyenlőtlenség Mutassa meg hogy az alábbi egyenleteknek nincs megoldása a valós számok körében! a) 5 sin x + 7 b) sin x + sin x+ sin x c) sin x sin 0 d) sin x sin( x+ ) e) sin x sin x+ 7
8 Megoldás: a) sin x és ezért 5sin x + 7 Az egyenlőtlenségben akkor lesz egyenlőség ha sin x és mindegyike teljesül ugyanarra az x számra ami nem lehetséges b) sinα ezért sin x + sin x+ sin x Egyenlőség csak úgy lehet ha x megoldása a sin x sin x és sin x egyenleteknek Az egyenletek megoldásai rendre k + + m + n ahol a k m n számok tetszőleges egész számok Ennek a három számhalmaznak nincs közös eleme az egyenleteknek nincs közös megoldása ezért az eredeti egyenletnek sincs c) sin x sin 0 azaz sin x sin 0 > és ez sosem teljesül x mert x d) sin sin( x+ ) 0 nulla sin ellentétes előjelű vagy mindkettő sin és ( x+) e) sin x miatt sin x sin x+ csak úgy lehet ha mindkét tényező vagy ha mindkét tényező ami nem teljesülhet 7 Oldja meg a sin x egyenletet! Megoldás: sin x ± Ha sin x akkor vagy x + k x + k 5 5 vagy x + k x + k ahol k Ζ Ha sin x akkor vagy x + k x + k 5 5 vagy x + k x + k ahol k Ζ 8 Oldja meg az alábbi egyenleteket! a) sin x + 0 b) sin x + c) + sin x sin x+ 8
9 a) I Megoldás: sin x cos x A 0 megoldásai egyenletünknek nem megoldásai így oszthatunk -el nem veszítünk gyököt: tg x a megoldás sin x x + k ahol k Ζ a) II Megoldás: Emeljük négyzetre mindkét oldalt: sin x + + sin x 0 azaz + sin x 0 + sin x 0 sin x így x + k x + k k Ζ Ellenőrzés mutatja hogy ezek mind megoldások a négyzetre emeléssel most nem kaptunk hamis gyököt (Hiszen az a 0 és az a 0 egyenletek ekvivalensek) a) III Megoldás: Szorozzuk az egyenletet -vel: sin x + 0 azaz cos sin x + sin sin x+ 0 így x + k x + k ahol k Ζ b) I Megoldás: Emeljük négyzetre mindkét oldalt sin x + + sin x azaz sin x 0 Ha sin x 0 akkor x k k Ζ ; ha 0 akkor x + k k Ζ A négyzetre emelés általában bővíti az egyenlet megoldásainak halmazát emiatt a kapott megoldásokat ellenőrizni kell nézzük meg egy perióduson belül a lehetséges gyököket A gyökök egy része kiesik (a hamis gyökök a * * sin x + megoldásai) a megoldások x k k Ζ és x + k k Ζ b) II Megoldás: Szorozzuk az egyenletet -vel: sin x + azaz cos sin x + sin sin x+ így x k x k + + illetve x+ + k x + k ahol k Ζ c) sin x sin x+ cos x+ sin x ( sin x+ ) ( sin x+ ) sin x+ alakba Az a a( a ) 0 + miatt egyenletünk átírható a egyenlet gyökei a 0 és a A sin x + 0 egyenlet megoldása az a) feladat szerint: x + k ahol k Ζ A sin x + megoldásai a b) feladat szerint: x k x + k k Ζ A gyökök: x + k x k x + k k Ζ 9
10 9 Oldja meg az alábbi egyenleteket! a) sin x sin x b) sin x sin x c) sin x d) tg x ctg x Megoldás: a) Ha sin α sinβ akkor α β + k vagy α + β + k ahol k Ζ k Ezért x x+ k azaz x k Ζ vagy x+ x + k azaz ( k+ ) x k Ζ 5 b) A sin( α) sinα azonossággal az előbbi típusú egyenlethez jutunk: a egyenlet helyett a x sin( x) sin x sin x k x x+ k azaz x k Ζ 5 ( k+ ) azaz x k Ζ c) sin x cos x így vagy vagy sin egyenletet vizsgáljuk Így vagy x x + k vagy + ( ) k x x + k azaz x + k Ζ 0 5 k x+ x k azaz x + k Ζ tg x ctg x ctg x tg + x d) ( ) így ( k ) + x + x+ k x k Ζ 0 Oldja meg az alábbi egyenleteket! a) tg x b) tg x + ctg x+ 0 Megoldás: a) Az egyenlet értelmezési tartományába az x 90 + k 80 k Z értékek tartoznak sin x innen cos x sin x azaz sin x sin x Rendezzük az egyenletet: sin x + sin x 0 Ennek a sin x -re másodfokú egyenletnek a gyökei: ( sin x ) ( sin x ) Az első érték kisebb -nél így annak az egyenletnek nincs megoldása A második egyenlet gyökei adják egyenletünk megoldásait: x x ahol k tetszőleges egész szám k k 0
11 b) Az egyenlet értelmezési tartományába az x 0 + k 90 k Z értékek tartoznak tg x Az a tg x helyettesítés után az egyenlet: a + a+ 0 En- tg x nek megoldásai: a a Ha tg x akkor x 57 + k 80 ; ha tg x akkor x ahol k tetszőleges egész szám k Oldja meg a sin x cosx sin x cos5x egyenletet! Megoldás: Használjuk a szorzatot összeggé alakító azonosságot: sin α cosβ [ sin( α + β) + sin( α β) ]; illetve a különbséget szorzattá alakító azonosságot: α β α + β sinα sinβ sin cos ( sin 5x sin x) ( sin 9x sin x) így sin 9x sin 5x 0 azaz sin x cos7x 0 k Ezért sin x 0 vagy cos 7x 0 Megoldás x k x + ahol k Ζ 7 Oldja meg az egyenlőtlenségeket a) sin x > b) sin x> c) sin x + sin x > 0 Megoldás: a) Tekintsük a trigonometrikus egységkört sin és sin sin α > pontosan akkor ha + k < α < + k
12 Ezért a sin x > egyenlőtlenség megoldása: k k k Z + ; + b) Ábrázoljuk a függvényeket és innen leolvasható a megoldás Megoldás: 5 + k ; + k k Z c) sin x + sin x > 0 innen az a sin x helyettesítés után az a + a > 0 egyenlőtlenséget kapjuk Az y a + a parabola felfelé nyitott zérushelyei a és a Így az a + a > 0 egyenlőtlenség megoldásai az a < illetve a > valós számok A sin x < egyenlőtlenségnek nincs megoldása 5 a sin x > megoldása k k k Z + ; + Az ABC derékszögű háromszög derékszögű C csúcsából induló szögharmadolók az átfogót a D és E pontban metszik és CE Mekkorák a háromszög hegyesszögei? CD
13 Megoldás A szögharmadolók 0 -os szögekre osztják a derékszöget CED α + 0 és CDE 0 α A CED háromszögben írjuk fel a szinusztételt: ( 0 + α) sin( α) sin 0 5 sinα cosα CE CD ( α) ( 0 + α) sin 0 sin tg α α 9 0 és így 90 α A háromszög hegyesszögei és A hegyesszögű ABC háromszög a és b oldalához tartozó magasságok hossza m a és és ezek egymással α szöget zárnak be Mutassa meg hogy ma + mb mamb cosα c sinα m b Megoldás Az ABC háromszög C csúcsánál levő szöge is α így m b a sinα m b a Írjuk fel a koszinusztételt: sinα mb ma ma mb c a + b ab cosα + cosα sin α sin α sin α azaz ma + mb mamb cosα c sinα
14 5 Az ABC háromszögben AC BC Az AC oldalon felvesszük a D és E pontokat úgy hogy AD DE EC legyen Számítsa ki a háromszög területét ha BD 8 5 és BE 0 Megoldás sin α értékét kell meghatározni t ABC AC BC sinα 9x sinα tehát x és x + 9x 00 A koszinusztétel miatt a BCE háromszögből cosα a BCD három- x x + 9x 75 szögből cosα x x + 9x 00 x + 9x 75 Az egyenlet megoldása x 8 5 így x x 55 8 cos α és sin α A háromszög területe t ABC 5 területegység 7 Egy háromszög oldalainak hossza: n + n+ n+ n ahol n -nél nagyobb egész szám Mutassa meg hogy a háromszögnek van 0 -os szöge Megoldás: Írjuk fel a koszinusztételt: ( + n+ ) ( n+ ) + ( n ) ( n+ ) ( n ) cosγ n Innen átalakítások után kapjuk: cosγ tehát γ 0
15 7 Egy háromszög oldalainak hossza egy olyan számtani sorozat három egymást követő eleme amelynek differenciája A háromszög területének mérőszáma kétszer akkora mint a kerület mérőszáma Mekkorák az oldalak? Megoldás A háromszög oldalai a a a+ A háromszög kerülete a ( a+ )( a ) sinα a A háromszög területe a innen sinα a a a+ + a a+ a cos Írjuk fel a koszinusztételt: ( ) ( ) ( )( ) α a + cosα ( a ) innen a a + Mivel sin α + cos α így + ebből rendezéssel: a ( a ) a 588a 0 a ( a 9) 0 Mivel a 0 ezért a 9 0 innen a A háromszög oldalainak hossza 5 egység III Ajánlott feladatok Melyik a nagyobb: sin sin vagy sin? sin Igazolja az alábbi egyenlőségeket! a) tg 5 + ctg5 b) sin 0 sin 70 cos50 Igazolja az alábbi állításokat! a) cos sin + b) ( ctg )( ctg ) Hozza egyszerűbb alakra a bal oldali oszlopban álló kifejezéseket Az eredményeket a jobb oldali oszlopban felsoroltuk csak más sorrendben Keresse meg az összetartozó párokat (A) sin x (a) sin x + y y (b) (B) ( ) ( ) (C) ( x+ y) sin( x y) sin (c) sin x 5
16 (D) (E) (F) (G) sin x tg x tg x ctg y tg y ctg x tg x ctg y tg y ctg x tg x+ ctg x (d) (e) (f) (g) sin x sin sin (H) (h) sin x sin y + sin x (I) sin x tg x+ (i) tg x tg y (J) ctg x+ sin x (j) tg x ctg y x y 5 Oldja meg az alábbi egyenleteket! a) ( x ) b) + sin x c) sin x sin x Oldja meg az alábbi egyenleteket! a) sin x sin x + 0 b) sin x + sin x 7 Oldja meg a sin x ( + ) + + egyenletet! 8 Oldja meg a sin 8x sin x egyenletet! 9 Oldja meg az alábbi egyenleteket! a) sin x + 5 b) sin x Oldja meg a cosx cos5x cosx cos7x egyenletet! Oldja meg az alábbi egyenlőtlenségeket a) 0 b) sin x c) ctg x < Oldja meg a sin x + < egyenlőtlenséget Az ABCD négyzetbe írtuk az AEF egyenlő szárú háromszöget ahol E a BC oldalon F a DC oldalon nyugszik és AE AF Ha tg AFE akkor mennyi cos EAB? Mutassa meg ha ABCDEFGHI szabályos kilencszög akkor AF AB+ AC
17 5 Az ABC háromszögben AB 8 AC BAC < 0 és az A csúcsból induló szögfelező a szemközti oldalt a D pontban metszi Mekkora a CD szakasz? Egy 5 egység sugarú körbe írt háromszög két oldala 7 és 9 egység Mekkora a harmadik oldal? 7 Egy háromszög oldalainak hossza n n n+ ahol n egész szám és a háromszög legnagyobb szöge kétszerese a legkisebb szögének Mekkorák a háromszög oldalai? 8 Egységsugarú félkörbe téglalapot írtunk melynek két csúcsa az átmérőn két másik csúcsa a félköríven nyugszik Legfeljebb mekkora lehet a téglalap területe? 9 Az ABC szabályos háromszögben felvettük az M és N pontokat úgy hogy MAB MBA 0 NAB 0 NBA 0 Bizonyítsa be hogy MN párhuzamos BC-vel 0 Az ABC háromszög oldalai a b c területe t a ( b c) Határozza meg az a oldallal szemközti szög nagyságát Az ajánlott feladatok megoldásai Melyik a nagyobb: sin sin vagy sin? sin sin sin sin sin sin sin I Megoldás: mivel sin sin sin sin sin sin ( cos cos5 ) és sin sin ( cos cos5 ) miatt a tört ( cos cos5 ) ( cos cos5 ) cos cos sin sin sin < 0 sin sin sin sin sin sin sin sin Ezekből következik hogy a nagyobb sin a na- sin sin sin sin cos cos5 II Megoldás: : < így sin sin sin sin cos cos5 gyobb sin sin Igazolja az alábbi egyenlőségeket! a) tg 5 + ctg5 b) sin 0 sin 70 cos50 7
18 Megoldás: sin5 cos5 sin 5 + cos 5 a) tg5 + ctg5 + cos5 sin5 cos5 sin5 cos5 sin5 és sin α sinα cosα miatt: cos5 sin5 cos5 sin5 sin 0 b) α cos( 90 α) sin és sin α sinα cosα így sin 0 sin 0 sin 70 ( sin 0 cos 0 ) cos50 cos50 cos50 Igazolja az alábbi állításokat! a) cos sin + b) ( ctg )( ctg ) Megoldás: a) cos sin cos sin cos + sin cos és cos cos ( 0 5 ) + + cos cos ctg ctg sin sin b) ( )( ) sin cos sin cos sin sin ( ) sin( ) sin ( 5 ) sin( 5 ) sin sin sin sin sin sin sin sin sin ctgβ ctgα + Más megoldás Használjuk a ctg( α β) összefüggést ctgβ ctgα ctg ctg 5 + ctg ctg 5 ( ctg( 5 ))( ctg ) ( ctg ) ctg + ctg ctg ctg ctg ( ctg ) ctg ( ctg ) ( ctg ) 8
19 Hozza egyszerűbb alakra a bal oldali oszlopban álló kifejezéseket Az eredményeket a jobb oldali oszlopban felsoroltuk csak más sorrendben Keresse meg az összetartozó párokat (A) sin x (a) sin x + y y (b) (B) ( ) ( ) (C) ( x+ y) sin( x y) (D) (E) (F) (G) sin (c) sin x sin x tg x tg x ctg y tg y ctg x tg x ctg y tg y ctg x tg x+ ctg x (d) (e) (f) (g) sin x sin sin (H) (h) sin x sin y + sin x (I) sin x tg x+ (i) tg x tg y (J) ctg x+ sin x (j) tg x ctg y x y Megoldás: (A) (f) (B) (g) (C) (h) (D) (b) (E) (i) (F) (j) (G) (c) (H) (a) (I) (e) (J) (d) 5 Oldja meg az alábbi egyenleteket! a) ( x ) b) + sin x c) sin x sin x Megoldás: a) Ha 0 akkor x + k ahol k tetszőleges egész szám Ezek megoldásai az egyenletnek Ha cos 0 Ha cos > 0 x akkor x akkor ( x ) azaz ( ) x x vagy x A > 0 feltételt x teljesíti ezért ez is megoldása egyenletünknek Ha < 0 akkor ám az ( x ) egyenletnek nincs megoldása Az ( x ) egyenlet megoldásai x és x + k ahol k tetszőle- ges egész szám 9
20 b) + sin x miatt az egyenletnek akkor van megoldása ha + sin x és teljesül A megoldás: x k ahol k tetszőleges egész szám Másképp: + sin x + azaz cos x + 0 Ennek gyökei és ezek közül csak lehetséges a megoldás x k ahol k tetszőleges egész szám 0 sin x c) sin x miatt az egyenletnek akkor van megoldása ha az egyenlet mindkét oldala azaz ha sin x és sin x 0 egyszerre teljesül ami nem lehetséges Az egyenletnek nincs megoldása Oldja meg az alábbi egyenleteket! a) sin x sin x + 0 b) sin x + sin x Megoldás: a) Ha 0 lenne akkor az egyenlet miatt sin x 0 ami lehetetlen Ezért most 0 oszthatunk -el és így kapjuk a tg x tg x+ 0 másodfokú egyenletet Ennek gyökei tg x és tg x ahonnan x + k és x 07+ k ahol k Ζ b) Ha 0 lenne akkor az egyenlet miatt sin x ami lehetetlen Ezért most 0 oszthatunk -el azonban a kapott tg x+ tg x egyenlet most nem lesz tg x -re nézve másodfokú egyenlet Használjuk hogy ( sin + ) sin x sin x ( sin x+ ) x ezért egyenletünk előbb a + azaz a sin x + sin x 0 alakot ölti majd a -el való osztás után kapjuk a tg x + tg x 0 egyenletet Ennek gyökei: tg x és tg x ahonnan x 0 5+ k és x 850+ k ahol k Ζ 7 Oldja meg a sin x ( + ) + + Megoldás: Ha akkor egyenletet! sin x ám ennek nincs megoldása Ezért ha egyen- 0 Szorozzuk az egyenletet letünknek megoldása x akkor ( ) -el ( ) sin x sin x sin x + 0
21 Mivel Ezért sin x sin x és sin x + így sin x + sin x sin x és x ( cos ) 0 x cos azaz sin ( sin x ) 0 x és Mivel így 0 Ha 0 akkor sin x ± ám sin x sin x miatt csak sin x lehet ( ) 0 Így az egyenlet megoldása x k + ahol k Ζ 8 Oldja meg a sin 8x sin x egyenletet! Megoldás: sin x így az egyenlet sin 8x + 0 alakban írható Mivel sin 8x 0 0 így sin 8x + 0 csak úgy lehet ha sin 8x 0 és cos x 0 azaz sin 8x 0 és 0 A sin 8x 0 egyenlet k megoldásai: 8 x k így x k Ζ A 0 egyenlet megoldásai: 8 k x + k így x + k Ζ Olyan x szám lehet csak az egyenlet megoldása amelyre sin 8x 0 és 0 is teljesül így a megoldások: 8 k x + k Ζ 8 9 Oldja meg az alábbi egyenleteket! a) sin x + 5 b) sin x + 5 Megoldás: a) sin x + mivel + így van olyan ϕ hegyesszög amelyre cos ϕ és sin ϕ (gondoljunk a sin ϕ + cos ϕ összefüggésre) Ez a szög 5 5 ϕ sin x + 5 sin x+ cosϕ sin x+ sinϕ sin( x+ ϕ) azaz sin ( +ϕ) ( ) ennek megoldása x x k 0 így x 87 + k 0 ahol k tetszőleges egész szám 5 b) + 5 így + Legyen ϕ olyan hegyesszög amelyre cos ϕ ez a szög ϕ 5
22 Osszuk az egyenletet -gyel és ezután alkalmazható az addíciós tétel: 5 sin x + cos ϕ sin x+ sinϕ vagyis sin ( x +ϕ) sin( x + 5 ) sin 9 5 tehát x k 0 x 8 + k 0 x 5 k x k 0 ahol k tetszőleges vagy + ( ) + 0 egész szám 0 Oldja meg a cosx cos5x cosx cos7x egyenletet! Megoldás: Használjuk a szorzatot összeggé alakító azonosságot: cos α cosβ [ cos( α + β) + cos( α β) ] Így ( cos9x+ ) ( cosx+ ) cos 9x cosx 0 α + β β α A cosα cosβ sin sin azonosság miatt egyenletünk a következő alakot ölti: sin x sin x 0 Ezért sin x 0 x k vagy sin x 0 x k ahol k Ζ Oldja meg az alábbi egyenlőtlenségeket a) 0 b) sin x c) ctg x < Megoldás: a) + k ; + k k Z 5 b) + k ; + k k Z c) + k; k k Z
23 Oldja meg a sin x + < egyenlőtlenséget Megoldás: Az sin x + cosx< azaz cos sin x+ sin < és az addíciós tétel miatt sin x + < 5 Ennek megoldása + k < x+ < + k így + k < x< + k azaz + k < x< + k ahol k tetszőleges egész szám Az ABCD négyzetbe írtuk az AEF egyenlő szárú háromszöget ahol E a BC oldalon F a DC oldalon nyugszik és AE AF Ha tg AFE akkor mennyi cos EAB? Megoldás: Az ábra az AC átlóra szimmetrikus így az A-nál lévő szög: α + így β α 5 ahol AFE α EAB β ( ) β cos β cos( α 5 ) ( cosα + sinα) Mivel tg α így sin α cosα és sin α + cos α miatt cos α innen sin α és cos β
24 Mutassa meg ha ABCDEFGHI szabályos kilencszög akkor AF AB+ AC Megoldás: Tudjuk hogy ha egy r sugarú körben az a hosszúságú húrhoz α kerületi 0 szög tartozik akkor a r sinα A szabályos kilencszög egy oldalához 0-9 os középponti szög és 0 -os kerületi szög tartozik Az AB húrhoz 0 -os az AC húrhoz 0 -os és az AF húrhoz 80 -os kerületi szög tartozik Ezek miatt az AF AB+ AC egyenlőség felírható a következő alakban: r sin80 r sin 0 + r sin 0 A sin80 sin 0 + sin 0 összefüggést kell α + β α β igazolnunk A sinα+ sinβ sin cos azonosság miatt sin 0 + sin 0 sin 0 cos0 cos0 és cos 0 sin80 így sin 0 + sin 0 sin80 5 Az ABC háromszögben AB 8 AC BAC < 0 és az A csúcsból induló szögfelező a szemközti oldalt a D pontban metszi Mekkora a CD szakasz? Megoldás: A koszinusz-tétel miatt: BC cos0 7 7 A szögfelező-tétel miatt CD DB így CD BC 7 8
25 Egy 5 egység sugarú körbe írt háromszög két oldala 7 és 9 egység Mekkora a harmadik oldal? Megoldás: Ha az r sugarú körbe írt háromszög a oldalával szemben α szög van akkor a r sinα Így 9 0 sinα 7 0 sinβ A háromszög oldalai a 9 b 7 és c a szemközti szögek rendre α β γ Ez a háromszög hegyesszögű mert Ha sin α 9 0 akkor cos α 7 > ; valamint ha sin β 7 0 akkor 5 cos β 0 9 sinγ sin sinα cosβ + cosα sinβ ( 80 ( α+ β) ) A c r sinγ összefüggés alapján: c Megjegyzés: Számolhatunk számológéppel is Ha sin α akkor α és 0 7 sin β miatt β ezért γ 80 ( α + β) 7 0 A c r sinγ összefüggést használva c Egy háromszög oldalainak hossza n n n+ ahol n egész szám és a háromszög legnagyobb szöge kétszerese a legkisebb szögének Mekkorák a háromszög oldalai? Megoldás: A háromszögben nagyobb szöggel szemben nagyobb oldal van így ha a n n+ kisebb szög α akkor a szinusz-tétel szerint: azaz sinα sin α n n+ n+ és így cosα sinα sinα cosα n ( ) Most írjuk fel a koszinusztételt: ( ) n + ( n+ ) n( n+ ) cosα n+ n ( ) n + ( n+ ) n( n+ ) n innen ( n ) Ebből a műveletek és az összevonások elvégzése után n 5 Tehát a háromszög oldalai 5 és egység hosszúak 5
26 8 Egységsugarú félkörbe téglalapot írtunk melynek két csúcsa az átmérőn két másik csúcsa a félköríven nyugszik Legfeljebb mekkora lehet a téglalap területe? Megoldás: Az ábrán látható adatokkal felírhatjuk a téglalap területét t cosα sinα sin α Mivel sin α így a téglalap területe legfeljebb területegység A téglalap területe ezt az értéket felveszi ha α 5 (Ekkor a téglalap egyik oldala kétszerese a másik oldalának) 9 Az ABC szabályos háromszögben felvettük az M és N pontokat úgy hogy MAB MBA 0 NAB 0 NBA 0 Bizonyítsa be hogy MN párhuzamos BC-vel Megoldás Az M és az N pontok merőleges vetülete a BC oldalon P és Q Az MN párhuzamos BC-vel ha MP NQ BN a a A BAN háromszögben a szinusztétel miatt: sin 0 sin0 sin50 A BAM háromszögben a szinusztétel miatt: BM a a sin 0 sin00 sin80
27 Ekkor: NQ BN sin 0 a sin 0 sin 0 és sin 50 a sin 0 sin 0 MP BM sin 0 sin 80 sin 0 sin 0 MP NQ teljesül ha Ez igaz sin 50 sin80 mivel sin 0 sin80 sin 0 cos 0 sin 0 sin 50 0 Az ABC háromszög oldalai a b c területe t a ( b c) Határozza meg az a oldallal szemközti szög nagyságát Megoldás Az a oldallal szemközti szöget jelölje α bc sinα t a ( b c) a b + bc c azaz bc sinα bc a A koszinusztétel miatt: a b + c bc cosα azaz a b c bc cosα bc sinα Ezekből bc bc cosα sinα Osszunk bc-vel ( bc 0 ): cosα azaz sinα ( cosα) Emeljük négyzetre az egyenlet mindkét oldalát: b c sin α cosα+ cos α Használjuk a sin α cos α azonosságot és rendezzük az egyenletet: 7 cos α cosα Az egyenlet gyökei: cos α 5 és cos α Az első gyök nem megoldása a feladatnak mert α cos α így α IV Ellenőrző feladatok Számolja ki cos 0 + cos 0 + cos00 + cos0 értékét számológép segítsége nélkül! Az a b c oldalú háromszög oldalaira fenn áll az + összefüggés Mutassa meg hogy a háromszögnek van 0 -os a + b b+ c a+ b+ c szöge Oldja meg a sin ( 0 + x) sin x egyenletet 7
28 Oldja meg a tg x + tg x 0 egyenlőtlenséget 5 Mekkora az ábrán látható ED szakasz? Egy egyenlő szárú háromszögben az alapon fekvő szög szinusza kétszerese a csúcsnál fekvő szög koszinuszának Mekkora a szárszög? Az ellenőrző feladatok megoldásai Számolja ki cos 0 + cos 0 + cos00 + cos0 értékét számológép segítsége nélkül! Megoldás: cos 0 + cos 0 + cos00 + cos0 cos 0 + cos 0 + cos00 + cos cos cos + cos00 + cos 0 cos80 cos0 + cos00 + cos 0 cos80 + cos00 + cos80 + ( cos80 ) + 8
29 Az a b c oldalú háromszög oldalaira fenn áll az + összefüggés Mutassa meg hogy a háromszögnek van 0 -os a + b b+ c a+ b+ c szöge Megoldás: A megadott feltétel átrendezett alakja: b a + c a c és ez a koszinusztétel szerint azt jelenti hogy a b oldallal szemközti β szögre cos β tehát β 0 Oldja meg a sin ( 0 + x) sin x egyenletet Megoldás: Az addíciós tétel miatt: sin 0 + cos 0 sin x sin x itt helyettesítsük az ismert szögfüggvényértékeket: sin x + Mivel 0 így oszthatunk vele és rendezés után: sin x sin tg x azaz x 0 + k 80 ahol k tetszőleges egész szám x azaz Oldja meg a tg x + tg x 0 egyenlőtlenséget Megoldás: Az egyenlet értelmezési tartományába az értékek tartoznak Az x + k k Z a tg x helyettesítés után az a + a 0 egyenlőtlenséget kapjuk Az y a + a parabola felfelé nyitott zérushelyei a 0 és a Így az a + a 0 egyenlőtlenség megoldásai az a illetve a 0 valós számok A tg x egyenlőtlenség megoldása + k < x + k a tg x 0 egyenlőtlenség megoldása 0 + k x< + k ahol k tetszőleges egész szám 9
30 5 Mekkora az ábrán látható ED szakasz? Megoldás: Az ABC háromszögben írjuk fel a koszinusz-tételt: cosγ ahol γ ACB DCE Innen cosγ A DCE háromszögben a koszinusz-tétel szerint DE + cos γ DE 7 Egy egyenlő szárú háromszögben az alapon fekvő szög szinusza kétszerese a csúcsnál fekvő szög koszinuszának Mekkora a szárszög? Megoldás Az alapon fekvő szögek nagysága α a szárszög sin α cosβ továbbá α + β 80 Ebből cosβ cos( 80 α) cos α sin α cos α sin α β Ekkor ezt az előbbi egyenletbe írva kapjuk a sin α sinα 0 egyenletet melynek gyökei ± + sinα Mivel α hegyesszög sinα α 57 7 és a szárszög 8 8 β
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Részletesebben12. Trigonometria I.
Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát
Részletesebben8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész
Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=
RészletesebbenSíkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik
Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala
RészletesebbenTrigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
RészletesebbenTrigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
RészletesebbenI. A négyzetgyökvonás
Definíció: Négyzetgyök a ( a : a a 0 I. A négyzetgyökvonás a ) jelenti azt a nem negatív számot, amelynek a négyzete a. a 0 b : b b R A négyzetgyök-függvény értéke is csak nem negatív lehet. Ha a b-t abszolút
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenFüggvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Részletesebben8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenA 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA)
Oktatási Hivatal A 016/017. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Egy húrtrapéz pontosan
RészletesebbenExponenciális és logaritmusos kifejezések, egyenletek
Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.
Részletesebbenc.) Mely valós számokra teljesül a következő egyenlőtlenség? 3
1. Az alái feladatok egyszerűek, akár fejen is kiszámíthatóak, de a piszkozatpapíron is gondolkodhat. A megoldásokat azonan erre a papírra írja! a.) Írja fel egy olyan egész együtthatós másodfokú egyenlet
RészletesebbenMegoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
RészletesebbenA 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
Részletesebbenb) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
RészletesebbenTrigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Részletesebben2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenAz egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
RészletesebbenKoordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
Részletesebben10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
RészletesebbenEgyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
Részletesebben6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Részletesebben8. modul Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek. Készítette: Darabos Noémi Ágnes
8. modul Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Készítette: Darabos Noémi Ágnes Matematika A. évfolyam 8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100
RészletesebbenSzögfüggvények értékei megoldás
Szögfüggvények értékei megoldás 1. Számítsd ki az alábbi szögfüggvények értékeit! (a) cos 585 (f) cos ( 00 ) (k) sin ( 50 ) (p) sin (u) cos 11 (b) cos 00 (g) cos 90 (l) sin 510 (q) sin 8 (v) cos 9 (c)
RészletesebbenAbszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása
Részletesebben6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
RészletesebbenFeladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint
TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II.
Trigonometria II. A tetszőleges nagyságú szögek szögfüggvényeit koordináta rendszerben egységhosszúságú forgásvektor segítségével definiáljuk. DEFINÍCIÓ: (Vektor irányszöge) Egy vektor irányszögén értjük
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor
Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
RészletesebbenFeladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!
RészletesebbenKalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus
Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)
RészletesebbenMegoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.
1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,
Részletesebbena) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenA 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal A 0/04 tanévi Országos Középiskolai Tanulmányi erseny második forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 57 olyan háromjegyű szám, amelynek számjegyei
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenOktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
RészletesebbenSorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenEmelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész
Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
RészletesebbenExponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
RészletesebbenAz 1. forduló feladatainak megoldása
Az 1. forduló feladatainak megoldása 1. Bizonyítsa be, hogy a kocka éléből, lapátlójából és testátlójából háromszög szerkeszthető, és ennek a háromszögnek van két egymásra merőleges súlyvonala! Megoldás:
RészletesebbenSzélsőérték problémák elemi megoldása II. rész Geometriai szélsőértékek Tuzson Zoltán, Székelyudvarhely
Szélsőérték problémák elemi megoldása II. rész Geometriai szélsőértékek Tuzson Zoltán, Székelyudvarhely Ebben a részben geometriai problémák szélsőértékeinek a megállapításával foglalkozunk, a síkgeometriai
RészletesebbenM/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24
OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
RészletesebbenTrigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda
Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett
RészletesebbenMatematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály II. rész: Trigonometria Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék II. rész: Trigonometria...........................
RészletesebbenHúrnégyszögek, Ptolemaiosz tétele
Húrnégyszögek, Ptolemaiosz tétele Markó Zoltán 11C Húrnégyszögek Definíció: Húrnégyszögnek nevezzük az olyan négyszöget, amely köré kör írható Vagyis az olyan konvex négyszögek, amelyeknek oldalai egyben
RészletesebbenKoordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
RészletesebbenÉrettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
RészletesebbenGyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!
RészletesebbenMatematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola
O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg
RészletesebbenHASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
Részletesebben, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD
Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
RészletesebbenHáromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek
2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,
RészletesebbenA kör. A kör egyenlete
A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +
Részletesebben2018/2019. Matematika 10.K
Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások
Országos Középiskolai Tanulmáni Versen / Matematika I kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Eg papírlapra felírtuk a pozitív egész számokat n -től n -ig Azt vettük észre hog a felírt páros számok
RészletesebbenÁbrahám Gábor: A Jensen-egyenlőtlenség. Megoldások. Megoldások, megoldás ötletek (Jensen-egyenlőtlenség)
Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) I. Geometriai egyenlőtlenségek, szélsőérték feladatok 1. Mivel az [ ] f :0; π ; xa sin xfolytonos az értelmezési tartományán, ezért elég azt belátni,
RészletesebbenFeladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?
Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet
Részletesebben4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig
Oktatási Hivatal Az forduló feladatainak megoldása (Szakközépiskola) Melyek azok az m Z számok, amelyekre az ( m ) x mx = 0 egyenletnek legfeljebb egy, az m x + 3mx 4 = 0 egyenletnek legalább egy valós
RészletesebbenKoordinátageometria Megoldások
005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának
RészletesebbenRacionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q
Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N
RészletesebbenGyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6
Gyakorló feladatok 1. Ismertesd a matematikai indukció logikai sémáját, magyarázzuk meg a bizonyítás lényegét. Bizonyítsuk be, hogy minden n természetes számra 1 + 3 + + (n 1) = n.. Matematikai indukcióval
RészletesebbenMATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. EMELT SZINT 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x x 4 log 9 10 sin x x 6 I. (11 pont) sin 1 lg1 0 log 9 9 x x 4 Így az 10 10 egyenletet kell megoldani,
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria I.
Trigonometria I. Hegyes szögek szögfüggvényei: Az α hegyesszöggel rendelkező derékszögű háromszögek egymáshoz hasonlóak, mert szögeik megegyeznek. Így oldalhosszaik aránya mindig állandó. Az α szögtől
RészletesebbenHatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
RészletesebbenFeladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András
Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon
Részletesebben4. Vektorok. I. Feladatok. vektor, ha a b, c vektorok által bezárt szög 60? 1. Milyen hosszú a v = a+
4 Vektorok I Feladatok Milyen hosszú a v a b c vektor, ha a b, c vektorok által bezárt szög 60? c b, a, b, c és az a és Mit állíthatunk az BCD konvex négyszögről, ha B D B BC CB CD DC D 0? Igaz-e, hogy
RészletesebbenPitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2
1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy
RészletesebbenKisérettségi feladatgyűjtemény
Kisérettségi feladatgyűjtemény Halmazok 1. Egy fordítóiroda angol és német fordítást vállal. Az irodában 50 fordító dolgozik, akiknek 70%-a angol nyelven, 50%-a német nyelven fordít. Hány fordító dolgozik
RészletesebbenGeometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
RészletesebbenTRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI
TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI http://zanza.tv/matematika/geometria/thalesz-tetele http://zanza.tv/matematika/geometria/pitagorasz-tetel http://zanza.tv/matematika/geometria/nevezetes-tetelek-derekszogu-haromszogben
RészletesebbenNULLADIK MATEMATIKA szeptember 7.
A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke
RészletesebbenXXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.
XXIV. NEMZETKÖZI MGYR MTEMTIKVERSENY Szabadka, 05. április 8-. IX. évfolyam. Egy -as négyzetháló négyzeteibe a bal felső mezőből indulva soronként sorra beirjuk az,,3,,400 pozitív egész számokat. Ezután
RészletesebbenI. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!
Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,
RészletesebbenXVIII. Nemzetközi Magyar Matematika Verseny
9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.
Részletesebben11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.
osztály Oldja meg az egyenletrendszert a valós számok halmazán! y + yz = 8 yz + z = 9 z + y = 5 (0 pont) Megoldás: A három egyenlet összege: ( + yz + z) = Ebből kivonva az egyenleteket: y =, yz = 6, z
RészletesebbenNULLADIK MATEMATIKA ZÁRTHELYI
A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.
Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek
Részletesebben