13. Trigonometria II.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "13. Trigonometria II."

Átírás

1 Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája Tetszőleges α szög koszinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor első koordinátája Az α szöget az e vektor irányszögének nevezzük Ez a szög 0 -nál nagyobb is lehet Szoktuk használni a forgásszög megnevezést is Ha az e vektort az óramutató járásával azonos irányban forgatjuk akkor α < 0 Az x a sin x függvény jellemzése: értelmezve van tetszőleges x valós számra (A függvény értelmezési tartománya a valós számok halmaza)

2 értékkészlete: [ ; ] a függvény szerint periodikus azaz sin x sin( x+ ) zérushelyei x k ahol k tetszőleges egész szám maximuma maximumhelyei + k ahol k tetszőleges egész szám minimuma minimumhelyei + k ahol k tetszőleges egész szám páratlan függvény azaz sin( x) sin x (a függvény az origóra szimmetrikus) a függvény szigorúan monoton növekedő a szigorúan monoton csökkenő a + k + k intervallumon ahol k tetszőle- ges egész szám + k + k intervallumon Az x a cos x függvény jellemzése: értelmezve van tetszőleges x valós számra (A függvény értelmezési tartománya a valós számok halmaza) értékkészlete: [ ; ] a függvény zérushelyei szerint periodikus azaz cos( x+ ) x + k ahol k tetszőleges egész szám maximuma maximumhelyei k ahol k tetszőleges egész szám minimuma minimumhelyei + k ahol k tetszőleges egész szám páros függvény azaz cos ( x) (a függvény az y-tengelyre szimmetrikus) + intervallumon szigorú- a függvény szigorúan monoton csökkenő a [ 0 k + k] an monoton növekedő a [ k + k] szám + intervallumon ahol k tetszőleges egész

3 Az sin x x a tg x (ahol 0 azaz x + k k Z ) tangens függvény jellemzése: értelmezési tartománya minden olyan x valós szám amelyre értékkészlete a valós számok halmaza tg x tg x+ a függvény szerint periodikus azaz ( ) x + k k Z zérushelyei x k ahol k tetszőleges egész szám szélsőértékei nincsenek így nem korlátos függvény páratlan függvény azaz tg( x) tg x (a függvény az origóra szimmetrikus) a függvény szigorúan monoton növekedő a + k + k intervallumon ahol k tetszőleges egész szám Az x a ctg x (ahol sin x 0 azaz x k k Z ) kotangens függvény jellemzése: sin x értelmezési tartománya minden olyan x valós szám amelyre értékkészlete a valós számok halmaza ctg x ctg x+ a függvény szerint periodikus azaz ( ) zérushelyei + k ahol k tetszőleges egész szám szélsőértékei nincsenek így nem korlátos függvény x k k Z

4 páratlan függvény azaz ctg( x) ctg x a függvény szigorúan monoton csökkenő a ] + k ; + k [ 0 intervallumon ahol k tetszőleges egész szám (a függvény az origóra szimmetrikus) Néhány összefüggés a szögfüggvények között Addíciós tételek: sin sin tg ( α + β) sinα cosβ + cosα sinβ cos( α + β) cosα cosβ sinα sinβ ( α β) sinα cosβ cosα sinβ cos( α β) cosα cosβ + sinα sinβ tgα + tgβ tgα tgβ ( α + β) tg( α β) tgα tgβ + tgα tgβ Kétszeres szög szögfüggvényei: sin α sinα cosα cos α cos α sin α Összegek szorzattá alakítása: α + β α β sinα + sinβ sin cos α β α + β sinα sinβ sin cos α + β α β cosα + cosβ cos cos α + β α β cosα cosβ sin sin

5 Szorzatok összeggé alakítása: sin α sinβ + [ cos( α β) cos( α β) ] cos α cosβ + [ cos( α β) + cos( α β) ] sin α cosβ + [ sin( α β) + sin( α β) ] A háromszög oldalai és szögei között két jól ismert összefüggés van Szinusztétel: A háromszög két oldalának aránya egyenlő az oldalakkal szemközti szögek szinuszainak arányával: a : b sinα : sinβ Koszinusztétel: A háromszög valamely oldalának négyzetét megkaphatjuk ha a másik két oldal négyzetösszegéből kivonjuk ugyanezen két oldal és az általuk bezárt szög koszinuszának kétszeres szorzatát: c a + b ab cosγ II Kidolgozott feladatok Pozitív vagy negatív szám sin 55? Megoldás: < 55< + és 0 sin > sin 55> sin + 5

6 Melyik nagyobb: sin vagy sin? Megoldás: sin sin( ) így az a kérdés sin( ) vagy sin a nagyobb? Mindkét szög az első síknegyedben van ahol a szinusz függvény szigorúan monoton növekszik Ezért azt kell vizsgálnunk hogy vagy a nagyobb? Tegyük fel hogy az első érték a nagyobb vizsgáljuk ezt > 0( ) > 59 > 80 > és ez igaz mert > > Tehát a feltevés igaz ezért sin a nagyobb 59 Mennyi a cos70 cos0 + cos80 cos 0 cos9 cos9 + cos8 cos kifejezés értéke? Megoldás: cos α sin( 90 α) és a cos( α β) cos0 cos0 -ra ismert addíciós tétel miatt cos70 cos0 + cos80 cos 0 cos70 cos0 + sin0 sin 70 cos cos9 cos9 + cos8 cos cos9 cos9 + sin 9 sin 9 cos ( 70 0 ) ( 9 9 ) Igazolja az alábbi egyenlőségeket! a) sin 5 + sin 5 sin 75 b) cos 0 cos 0 cos80 8 a) I Megoldás: sin 5 sin( 5 0 ) sin 5 cos0 cos5 sin 0 azaz sin 75 sin ( ) sin5 Továbbá sin 5 cos0 + cos 5 sin 0 + sin 5 és tehát + sin 75 Ezeket az értékeket helyettesítsük a sin 5 + sin 5 sin 75 kifejezésbe és látjuk hogy helyes az egyenlőség a) II Megoldás: sin 5 + sin5 sin cos sin 0 cos5 sin( 90 5 ) sin 75

7 b) A sin α sinα cosα azonosságot alkalmazzuk az átalakítások során ( sin 0 cos 0 ) cos 0 cos80 sin 0 cos 0 cos80 cos 0 cos 0 cos80 sin 0 sin 0 sin 0 cos 0 cos80 ( sin 0 cos 0 ) cos80 sin 80 cos80 így folytatva sin 0 sin 0 sin 0 sin 80 cos80 sin 80 cos80 sin0 sin 0 továbbá sin 0 8sin 0 8sin 0 8sin Igazolja az alábbi állításokat! a) sin 0 sin 50 cos0 b) + + > 5 sin 0 cos 0 Megoldás: a) sin α sinβ [ cos( α β) cos( α + β) ] miatt sin 0 sin 50 ( cos0 cos90 ) cos0 cos0 cos0 cos0 b) mivel sin 0 cos 0 sin 0 cos 0 sin 0 cos 0 > > és > ezekből sin 0 cos 0 sin 0 cos 0 sin 0 cos 0 sin 80 adódik a kívánt egyenlőtlenség Mutassa meg hogy az alábbi egyenleteknek nincs megoldása a valós számok körében! a) 5 sin x + 7 b) sin x + sin x+ sin x c) sin x sin 0 d) sin x sin( x+ ) e) sin x sin x+ 7

8 Megoldás: a) sin x és ezért 5sin x + 7 Az egyenlőtlenségben akkor lesz egyenlőség ha sin x és mindegyike teljesül ugyanarra az x számra ami nem lehetséges b) sinα ezért sin x + sin x+ sin x Egyenlőség csak úgy lehet ha x megoldása a sin x sin x és sin x egyenleteknek Az egyenletek megoldásai rendre k + + m + n ahol a k m n számok tetszőleges egész számok Ennek a három számhalmaznak nincs közös eleme az egyenleteknek nincs közös megoldása ezért az eredeti egyenletnek sincs c) sin x sin 0 azaz sin x sin 0 > és ez sosem teljesül x mert x d) sin sin( x+ ) 0 nulla sin ellentétes előjelű vagy mindkettő sin és ( x+) e) sin x miatt sin x sin x+ csak úgy lehet ha mindkét tényező vagy ha mindkét tényező ami nem teljesülhet 7 Oldja meg a sin x egyenletet! Megoldás: sin x ± Ha sin x akkor vagy x + k x + k 5 5 vagy x + k x + k ahol k Ζ Ha sin x akkor vagy x + k x + k 5 5 vagy x + k x + k ahol k Ζ 8 Oldja meg az alábbi egyenleteket! a) sin x + 0 b) sin x + c) + sin x sin x+ 8

9 a) I Megoldás: sin x cos x A 0 megoldásai egyenletünknek nem megoldásai így oszthatunk -el nem veszítünk gyököt: tg x a megoldás sin x x + k ahol k Ζ a) II Megoldás: Emeljük négyzetre mindkét oldalt: sin x + + sin x 0 azaz + sin x 0 + sin x 0 sin x így x + k x + k k Ζ Ellenőrzés mutatja hogy ezek mind megoldások a négyzetre emeléssel most nem kaptunk hamis gyököt (Hiszen az a 0 és az a 0 egyenletek ekvivalensek) a) III Megoldás: Szorozzuk az egyenletet -vel: sin x + 0 azaz cos sin x + sin sin x+ 0 így x + k x + k ahol k Ζ b) I Megoldás: Emeljük négyzetre mindkét oldalt sin x + + sin x azaz sin x 0 Ha sin x 0 akkor x k k Ζ ; ha 0 akkor x + k k Ζ A négyzetre emelés általában bővíti az egyenlet megoldásainak halmazát emiatt a kapott megoldásokat ellenőrizni kell nézzük meg egy perióduson belül a lehetséges gyököket A gyökök egy része kiesik (a hamis gyökök a * * sin x + megoldásai) a megoldások x k k Ζ és x + k k Ζ b) II Megoldás: Szorozzuk az egyenletet -vel: sin x + azaz cos sin x + sin sin x+ így x k x k + + illetve x+ + k x + k ahol k Ζ c) sin x sin x+ cos x+ sin x ( sin x+ ) ( sin x+ ) sin x+ alakba Az a a( a ) 0 + miatt egyenletünk átírható a egyenlet gyökei a 0 és a A sin x + 0 egyenlet megoldása az a) feladat szerint: x + k ahol k Ζ A sin x + megoldásai a b) feladat szerint: x k x + k k Ζ A gyökök: x + k x k x + k k Ζ 9

10 9 Oldja meg az alábbi egyenleteket! a) sin x sin x b) sin x sin x c) sin x d) tg x ctg x Megoldás: a) Ha sin α sinβ akkor α β + k vagy α + β + k ahol k Ζ k Ezért x x+ k azaz x k Ζ vagy x+ x + k azaz ( k+ ) x k Ζ 5 b) A sin( α) sinα azonossággal az előbbi típusú egyenlethez jutunk: a egyenlet helyett a x sin( x) sin x sin x k x x+ k azaz x k Ζ 5 ( k+ ) azaz x k Ζ c) sin x cos x így vagy vagy sin egyenletet vizsgáljuk Így vagy x x + k vagy + ( ) k x x + k azaz x + k Ζ 0 5 k x+ x k azaz x + k Ζ tg x ctg x ctg x tg + x d) ( ) így ( k ) + x + x+ k x k Ζ 0 Oldja meg az alábbi egyenleteket! a) tg x b) tg x + ctg x+ 0 Megoldás: a) Az egyenlet értelmezési tartományába az x 90 + k 80 k Z értékek tartoznak sin x innen cos x sin x azaz sin x sin x Rendezzük az egyenletet: sin x + sin x 0 Ennek a sin x -re másodfokú egyenletnek a gyökei: ( sin x ) ( sin x ) Az első érték kisebb -nél így annak az egyenletnek nincs megoldása A második egyenlet gyökei adják egyenletünk megoldásait: x x ahol k tetszőleges egész szám k k 0

11 b) Az egyenlet értelmezési tartományába az x 0 + k 90 k Z értékek tartoznak tg x Az a tg x helyettesítés után az egyenlet: a + a+ 0 En- tg x nek megoldásai: a a Ha tg x akkor x 57 + k 80 ; ha tg x akkor x ahol k tetszőleges egész szám k Oldja meg a sin x cosx sin x cos5x egyenletet! Megoldás: Használjuk a szorzatot összeggé alakító azonosságot: sin α cosβ [ sin( α + β) + sin( α β) ]; illetve a különbséget szorzattá alakító azonosságot: α β α + β sinα sinβ sin cos ( sin 5x sin x) ( sin 9x sin x) így sin 9x sin 5x 0 azaz sin x cos7x 0 k Ezért sin x 0 vagy cos 7x 0 Megoldás x k x + ahol k Ζ 7 Oldja meg az egyenlőtlenségeket a) sin x > b) sin x> c) sin x + sin x > 0 Megoldás: a) Tekintsük a trigonometrikus egységkört sin és sin sin α > pontosan akkor ha + k < α < + k

12 Ezért a sin x > egyenlőtlenség megoldása: k k k Z + ; + b) Ábrázoljuk a függvényeket és innen leolvasható a megoldás Megoldás: 5 + k ; + k k Z c) sin x + sin x > 0 innen az a sin x helyettesítés után az a + a > 0 egyenlőtlenséget kapjuk Az y a + a parabola felfelé nyitott zérushelyei a és a Így az a + a > 0 egyenlőtlenség megoldásai az a < illetve a > valós számok A sin x < egyenlőtlenségnek nincs megoldása 5 a sin x > megoldása k k k Z + ; + Az ABC derékszögű háromszög derékszögű C csúcsából induló szögharmadolók az átfogót a D és E pontban metszik és CE Mekkorák a háromszög hegyesszögei? CD

13 Megoldás A szögharmadolók 0 -os szögekre osztják a derékszöget CED α + 0 és CDE 0 α A CED háromszögben írjuk fel a szinusztételt: ( 0 + α) sin( α) sin 0 5 sinα cosα CE CD ( α) ( 0 + α) sin 0 sin tg α α 9 0 és így 90 α A háromszög hegyesszögei és A hegyesszögű ABC háromszög a és b oldalához tartozó magasságok hossza m a és és ezek egymással α szöget zárnak be Mutassa meg hogy ma + mb mamb cosα c sinα m b Megoldás Az ABC háromszög C csúcsánál levő szöge is α így m b a sinα m b a Írjuk fel a koszinusztételt: sinα mb ma ma mb c a + b ab cosα + cosα sin α sin α sin α azaz ma + mb mamb cosα c sinα

14 5 Az ABC háromszögben AC BC Az AC oldalon felvesszük a D és E pontokat úgy hogy AD DE EC legyen Számítsa ki a háromszög területét ha BD 8 5 és BE 0 Megoldás sin α értékét kell meghatározni t ABC AC BC sinα 9x sinα tehát x és x + 9x 00 A koszinusztétel miatt a BCE háromszögből cosα a BCD három- x x + 9x 75 szögből cosα x x + 9x 00 x + 9x 75 Az egyenlet megoldása x 8 5 így x x 55 8 cos α és sin α A háromszög területe t ABC 5 területegység 7 Egy háromszög oldalainak hossza: n + n+ n+ n ahol n -nél nagyobb egész szám Mutassa meg hogy a háromszögnek van 0 -os szöge Megoldás: Írjuk fel a koszinusztételt: ( + n+ ) ( n+ ) + ( n ) ( n+ ) ( n ) cosγ n Innen átalakítások után kapjuk: cosγ tehát γ 0

15 7 Egy háromszög oldalainak hossza egy olyan számtani sorozat három egymást követő eleme amelynek differenciája A háromszög területének mérőszáma kétszer akkora mint a kerület mérőszáma Mekkorák az oldalak? Megoldás A háromszög oldalai a a a+ A háromszög kerülete a ( a+ )( a ) sinα a A háromszög területe a innen sinα a a a+ + a a+ a cos Írjuk fel a koszinusztételt: ( ) ( ) ( )( ) α a + cosα ( a ) innen a a + Mivel sin α + cos α így + ebből rendezéssel: a ( a ) a 588a 0 a ( a 9) 0 Mivel a 0 ezért a 9 0 innen a A háromszög oldalainak hossza 5 egység III Ajánlott feladatok Melyik a nagyobb: sin sin vagy sin? sin Igazolja az alábbi egyenlőségeket! a) tg 5 + ctg5 b) sin 0 sin 70 cos50 Igazolja az alábbi állításokat! a) cos sin + b) ( ctg )( ctg ) Hozza egyszerűbb alakra a bal oldali oszlopban álló kifejezéseket Az eredményeket a jobb oldali oszlopban felsoroltuk csak más sorrendben Keresse meg az összetartozó párokat (A) sin x (a) sin x + y y (b) (B) ( ) ( ) (C) ( x+ y) sin( x y) sin (c) sin x 5

16 (D) (E) (F) (G) sin x tg x tg x ctg y tg y ctg x tg x ctg y tg y ctg x tg x+ ctg x (d) (e) (f) (g) sin x sin sin (H) (h) sin x sin y + sin x (I) sin x tg x+ (i) tg x tg y (J) ctg x+ sin x (j) tg x ctg y x y 5 Oldja meg az alábbi egyenleteket! a) ( x ) b) + sin x c) sin x sin x Oldja meg az alábbi egyenleteket! a) sin x sin x + 0 b) sin x + sin x 7 Oldja meg a sin x ( + ) + + egyenletet! 8 Oldja meg a sin 8x sin x egyenletet! 9 Oldja meg az alábbi egyenleteket! a) sin x + 5 b) sin x Oldja meg a cosx cos5x cosx cos7x egyenletet! Oldja meg az alábbi egyenlőtlenségeket a) 0 b) sin x c) ctg x < Oldja meg a sin x + < egyenlőtlenséget Az ABCD négyzetbe írtuk az AEF egyenlő szárú háromszöget ahol E a BC oldalon F a DC oldalon nyugszik és AE AF Ha tg AFE akkor mennyi cos EAB? Mutassa meg ha ABCDEFGHI szabályos kilencszög akkor AF AB+ AC

17 5 Az ABC háromszögben AB 8 AC BAC < 0 és az A csúcsból induló szögfelező a szemközti oldalt a D pontban metszi Mekkora a CD szakasz? Egy 5 egység sugarú körbe írt háromszög két oldala 7 és 9 egység Mekkora a harmadik oldal? 7 Egy háromszög oldalainak hossza n n n+ ahol n egész szám és a háromszög legnagyobb szöge kétszerese a legkisebb szögének Mekkorák a háromszög oldalai? 8 Egységsugarú félkörbe téglalapot írtunk melynek két csúcsa az átmérőn két másik csúcsa a félköríven nyugszik Legfeljebb mekkora lehet a téglalap területe? 9 Az ABC szabályos háromszögben felvettük az M és N pontokat úgy hogy MAB MBA 0 NAB 0 NBA 0 Bizonyítsa be hogy MN párhuzamos BC-vel 0 Az ABC háromszög oldalai a b c területe t a ( b c) Határozza meg az a oldallal szemközti szög nagyságát Az ajánlott feladatok megoldásai Melyik a nagyobb: sin sin vagy sin? sin sin sin sin sin sin sin I Megoldás: mivel sin sin sin sin sin sin ( cos cos5 ) és sin sin ( cos cos5 ) miatt a tört ( cos cos5 ) ( cos cos5 ) cos cos sin sin sin < 0 sin sin sin sin sin sin sin sin Ezekből következik hogy a nagyobb sin a na- sin sin sin sin cos cos5 II Megoldás: : < így sin sin sin sin cos cos5 gyobb sin sin Igazolja az alábbi egyenlőségeket! a) tg 5 + ctg5 b) sin 0 sin 70 cos50 7

18 Megoldás: sin5 cos5 sin 5 + cos 5 a) tg5 + ctg5 + cos5 sin5 cos5 sin5 cos5 sin5 és sin α sinα cosα miatt: cos5 sin5 cos5 sin5 sin 0 b) α cos( 90 α) sin és sin α sinα cosα így sin 0 sin 0 sin 70 ( sin 0 cos 0 ) cos50 cos50 cos50 Igazolja az alábbi állításokat! a) cos sin + b) ( ctg )( ctg ) Megoldás: a) cos sin cos sin cos + sin cos és cos cos ( 0 5 ) + + cos cos ctg ctg sin sin b) ( )( ) sin cos sin cos sin sin ( ) sin( ) sin ( 5 ) sin( 5 ) sin sin sin sin sin sin sin sin sin ctgβ ctgα + Más megoldás Használjuk a ctg( α β) összefüggést ctgβ ctgα ctg ctg 5 + ctg ctg 5 ( ctg( 5 ))( ctg ) ( ctg ) ctg + ctg ctg ctg ctg ( ctg ) ctg ( ctg ) ( ctg ) 8

19 Hozza egyszerűbb alakra a bal oldali oszlopban álló kifejezéseket Az eredményeket a jobb oldali oszlopban felsoroltuk csak más sorrendben Keresse meg az összetartozó párokat (A) sin x (a) sin x + y y (b) (B) ( ) ( ) (C) ( x+ y) sin( x y) (D) (E) (F) (G) sin (c) sin x sin x tg x tg x ctg y tg y ctg x tg x ctg y tg y ctg x tg x+ ctg x (d) (e) (f) (g) sin x sin sin (H) (h) sin x sin y + sin x (I) sin x tg x+ (i) tg x tg y (J) ctg x+ sin x (j) tg x ctg y x y Megoldás: (A) (f) (B) (g) (C) (h) (D) (b) (E) (i) (F) (j) (G) (c) (H) (a) (I) (e) (J) (d) 5 Oldja meg az alábbi egyenleteket! a) ( x ) b) + sin x c) sin x sin x Megoldás: a) Ha 0 akkor x + k ahol k tetszőleges egész szám Ezek megoldásai az egyenletnek Ha cos 0 Ha cos > 0 x akkor x akkor ( x ) azaz ( ) x x vagy x A > 0 feltételt x teljesíti ezért ez is megoldása egyenletünknek Ha < 0 akkor ám az ( x ) egyenletnek nincs megoldása Az ( x ) egyenlet megoldásai x és x + k ahol k tetszőle- ges egész szám 9

20 b) + sin x miatt az egyenletnek akkor van megoldása ha + sin x és teljesül A megoldás: x k ahol k tetszőleges egész szám Másképp: + sin x + azaz cos x + 0 Ennek gyökei és ezek közül csak lehetséges a megoldás x k ahol k tetszőleges egész szám 0 sin x c) sin x miatt az egyenletnek akkor van megoldása ha az egyenlet mindkét oldala azaz ha sin x és sin x 0 egyszerre teljesül ami nem lehetséges Az egyenletnek nincs megoldása Oldja meg az alábbi egyenleteket! a) sin x sin x + 0 b) sin x + sin x Megoldás: a) Ha 0 lenne akkor az egyenlet miatt sin x 0 ami lehetetlen Ezért most 0 oszthatunk -el és így kapjuk a tg x tg x+ 0 másodfokú egyenletet Ennek gyökei tg x és tg x ahonnan x + k és x 07+ k ahol k Ζ b) Ha 0 lenne akkor az egyenlet miatt sin x ami lehetetlen Ezért most 0 oszthatunk -el azonban a kapott tg x+ tg x egyenlet most nem lesz tg x -re nézve másodfokú egyenlet Használjuk hogy ( sin + ) sin x sin x ( sin x+ ) x ezért egyenletünk előbb a + azaz a sin x + sin x 0 alakot ölti majd a -el való osztás után kapjuk a tg x + tg x 0 egyenletet Ennek gyökei: tg x és tg x ahonnan x 0 5+ k és x 850+ k ahol k Ζ 7 Oldja meg a sin x ( + ) + + Megoldás: Ha akkor egyenletet! sin x ám ennek nincs megoldása Ezért ha egyen- 0 Szorozzuk az egyenletet letünknek megoldása x akkor ( ) -el ( ) sin x sin x sin x + 0

21 Mivel Ezért sin x sin x és sin x + így sin x + sin x sin x és x ( cos ) 0 x cos azaz sin ( sin x ) 0 x és Mivel így 0 Ha 0 akkor sin x ± ám sin x sin x miatt csak sin x lehet ( ) 0 Így az egyenlet megoldása x k + ahol k Ζ 8 Oldja meg a sin 8x sin x egyenletet! Megoldás: sin x így az egyenlet sin 8x + 0 alakban írható Mivel sin 8x 0 0 így sin 8x + 0 csak úgy lehet ha sin 8x 0 és cos x 0 azaz sin 8x 0 és 0 A sin 8x 0 egyenlet k megoldásai: 8 x k így x k Ζ A 0 egyenlet megoldásai: 8 k x + k így x + k Ζ Olyan x szám lehet csak az egyenlet megoldása amelyre sin 8x 0 és 0 is teljesül így a megoldások: 8 k x + k Ζ 8 9 Oldja meg az alábbi egyenleteket! a) sin x + 5 b) sin x + 5 Megoldás: a) sin x + mivel + így van olyan ϕ hegyesszög amelyre cos ϕ és sin ϕ (gondoljunk a sin ϕ + cos ϕ összefüggésre) Ez a szög 5 5 ϕ sin x + 5 sin x+ cosϕ sin x+ sinϕ sin( x+ ϕ) azaz sin ( +ϕ) ( ) ennek megoldása x x k 0 így x 87 + k 0 ahol k tetszőleges egész szám 5 b) + 5 így + Legyen ϕ olyan hegyesszög amelyre cos ϕ ez a szög ϕ 5

22 Osszuk az egyenletet -gyel és ezután alkalmazható az addíciós tétel: 5 sin x + cos ϕ sin x+ sinϕ vagyis sin ( x +ϕ) sin( x + 5 ) sin 9 5 tehát x k 0 x 8 + k 0 x 5 k x k 0 ahol k tetszőleges vagy + ( ) + 0 egész szám 0 Oldja meg a cosx cos5x cosx cos7x egyenletet! Megoldás: Használjuk a szorzatot összeggé alakító azonosságot: cos α cosβ [ cos( α + β) + cos( α β) ] Így ( cos9x+ ) ( cosx+ ) cos 9x cosx 0 α + β β α A cosα cosβ sin sin azonosság miatt egyenletünk a következő alakot ölti: sin x sin x 0 Ezért sin x 0 x k vagy sin x 0 x k ahol k Ζ Oldja meg az alábbi egyenlőtlenségeket a) 0 b) sin x c) ctg x < Megoldás: a) + k ; + k k Z 5 b) + k ; + k k Z c) + k; k k Z

23 Oldja meg a sin x + < egyenlőtlenséget Megoldás: Az sin x + cosx< azaz cos sin x+ sin < és az addíciós tétel miatt sin x + < 5 Ennek megoldása + k < x+ < + k így + k < x< + k azaz + k < x< + k ahol k tetszőleges egész szám Az ABCD négyzetbe írtuk az AEF egyenlő szárú háromszöget ahol E a BC oldalon F a DC oldalon nyugszik és AE AF Ha tg AFE akkor mennyi cos EAB? Megoldás: Az ábra az AC átlóra szimmetrikus így az A-nál lévő szög: α + így β α 5 ahol AFE α EAB β ( ) β cos β cos( α 5 ) ( cosα + sinα) Mivel tg α így sin α cosα és sin α + cos α miatt cos α innen sin α és cos β

24 Mutassa meg ha ABCDEFGHI szabályos kilencszög akkor AF AB+ AC Megoldás: Tudjuk hogy ha egy r sugarú körben az a hosszúságú húrhoz α kerületi 0 szög tartozik akkor a r sinα A szabályos kilencszög egy oldalához 0-9 os középponti szög és 0 -os kerületi szög tartozik Az AB húrhoz 0 -os az AC húrhoz 0 -os és az AF húrhoz 80 -os kerületi szög tartozik Ezek miatt az AF AB+ AC egyenlőség felírható a következő alakban: r sin80 r sin 0 + r sin 0 A sin80 sin 0 + sin 0 összefüggést kell α + β α β igazolnunk A sinα+ sinβ sin cos azonosság miatt sin 0 + sin 0 sin 0 cos0 cos0 és cos 0 sin80 így sin 0 + sin 0 sin80 5 Az ABC háromszögben AB 8 AC BAC < 0 és az A csúcsból induló szögfelező a szemközti oldalt a D pontban metszi Mekkora a CD szakasz? Megoldás: A koszinusz-tétel miatt: BC cos0 7 7 A szögfelező-tétel miatt CD DB így CD BC 7 8

25 Egy 5 egység sugarú körbe írt háromszög két oldala 7 és 9 egység Mekkora a harmadik oldal? Megoldás: Ha az r sugarú körbe írt háromszög a oldalával szemben α szög van akkor a r sinα Így 9 0 sinα 7 0 sinβ A háromszög oldalai a 9 b 7 és c a szemközti szögek rendre α β γ Ez a háromszög hegyesszögű mert Ha sin α 9 0 akkor cos α 7 > ; valamint ha sin β 7 0 akkor 5 cos β 0 9 sinγ sin sinα cosβ + cosα sinβ ( 80 ( α+ β) ) A c r sinγ összefüggés alapján: c Megjegyzés: Számolhatunk számológéppel is Ha sin α akkor α és 0 7 sin β miatt β ezért γ 80 ( α + β) 7 0 A c r sinγ összefüggést használva c Egy háromszög oldalainak hossza n n n+ ahol n egész szám és a háromszög legnagyobb szöge kétszerese a legkisebb szögének Mekkorák a háromszög oldalai? Megoldás: A háromszögben nagyobb szöggel szemben nagyobb oldal van így ha a n n+ kisebb szög α akkor a szinusz-tétel szerint: azaz sinα sin α n n+ n+ és így cosα sinα sinα cosα n ( ) Most írjuk fel a koszinusztételt: ( ) n + ( n+ ) n( n+ ) cosα n+ n ( ) n + ( n+ ) n( n+ ) n innen ( n ) Ebből a műveletek és az összevonások elvégzése után n 5 Tehát a háromszög oldalai 5 és egység hosszúak 5

26 8 Egységsugarú félkörbe téglalapot írtunk melynek két csúcsa az átmérőn két másik csúcsa a félköríven nyugszik Legfeljebb mekkora lehet a téglalap területe? Megoldás: Az ábrán látható adatokkal felírhatjuk a téglalap területét t cosα sinα sin α Mivel sin α így a téglalap területe legfeljebb területegység A téglalap területe ezt az értéket felveszi ha α 5 (Ekkor a téglalap egyik oldala kétszerese a másik oldalának) 9 Az ABC szabályos háromszögben felvettük az M és N pontokat úgy hogy MAB MBA 0 NAB 0 NBA 0 Bizonyítsa be hogy MN párhuzamos BC-vel Megoldás Az M és az N pontok merőleges vetülete a BC oldalon P és Q Az MN párhuzamos BC-vel ha MP NQ BN a a A BAN háromszögben a szinusztétel miatt: sin 0 sin0 sin50 A BAM háromszögben a szinusztétel miatt: BM a a sin 0 sin00 sin80

27 Ekkor: NQ BN sin 0 a sin 0 sin 0 és sin 50 a sin 0 sin 0 MP BM sin 0 sin 80 sin 0 sin 0 MP NQ teljesül ha Ez igaz sin 50 sin80 mivel sin 0 sin80 sin 0 cos 0 sin 0 sin 50 0 Az ABC háromszög oldalai a b c területe t a ( b c) Határozza meg az a oldallal szemközti szög nagyságát Megoldás Az a oldallal szemközti szöget jelölje α bc sinα t a ( b c) a b + bc c azaz bc sinα bc a A koszinusztétel miatt: a b + c bc cosα azaz a b c bc cosα bc sinα Ezekből bc bc cosα sinα Osszunk bc-vel ( bc 0 ): cosα azaz sinα ( cosα) Emeljük négyzetre az egyenlet mindkét oldalát: b c sin α cosα+ cos α Használjuk a sin α cos α azonosságot és rendezzük az egyenletet: 7 cos α cosα Az egyenlet gyökei: cos α 5 és cos α Az első gyök nem megoldása a feladatnak mert α cos α így α IV Ellenőrző feladatok Számolja ki cos 0 + cos 0 + cos00 + cos0 értékét számológép segítsége nélkül! Az a b c oldalú háromszög oldalaira fenn áll az + összefüggés Mutassa meg hogy a háromszögnek van 0 -os a + b b+ c a+ b+ c szöge Oldja meg a sin ( 0 + x) sin x egyenletet 7

28 Oldja meg a tg x + tg x 0 egyenlőtlenséget 5 Mekkora az ábrán látható ED szakasz? Egy egyenlő szárú háromszögben az alapon fekvő szög szinusza kétszerese a csúcsnál fekvő szög koszinuszának Mekkora a szárszög? Az ellenőrző feladatok megoldásai Számolja ki cos 0 + cos 0 + cos00 + cos0 értékét számológép segítsége nélkül! Megoldás: cos 0 + cos 0 + cos00 + cos0 cos 0 + cos 0 + cos00 + cos cos cos + cos00 + cos 0 cos80 cos0 + cos00 + cos 0 cos80 + cos00 + cos80 + ( cos80 ) + 8

29 Az a b c oldalú háromszög oldalaira fenn áll az + összefüggés Mutassa meg hogy a háromszögnek van 0 -os a + b b+ c a+ b+ c szöge Megoldás: A megadott feltétel átrendezett alakja: b a + c a c és ez a koszinusztétel szerint azt jelenti hogy a b oldallal szemközti β szögre cos β tehát β 0 Oldja meg a sin ( 0 + x) sin x egyenletet Megoldás: Az addíciós tétel miatt: sin 0 + cos 0 sin x sin x itt helyettesítsük az ismert szögfüggvényértékeket: sin x + Mivel 0 így oszthatunk vele és rendezés után: sin x sin tg x azaz x 0 + k 80 ahol k tetszőleges egész szám x azaz Oldja meg a tg x + tg x 0 egyenlőtlenséget Megoldás: Az egyenlet értelmezési tartományába az értékek tartoznak Az x + k k Z a tg x helyettesítés után az a + a 0 egyenlőtlenséget kapjuk Az y a + a parabola felfelé nyitott zérushelyei a 0 és a Így az a + a 0 egyenlőtlenség megoldásai az a illetve a 0 valós számok A tg x egyenlőtlenség megoldása + k < x + k a tg x 0 egyenlőtlenség megoldása 0 + k x< + k ahol k tetszőleges egész szám 9

30 5 Mekkora az ábrán látható ED szakasz? Megoldás: Az ABC háromszögben írjuk fel a koszinusz-tételt: cosγ ahol γ ACB DCE Innen cosγ A DCE háromszögben a koszinusz-tétel szerint DE + cos γ DE 7 Egy egyenlő szárú háromszögben az alapon fekvő szög szinusza kétszerese a csúcsnál fekvő szög koszinuszának Mekkora a szárszög? Megoldás Az alapon fekvő szögek nagysága α a szárszög sin α cosβ továbbá α + β 80 Ebből cosβ cos( 80 α) cos α sin α cos α sin α β Ekkor ezt az előbbi egyenletbe írva kapjuk a sin α sinα 0 egyenletet melynek gyökei ± + sinα Mivel α hegyesszög sinα α 57 7 és a szárszög 8 8 β

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont)

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont) 1997 Írásbeli érettségi-felvételi feladatok 1. Oldja meg a következő egyenletet a valós számok halmazán: 3 2 x 1 2 2 x 1 + 2 2x 1 3 2 x 1 = 5. (9 pont) 2 2. Mekkora a szabályos kilencszög kerülete és területe,

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Nagy Ilona 2013.06.01.

Nagy Ilona 2013.06.01. Bevezető matematika példatár Kádasné Dr. V. Nagy Éva Nagy Ilona 0.06.0. Tartalomjegyzék Bevezető. Gyakorlatok.. Műveletek törtekkel, hatványokkal, gyökökkel................. A logaritmus fogalma; arány-

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

1. Trigonometria. 1.1. Bevezetés

1. Trigonometria. 1.1. Bevezetés . Trigonometria.. Bevezetés Elöljáróban csak annyit: A szögekkel ideje lenne megtanulni rendesen számolni. Láttuk: Két vektor, vagy ha úgy tetszik, két erő összege igen kényes arra, hogy az összegzendők

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok 10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

MATEMATIKA ÉRETTSÉGI 2010. október 19. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2010. október 19. EMELT SZINT 1) MATEMATIKA ÉRETTSÉGI 010. október 19. EMELT SZINT a) Mely valós számok elégítik ki az alábbi egyenlőtlenséget? 3 3 1 1 8 b) Az alábbi f és g függvényt is a f 3 és g 0,5,5 I. 3;6. intervallumon értelmezzük.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1313 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka

Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka MAGYARÁZAT Az ajánlott Mértan 0 osztály feladatgyűjtemény a középiskolák 0-es tanulóinak általános iskolai tudásszintjének felmérését szolgálja. A felmérés célja a tízedikes tanulók általános iskolában

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük:

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük: 14. Vektorok I. Elméleti összefoglaló Vektor Az irányított szakaszokat vektoroknak nevezzük: Jelölés: a kezdő és a végpont megadásával: AB ; egy kisbetűvel: v, írásban aláhúzás is szokásos: a; nyomtatásban

Részletesebben

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M) Matematika PRÉ megoldókulcs 04. január 8. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi feladat megoldása kötelező volt! ) Adja meg az x+ y = 3 és az y = egyenletű egyenesek metszéspontjának

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. október 15. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2013. október 15. EMELT SZINT MATEMATIKA ÉRETTSÉGI 0. október 5. EMELT SZINT ) Oldja meg a valós számok halmazán a következő egyenleteket! a) b) ( )( ) I. ( pont) (7 pont) a) A négyzetgyök függvény értelmezési tartománya és értékkészlete

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Koordináta-rendszerek

Koordináta-rendszerek Koordináta-rendszerek Térkép: a Föld felszín (részletének) ábrázolása síkban Hogyan határozható meg egy pont helyzete egy síkon? Derékszögű koordináta-rendszer: a síkban két, egymást merőlegesen metsző

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT 1. FELADATSOR Felhasználható idő: 40 perc I. rész 1.1.) Oldja meg grafikusan az alábbi egyenlőtlenséget! x + 1 + 1 x + x + 11 1..) Mekkora legyen az x valós szám értéke, hogy az alábbi három mennyiség

Részletesebben

Tanárverseny 2012. Megoldásvázlatok

Tanárverseny 2012. Megoldásvázlatok Tanárverseny 0 középiskolában tanító tanároknak vázlatok Kidolgozta: Csordásné Szécsi Jolán, Csordás Péter A verseny támogatói: Typotex Kiadó Maxim Kiadó MATEGYE Alapítvány . Mennyivel egyenlő a K E D

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÉSZÍTETTE BRÓSCH ZOLTÁN 2015.08.29. Előszó,,Önmagáért szeretem a matematikát, s szeretem mindmáig, mert nem tűri a képmutatást és a homályt, azt

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1414 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma 16. Sorozatok I. Elméleti összefoglaló A sorozat fogalma Sorozatnak nevezzük az olyan függvényt, amelynek értelmezési tartománya a pozitív egész számok halmaza. Számsorozat olyan sorozat, amelynek értékkészlete

Részletesebben

VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR

VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR 5. osztály 1. Az ötödik osztályban 13 fiúból négy szemüveges. A lányok harmada visel szemüveget. Összesen nyolc szemüveges van az osztályban. Mennyi

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

19. Területszámítás. Minden sokszöghöz hozzárendelünk egy pozitív valós számot. A hozzárendelés az alábbi tulajdonságokkal rendelkezik:

19. Területszámítás. Minden sokszöghöz hozzárendelünk egy pozitív valós számot. A hozzárendelés az alábbi tulajdonságokkal rendelkezik: 19. Területszámítás I. Elméleti összefoglaló Sokszög területe: Minden sokszöghöz hozzárendelünk egy pozitív valós számot. A hozzárendelés az alábbi tulajdonságokkal rendelkezik: Az egység (oldalú) négyzet

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA Dr`avni izpitni center *P05C10113M* ŐSZI IDŐSZAK MATEMATIKA ÉRTÉKELÉSI ÚTMUTATÓ 005. augusztus 9., hétfő SZAKMAI ÉRETTSÉGI VIZSGA RIC 005 P05-C101-1-3M ÚTMUTATÓ a szakmai írásbeli érettségi vizsga feladatainak

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

ZIPERNOWSKY MATEMATIKA KUPA

ZIPERNOWSKY MATEMATIKA KUPA ZIPERNOWSKY MATEMATIKA KUPA VERSENY 99 0 KÉSZÜLT A ZIPERNOWSKY KÁROLY MŰSZAKI SZAKKÖZÉPISKOLA FENNÁLLÁSÁNAK 00. ÉVFORDULÓJA ALKALMÁBÓL A FELADATSOROKAT ÖSSZEÁLLÍTOTTA: GOMBOCZ ERNŐ SZERKESZTETTE: KISS

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Beregszászi István Programozási példatár

Beregszászi István Programozási példatár Beregszászi István Programozási példatár 2 1. fejezet 1. laboratóriumi munka 1.1. Matematikai kifejezések Írja fel algoritmikus nyelven a megadott kifejezést megfelelő típusú változók segítségével! Figyeljen

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Matematika Gyakorló feladatok vizsgára 12. évf. emelt szint

Matematika Gyakorló feladatok vizsgára 12. évf. emelt szint Matematika Gyakorló feladatok vizsgára. évf. emelt szint Egyenletek, egyenlőtlenségek, paraméteres egyenletek. Oldd meg az alábbi egyenleteket! 4 c) d) e) 4. Oldd meg az alábbi egyenleteket! = c) =8 d)

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0631 É RETTSÉGI VIZSGA 006. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam

Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Matematikából a tanulónak írásbeli és szóbeli osztályozó vizsgán kell részt vennie. Az írásbeli vizsga időtartama 60 perc, a szóbelié 20 perc.

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Fedélszerkezet kivitelezése

Fedélszerkezet kivitelezése Fedélszerkezet kivitelezése Összeállította: Kreinbacher Imre Nemes András - 1 - Fedélszerkezeti elemek gyártás előkészítése Fedélszerkezet kivitelezésének feltétele, hogy a fed élszerkezet alkotó elemeit

Részletesebben

Év végi ismétlés 9. - Érettségi feladatok

Év végi ismétlés 9. - Érettségi feladatok Halmazok, logika Év végi ismétlés 9. - Érettségi feladatok 1. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 081 É RETTSÉGI VIZSGA 009. október 0. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése.

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése. Matematika 10. első kötet Témák Az óra témája (tankönyvi 1. Bevezető óra (101. Ismerkedés a tankönyvvel 2. Nyílt végű feladat: Szálloda tervezése (102. 3. Matematikai logika: Igaz vagy hamis (103. 4. Matematikai

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

1. Halmazok, halmazműveletek, ezek bemutatása természetes számokkal kapcsolatos problémákon

1. Halmazok, halmazműveletek, ezek bemutatása természetes számokkal kapcsolatos problémákon 1. Halmazok, halmazműveletek, ezek bemutatása természetes számokkal kapcsolatos problémákon Halmazok megadása A halmazt alapfogalomnak tekintjük, így nincs definíciója. A halmazokat általában nagybetűkkel

Részletesebben