Megoldások 4. osztály

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Megoldások 4. osztály"

Átírás

1 Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy a négyzet alakú mezőkbe számjegyeket kell írni (0; 1; 2; 3; 4; 5; 6; 7; 8; 9). A sorok előtt, illetve az oszlopok fölött látható számok a sorban illetve oszlopban szereplő számjegyek összegét mutatják. Egy sorba vagy oszlopba több helyre is bekerülhet ugyanaz a számjegy. Néhány mezőt üresen hagytunk. Írj a mezőkbe számjegyeket úgy, hogy valamennyi megadott összeg helyes legyen! Add meg az összes megoldást!

2 Három lehetséges megoldás van Minden jó megoldás 3 pont. Ha egy megoldásban van hiba, akkor az 0 pont. Így maximum: 3 3 pont, azaz 2

3 Összesen: 9 pont 2. Az alábbi ábrán látható számtábla bal felső négyzetéből indulva jobbra vagy lefelé lépegetve juss el az alsó sor jobbszélére úgy, hogy a 9 négyzetben lévő számok összege 22 legyen! Keresd meg az összes megoldást! Mennyi lehet jobbra vagy lefelé lépegetve a legnagyobb és a legkisebb összeg? legkisebb 15 legnagyobb 35 Minden jó megoldás 2 pont. Ha egy megoldásban van hiba, akkor az 0 pont. Így maximum: 5 2 pont, azaz Összesen: 10 pont 3. Három különböző színű dobókockával egyszerre dobunk. Hányféleképpen dobhatunk 9-et, ha a kockán felül lévő pöttyöket adjuk össze? Válaszod indokold! Legyen a három kocka piros, zöld és fehér. A megfelelő pöttyhármasokat írjuk az alábbi táblázatba. Piros Fehér Zöld A különböző tagú összegek 1-1 pontot, az egynél több lehetőségek hibátlan megadása újabb 1-1 pont, ami pont Több lehetőség nincs, így huszonöt féleképpen dobhatunk 9-et 1 pont Összesen: 12 pont 3

4 4. Négy számkártyára leírtuk a tavalyi évszám számjegyeit, a 2-öt, a 0-át, az 1-et és a 4-et. A négy számkártyából hármat egymásmellé téve rakjunk ki, majd írjuk le a kapott háromjegyű számokat. (A háromjegyű szám 0-val nem kezdődhet.) a) Írd le az összes ilyen háromjegyű számot! b) Az így kapott háromjegyű számokból válassz ki legalább hatot úgy, hogy a kiválasztott számok összege 2015 legyen! Keress több megoldást! a) A keresett háromjegyű számok: 421; 412; 241; 214; 142; 124, 2 pont 420; 402; 240; 204, 2 pont 410; 401; 140; 104, 1 pont 210; 201; 120; pont b) A megfelelő összegek közül három: =2015, =2015, =2015. A különböző tagú összegek 1-1 pontot. Összesen: 6 + pont 5. Logikai feladat: A következő stratégiai játékban két kupacban kavicsok vannak. Két játékos felváltva vesz el a kupacokból kavicsokat az alábbi szabályok szerint. A szabályok: - A két játékos felváltva vesz el kavicsokat, mégpedig egy kupacból egyet vagy kettőt. - Egy lépés során a játékos csak egy kupacból vehet el kavicsot. - Az nyer, aki az utolsó kavicsot vagy kavicsokat elveszi. A feladat Két kupacban 4 és 1 kavics van. Anna és Béla játszik. Anna kezd. Biztosan tudjuk, hogy Béla fog nyerni, ha feltételezzük, hogy mindkét játékos tökéletesen játszik és nyerni akar. Igazold, hogy Anna valóban nem nyerhet! Vizsgáld meg Anna minden kezdési lehetőségét, és Béla válaszlépését! Add meg a játék lehetséges befejezésének leírását! Béla fog nyerni. Összesen háromféle kezdési lehetősége van Annának. 1. kupac 4 1 Anna elvesz az 1. kupacból 1 kavicsot 3 1 Béla elveszi a ot (1 kavics) 3 0 Anna elvesz az 1. kupacból 1 vagy 2 kavicsot 2 vagy 1 0 Béla elveszi az 1. kupacot (2 vagy 1 kavics) 4

5 1. kupac 4 1 Anna elvesz az 1. kupacból 2 kavicsot 2 1 Béla elvesz az 1. kupacból 1 kavicsot 1 1 Anna elveszi az 1. vagy ot (1 kavics) 0 vagy 1 1 vagy 0 Béla elveszi a 2. vagy 1. kupacot (1 kavics) 1. kupac 4 1 Anna elveszi a ot (1 kavics) 4 0 Béla elvesz az 1. kupacból 1 kavicsot 3 0 Anna elvesz az 1. kupacból 1 vagy 2 kavicsot 2 vagy 1 0 Béla elveszi az 1. kupacot (2 vagy 1 kavics) Minden táblázat első négy sora 1-1 pont. Ha egy megoldásban van hiba, akkor az 0 pont. Így: 3 4 pont, azaz Összesen: 12 pont 5

Tehetséggondozás az általános iskola 4-6. osztályában Dr. Csóka Géza, Győr

Tehetséggondozás az általános iskola 4-6. osztályában Dr. Csóka Géza, Győr Dr. Csóka Géza: Tehetséggondozás az általános iskola 4-6. osztályában Tehetséggondozás az általános iskola 4-6. osztályában Dr. Csóka Géza, Győr Kilencedik éve vezetek győri és Győr környéki gyerekeknek

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan TOLLAL DOLGOZZ, SZÁMOLÓGÉPET NEM HASZNÁLHATSZ, A LAPRA SZÁMOLJ! 1. A következő ábrán egy

Részletesebben

Róka Sándor. 137 számrejtvény. Megoldások

Róka Sándor. 137 számrejtvény. Megoldások Róka Sándor számrejtvény Megoldások Budapest, 008 A könyv megjelenését a Varga Tamás Tanítványainak Közhasznú Emlékalapítványa támogatta. Róka Sándor, Typotex, 008 ISBN 98 9 9 89 0 Témakör: matematika

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

Valószínűség számítás

Valószínűség számítás Valószínűség számítás 1. Mennyi annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2. Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor mekkora

Részletesebben

(6/1) Valószínűségszámítás

(6/1) Valószínűségszámítás (6/1) Valószínűségszámítás 1) Mekkora annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2) Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor

Részletesebben

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont 2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

A BRENNER JÁNOS NEVELÉSI KÖZPONT 8 ÉVFOLYAMOS GIMNÁZIUMÁBA VALÓ JELENTKEZÉSHEZ SZÜKSÉGES INFORMÁCIÓK

A BRENNER JÁNOS NEVELÉSI KÖZPONT 8 ÉVFOLYAMOS GIMNÁZIUMÁBA VALÓ JELENTKEZÉSHEZ SZÜKSÉGES INFORMÁCIÓK A BRENNER JÁNOS NEVELÉSI KÖZPONT 8 ÉVFOLYAMOS GIMNÁZIUMÁBA VALÓ JELENTKEZÉSHEZ SZÜKSÉGES INFORMÁCIÓK Az alábbi információkkal és a mellékelt dokumentumokkal szeretnénk megkönnyíteni a diákok jelentkezését

Részletesebben

A játék lehetősége a matematika órákon. Tedd, amit mondok!

A játék lehetősége a matematika órákon. Tedd, amit mondok! ,, Az, hogy mi magunk mennyire tartunk fontosnak valamit ez átszínezheti szavaink tartalmát. Ettől függően hat pozitívan vagy negatívan mondanivalónk a befogadóra. Ettől függően fejleszt vagy okoz kárt,

Részletesebben

Az alábbi eszközök használata szükséges 1. osztályban

Az alábbi eszközök használata szükséges 1. osztályban Az alábbi eszközök használata szükséges 1. osztályban betűtartó sín (papír vagy műanyag) kivágva a betűkkel, zacskóba téve grafitceruza (nem Rotring!) HB-s piros és kék 2- postairon számolókorong 1 doboz

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

Tájékoztató a Középfokú beiskolázás központi írásbeli felvételi vizsga adminisztrációs rendszerbe (Közfelvir) történő belépéshez

Tájékoztató a Középfokú beiskolázás központi írásbeli felvételi vizsga adminisztrációs rendszerbe (Közfelvir) történő belépéshez Tájékoztató a Középfokú beiskolázás központi írásbeli felvételi vizsga adminisztrációs rendszerbe (Közfelvir) történő belépéshez A programba történő belépés az alábbi három módon lehetséges: 1. Az intézmény

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával

Részletesebben

Máder Attila: Elemi matematika feladatok. Matematikai rejtvények

Máder Attila: Elemi matematika feladatok. Matematikai rejtvények Máder Attila: Elemi matematika feladatok Matematikai rejtvények 1 1. Matematikai rejtvények 1. Feladat. Hová tünt a hiányzó törpe? 1 2. Feladat. Van egy falu, ahol 100 házaspár él és rajtuk kívül még egy

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

Középfokú Intézmények Felvételi Információs Rendszere

Középfokú Intézmények Felvételi Információs Rendszere Középfokú Intézmények Felvételi Információs Rendszere JELENTKEZÉSI LAP A 6 vagy 8 évfolyamos gimnáziumokba egyénileg jelentkezők, és a magyarországi általános iskolával tanulói jogviszonyban nem lévő,

Részletesebben

Válassz egy rúna kártyát a dobott pakliból és vedd a kezedbe!

Válassz egy rúna kártyát a dobott pakliból és vedd a kezedbe! Válassz egy Viking telepest! Amelyik Vikingé az ember, az dob EGY kockával. Ha ez nagyobb, mint a kikötő értéke, a telepes túlélte, egyébként le kell venni. Megj: A kikötő értéke 1-el csökken, ha van áru

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

ElektrO-ParT elektronikai alkatrész nyilvántartó program leírás.

ElektrO-ParT elektronikai alkatrész nyilvántartó program leírás. ElektrO-ParT elektronikai alkatrész nyilvántartó program leírás. 1. ábra A program, indítás után az 1. ábra szerint fog megjelenni. Ebben az ablakban tudunk új alkatrészt felvinni vagy meglévőt módosítani.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

1.1.1 Dátum és idő függvények

1.1.1 Dátum és idő függvények 1.1.1 Dátum és idő függvények Azt már tudjuk, hogy két dátum különbsége az eltelt napok számát adja meg, köszönhetően a dátum tárolási módjának az Excel-ben. Azt is tudjuk a korábbiakból, hogy a MA() függvény

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

PYTAGORIÁDA A járási forduló feladatai 34. évfolyam, 2012/2013-as tanév KATEGÓRIA P3

PYTAGORIÁDA A járási forduló feladatai 34. évfolyam, 2012/2013-as tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Két kalácsért 32 centet fizetnénk. Hány centet fizet Peti, ha saját magának és három testvérének is vesz egy-egy kalácsot? 2. Írjátok le egy szóval, hogy milyen műveleti jelet kell a példában

Részletesebben

Írd le, a megoldások gondolatmenetét, indoklását is!

Írd le, a megoldások gondolatmenetét, indoklását is! 0 Budapest VIII., Bródy Sándor u.. Postacím: Budapest, Pf. 7 Telefon: 7-900 Fax: 7-90. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ 0. április. HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Írd le,

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

Szerzô: Wolfgang Kramer. Ki lesz az ökörkör elnöke?

Szerzô: Wolfgang Kramer. Ki lesz az ökörkör elnöke? Szerzô: Wolfgang Kramer Ki lesz az ökörkör elnöke? Játékosok száma: 2-10 fô Ajánlott: 10 éves kor felett Tartalom:104 db játékkártya, 1 db játékismertetô A JÁTÉK CÉLJA: A játékos célja az, hogy a játékos

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály 40 rózsát el lehet-e osztani 5 lány között úgy, hogy mindegyik lánynak páratlan számú rózsa jusson? Nem lehet.(1 pont) Öt darab páratlan szám összege páratlan, a 40 páros (1 pont). Hogyan tudnátok

Részletesebben

A sakk feltalálója. A megfizethetetlen találmány. Számítsuk ki, mennyi is ez? Egy ötlet a számításhoz: az úgynevezett Teve szabály

A sakk feltalálója. A megfizethetetlen találmány. Számítsuk ki, mennyi is ez? Egy ötlet a számításhoz: az úgynevezett Teve szabály A sakk feltalálója Kevés játéknak van olyan regényes története, mint a sakknak. A tudomány mindmáig nem volt képes hitelt érdemlően feltárni eredetét, a körülötte terjengő legendákból viszont már évszázadokkal

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

2003 máj.-jun. / 6.feladat: Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen?

2003 máj.-jun. / 6.feladat: Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen? 2003 máj.-jun. / 6.feladat: Egy dobozban 5 piros golyó van. Hány fehér golyót tegyünk hozzá, hogy a fehér golyó húzásának valószínűsége 80% legyen? Válaszát indokolja! 2004 II. feladatlap / 17.feladat:

Részletesebben

DIALOG időkapcsoló PROGRAMOZÁSI ÚTMUTATÓ

DIALOG időkapcsoló PROGRAMOZÁSI ÚTMUTATÓ DIALOG időkapcsoló PROGRAMOZÁSI ÚTMUTATÓ FUNKCIÓK I. Az időkapcsoló beállítása (a kék gombok): TECHNOCONSULT Kft. 2092 Budakeszi, Szürkebarát u. 1. T: (23) 457-110 www.technoconsult.hu info@technoconsult.hu

Részletesebben

A játékosok célja. A játék elemei. Spielablauf

A játékosok célja. A játék elemei. Spielablauf Donald X. Vaccarino játéka 2-4 játékos részére, 8 éves kortól A játék elemei 8 különböző játéktábla rész (A továbbiakban negyed) A játékosok célja Minden játékos települések ügyes megépítésével saját birodalmát

Részletesebben

Tanév indítása iskolák esetén. Mielőtt elkezdi a tanév indítását, legalább egyszer olvassa át az egész segédletet, hogy lássa az összefüggéseket.

Tanév indítása iskolák esetén. Mielőtt elkezdi a tanév indítását, legalább egyszer olvassa át az egész segédletet, hogy lássa az összefüggéseket. Tanév indítása iskolák esetén A LÉPÉSEK SORRENDJE NAGYON FONTOS, EZÉRT KÉRJÜK SZIGORÚAN BETARTANI! Mielőtt elkezdi a tanév indítását, legalább egyszer olvassa át az egész segédletet, hogy lássa az összefüggéseket.

Részletesebben

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel 6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög

Részletesebben

IEI (International Entity Identifier) felhasználói segédlet

IEI (International Entity Identifier) felhasználói segédlet IEI (International Entity Identifier) felhasználói segédlet Regisztráció A London Stock Exchange által létrehozott Pre-LEI kódót IEI kódnak nevezik. Az IEI adatbázishoz való hozzáféréshez kattintson a

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Záradékozás. Lukácsi András

Záradékozás. Lukácsi András Záradékozás Lukácsi András Mit és kinek kell? Osztályzóvizsga of Ugrás Javítóvizsgára mehet of külön ppt-ben Tovább haladás of Ugrás Évismétlésre bukott of Ugrás Tanulmányait befejezte of Ugrás Kiléptetés

Részletesebben

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012.

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Fodor Csaba, Szeged Név:..... Iskola:. Beküldési határidő:

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2014. jnuár 23. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

Tanárverseny 2012. Megoldásvázlatok

Tanárverseny 2012. Megoldásvázlatok Tanárverseny 0 középiskolában tanító tanároknak vázlatok Kidolgozta: Csordásné Szécsi Jolán, Csordás Péter A verseny támogatói: Typotex Kiadó Maxim Kiadó MATEGYE Alapítvány . Mennyivel egyenlő a K E D

Részletesebben

Mrend X Extra 3.0 b. - menetrendszerkesztő program leírása -

Mrend X Extra 3.0 b. - menetrendszerkesztő program leírása - 01 Mrend X Extra 3.0 b - menetrendszerkesztő program leírása - A programmal mobiltelefonra, Java 2ME nyelven írt alkalmazásokat futtató készülékre szerkeszthető menetrend. http://mobilmenetrend.hu R-dei

Részletesebben

3. MINTAFELADATSOR KÖZÉPSZINT

3. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

E-mail cím létrehozása

E-mail cím létrehozása E-mail cím létrehozása A Moodle-rendszerben Ön akkor tudja regisztrálni magát, ha rendelkezik e-mail címmel. A Moodle ugyanis az Ön e-mail címére küld egy elektronikus levelet, amelyben a regisztráció

Részletesebben

2013. május 16. MINIVERSENY Csapatnév:

2013. május 16. MINIVERSENY Csapatnév: 1. Az ábrán látható ötszög belsejében helyezzetek el 3 pontot úgy, hogy az ötszög bármely három csúcsa által meghatározott háromszög belsejébe pontosan egy pont kerüljön! El lehet-e helyezni 4 pontot ugyanígy?

Részletesebben

A Szoftvert a Start menü Programok QGSM7 mappából lehet elindítani.

A Szoftvert a Start menü Programok QGSM7 mappából lehet elindítani. Telepítés A programot a letöltött telepítőprogrammal lehet telepíteni. A telepítést a mappában lévő setup.exe fájlra kattintva lehet elindítani. A telepítő a meglévő QGSM7 szoftver adatbázisát törli. Ezután

Részletesebben

I. II. III. IV. A B C D B C D A C D A B D A B C

I. II. III. IV. A B C D B C D A C D A B D A B C Körbargello Előre szólok, hogy nem olyan nehéz és bonyolult ám, mint amilyennek első ránézésre tűnik, de azért igényel némi gyakorlatot és pontos szabást-varrást. A körcikkek kiszabásához természetesen

Részletesebben

V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások

V. osztály. Matematikai tehetségnap 2013. október 12. Megoldások V. osztály 1. feladat. Ha leejtünk egy labdát, akkor az fele akkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödik alkalommal 10cm magasra pattant fel?

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

Gábor Dénes Számítástechnikai Emlékverseny 2009/2010 Alkalmazói kategória, I. korcsoport Második forduló

Gábor Dénes Számítástechnikai Emlékverseny 2009/2010 Alkalmazói kategória, I. korcsoport Második forduló Gábor Dénes Számítástechnikai Emlékverseny 2009/2010 Alkalmazói kategória, I. korcsoport Második forduló Kedves Versenyző! A feladatok megoldását beküldheted: CD-n az azonosító kódnak megfelelő könyvtárban.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB

Részletesebben

Diákigazolvány. Belépés> Adminisztráció> Iskolai oktatás képes menü> diákigazolvány> diákigazolvány igénylés

Diákigazolvány. Belépés> Adminisztráció> Iskolai oktatás képes menü> diákigazolvány> diákigazolvány igénylés Tartalom Új diákigazolvány igénylés folyamata... 2 1. IAR feltöltéshez szükséges jogosultságok beállítása... 2 2. Token kérés... 2 3. Új igénylés feladása... 2 Igénylések keresése, szinkronizálása... 4

Részletesebben

Játékszabály. Logikai játék 2 5 fő részére 7 éven felülieknek 1 játszma időtartama kb. 45 perc. A doboz tartalma:

Játékszabály. Logikai játék 2 5 fő részére 7 éven felülieknek 1 játszma időtartama kb. 45 perc. A doboz tartalma: Játékszabály Logikai játék 2 5 fő részére 7 éven felülieknek 1 játszma időtartama kb. 45 perc A doboz tartalma: 75 fakocka (15 15 db öt színből) 5 db kétoldalú játéktábla pontozótábla 5 db pontszám jelölő

Részletesebben

Játékszabály. A játék szerzője: Aczél Zoltán

Játékszabály. A játék szerzője: Aczél Zoltán Játékszabály A játék szerzője: Aczél Zoltán A szabályolvasás szabálya A Patkány-póker itt következő leírása több, egymástól független játékot ölel át. Nem érdemes minden szabályt elolvasni! Ugorj rögtön

Részletesebben

3.5.2 Laborgyakorlat: IP címek és a hálózati kommunikáció

3.5.2 Laborgyakorlat: IP címek és a hálózati kommunikáció 3.5.2 Laborgyakorlat: IP címek és a hálózati kommunikáció Célkitűzések Egyszerű egyenrangú csomópontokból álló hálózat építése, és a fizikai kapcsolat ellenőrzése. Különböző IP-cím beállításoknak a hálózati

Részletesebben

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója 1.) Általános tudnivalók: A segédtábla két méretben készül, 10, és 50 sort lehet kitölteni. A tábla megnevezéséből amit

Részletesebben

Ozeki Weboffice. 1. ábra

Ozeki Weboffice. 1. ábra Ozeki Weboffice 1. A program indítása Először vegyük fel a szerkesztendő web oldalt az Edit your Website listába. A piros nyíllal jelölt mezőbe írjuk be a weboldal nevét, majd az OK gombbal érvényesítsük

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 SZÁMÍTÁSTECHNIKA

Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 SZÁMÍTÁSTECHNIKA Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 SZÁMÍTÁSTECHNIKA II. (regionális) forduló 2006. február 17... Helyszín fejbélyegzője Versenyző Pontszám Kódja Elérhető Elért Százalék. 100..

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A pedagógus nevel a logikus gondolkodásra, amihez eszközként pl. táblajátékot használhat!

A pedagógus nevel a logikus gondolkodásra, amihez eszközként pl. táblajátékot használhat! Szülőktől még megértően elfogadom: a táblajátékok logikus gondolkodásra nevelnek, de mindig indulatosan reagálok, ha pedagógustól, újabban pedig, ha játékpedagógustól hallom az általános közhelyet. A pedagógus

Részletesebben

Adam Kałuża játéka Piotr Socha rajzaival J á t é k s z a b á l y

Adam Kałuża játéka Piotr Socha rajzaival J á t é k s z a b á l y Adam Kałuża játéka Piotr Socha rajzaival Játékszabály A JÁTÉK ELŐKÉSZÍTÉSE Az első játék előtt le kell választani a sablonról a zsetonokat és a játékos jelölőket. TÁRSASJÁTÉK 2 4 FŐ RÉSZÉRE JÁTÉKIDŐ KB.

Részletesebben

Átlag( ; ): a paraméterlistában megadott számok átlagát adja meg eredményül. Pl.: Átlag(a2:a8)

Átlag( ; ): a paraméterlistában megadott számok átlagát adja meg eredményül. Pl.: Átlag(a2:a8) Alap függvények Szum( ; ): a paraméterlistában megadott számokat összeadja. Pl.: Szum(a2:a8) Átlag( ; ): a paraméterlistában megadott számok átlagát adja meg eredményül. Pl.: Átlag(a2:a8) Max( ; ): a paraméterlistában

Részletesebben

SEGÉDLET a GYÓGYSZERÉSZI ADATGYŰJTÉS OSAP1578 program használatához

SEGÉDLET a GYÓGYSZERÉSZI ADATGYŰJTÉS OSAP1578 program használatához SEGÉDLET a GYÓGYSZERÉSZI ADATGYŰJTÉS OSAP1578 program használatához Készítette: ÁNTSZ OTH Informatikai Főosztály (2015.) 1 Tartalomjegyzék Program elérhetősége... 3 A program felépítése... 3 Közforgalmú

Részletesebben

Felkészülés a Versenyvizsgára

Felkészülés a Versenyvizsgára Felkészülés a Versenyvizsgára Feladatok 6. osztályosoknak 1. Ha egy tégla 2 kg meg egy fél tégla, akkor hány kg két tégla? 2. Elköltöttem a pénzem felét, maradt 100 Ft-om. Mennyi pénzem volt eredetileg?

Részletesebben

1. osztályosok. 4. Hányféle sorrendben gombolható be a blúz 4 gombja, ha egymás után mindig egymás melletti gombot gombolunk be?

1. osztályosok. 4. Hányféle sorrendben gombolható be a blúz 4 gombja, ha egymás után mindig egymás melletti gombot gombolunk be? 1. osztályosok 1. Anya szeretne Zsófi kabátjára 3 gombot felvarrni. Ha zöld és kék színű gombokból válogat, akkor a kabáton hányféleképp alakulhat a színek sorrendje? 2. Zsófi blúzára anya 4 gombot varr,

Részletesebben

Felhasználói kézikönyv a Víziközmű Adatbeviteli Felülethez 2012. augusztus

Felhasználói kézikönyv a Víziközmű Adatbeviteli Felülethez 2012. augusztus Felhasználói kézikönyv a Víziközmű Adatbeviteli Felülethez 2012. augusztus 1 1. Bevezetés Az adatbekérő felület célja, hogy a Magyar Energia Hivatal (továbbiakban: Hivatal) a víziközműszolgáltatásról szóló

Részletesebben

Rövid leírás a Make Your Mark szoftver használatához

Rövid leírás a Make Your Mark szoftver használatához Rövid leírás a Make Your Mark szoftver használatához Ahhoz, hogy egy gyors példán keresztül bemutassunk, a program működését, egy Plytex címkét hozunk létre. Először létre kell hozni egy címkét, majd kinyomtatni

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

Atomi er mikroszkópia jegyz könyv

Atomi er mikroszkópia jegyz könyv Atomi er mikroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc III. Mérés vezet je: Szabó Bálint Mérés dátuma: 2010. október 7. Leadás dátuma: 2010. október 20. 1. Mérés leírása A laboratóriumi mérés

Részletesebben

Fejlesztő játékok. MB 306029 Tapintós sétány. MB 118 210 Bűvös zsákok. MB 358023 Nagymosás. NA 337 224 Mágneses virágok 2+ ÉV 3+ ÉV 4+ ÉV 5+ ÉV

Fejlesztő játékok. MB 306029 Tapintós sétány. MB 118 210 Bűvös zsákok. MB 358023 Nagymosás. NA 337 224 Mágneses virágok 2+ ÉV 3+ ÉV 4+ ÉV 5+ ÉV MB 306029 Tapintós sétány 3 különböző mintával 6 négyzetet lehet összerakni, akár egymás után, akár egymás mellé. A gyerekek séta közben a talpukkal érzékelik a különböző mintázatot. Ezzel serkentik a

Részletesebben

MATEMATIKA C 6. évfolyam 4. modul A KOCKA

MATEMATIKA C 6. évfolyam 4. modul A KOCKA MATEMATIKA C 6. évfolyam 4. modul A KOCKA Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 4. MODUL: A KOCKA TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

Kifizetések kezelése. 1 Kifizetési dátumok megadása pénzügyi kódokhoz

Kifizetések kezelése. 1 Kifizetési dátumok megadása pénzügyi kódokhoz Kifizetések kezelése 1 Kifizetési dátumok megadása pénzügyi kódokhoz 1.1 Pénzügyi kódok menüponttól indulva Pénzügyek (kék menüpont, csak lenyitni + jelnél)(78600)/kifizetési jogcímek (jogcím kiválasztása)

Részletesebben

Varga Patrícia. Félig megvalósult álom

Varga Patrícia. Félig megvalósult álom Varga Patrícia Félig megvalósult álom Marina két gyermekes boldog, vagy boldognak hitt családanya volt. Férjével sokat dolgoztak, hogy középszinten tudjanak élni. Ezért meg is volt szinte mindenük. Ahogy

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

A játék célja. A játék elemei

A játék célja. A játék elemei akong-ban a játékosok Kalandorok bőrébe bújnak és a Kambodzsai dzsungelben igyekeznek minél több mesés Smaragdot összegyűjteni. Ehhez nincs egyebük, mint a hátizsákjuk és a bátorságuk. A dzsungel telis-tele

Részletesebben

Forrás: Nagylaci (http://www.jatektan.hu)

Forrás: Nagylaci (http://www.jatektan.hu) A Sakk az a legismertebb olyan táblás játék, amit egyre kevesebben ismernek. Ezernyi változata létezik. Sokan kedvelik, de még többen félre húzódnak, ha a lépés-szabályokra kérdezünk. 7-8 éves kor előtt

Részletesebben

Használati útmutató a pénzügyi beszámoló elkészítéséhez. Bejelentkezés a pénzügyi beszámoló webes felületére

Használati útmutató a pénzügyi beszámoló elkészítéséhez. Bejelentkezés a pénzügyi beszámoló webes felületére Használati útmutató a pénzügyi beszámoló elkészítéséhez Bevezetés Az egyes egészségügyi dolgozók és egészségügyben dolgozók 2012. évi illetmény- vagy bérnöveléséről, valamint az ahhoz kapcsolódó támogatások

Részletesebben

Kitöltési segédlet. 2013. évi Kereskedelemfejlesztési Pályázat Projekt Adatlapjához. Kódszám: KerFejl-2013

Kitöltési segédlet. 2013. évi Kereskedelemfejlesztési Pályázat Projekt Adatlapjához. Kódszám: KerFejl-2013 Kitöltési segédlet a 2013. évi Kereskedelemfejlesztési Pályázat Projekt Adatlapjához Kódszám: KerFejl-2013 A Projekt Adatlapot nem tartalmazó pályázati anyagok nem kerülnek befogadásra, azokat a Lebonyolító

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Microsoft Excel 2010

Microsoft Excel 2010 Microsoft Excel 2010 Milyen feladatok végrehajtására használatosak a táblázatkezelők? Táblázatok létrehozására, és azok formai kialakítására A táblázat adatainak kiértékelésére Diagramok készítésére Adatbázisok,

Részletesebben

ASTER motorok. Felszerelési és használati utasítás

ASTER motorok. Felszerelési és használati utasítás 1. oldal ASTER motorok Felszerelési és használati utasítás A leírás fontossági és bonyolultsági sorrendben tartalmazza a készülékre vonatkozó elméleti és gyakorlati ismereteket. A gyakorlati lépések képpel

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

Matematika C 3. évfolyam. Logi. Társasjátékok és tevékenységek logikai alapokkal. 7. modul. Készítette: Köves Gabriella

Matematika C 3. évfolyam. Logi. Társasjátékok és tevékenységek logikai alapokkal. 7. modul. Készítette: Köves Gabriella Matematika C 3. évfolyam Logi Társasjátékok és tevékenységek logikai alapokkal 7. modul Készítette: Köves Gabriella Matematika C 3. évfolyam 7. modul Logi társasjátékok és tevékenységek logikai alapokkal

Részletesebben

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály) MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért

Részletesebben