Megoldókulcs. Matematika D kategória ( osztályosok) február 6.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Megoldókulcs. Matematika D kategória (11-12. osztályosok) 2015. február 6."

Átírás

1 Megoldókulcs Matematika D kategória ( osztályosok) február Az ABC háromszög mindhárom csúcsából merőlegeseket állítunk a többi csúcs külső és belső szögfelezőire. Igazoljuk, hogy az így kapott szakaszok négyzetösszege éppen 2(a 2 + b 2 + c 2 ), ahol a, b és c a háromszög oldalainak hosszát jelöli. Megoldás: Tekintsük az A-ból a C csúcshoz tartozó külső és belső szögfelezőkre állított merőleges szakaszokat. Legyen AD a külső, AE a belső szögfelezőre merőleges szakasz, ahol D és E a megfelelő merőlegesek talppontjai. Mivel AEC = ADC = ECD = 90, ezért az ADCE egy téglalap. Emiatt AE = CD. Az ACD derékszögű háromszögben Pitagorasz-tétel szerint AE 2 + AD 2 = CD 2 + AD 2 = AC 2 = b 2. Hasonlóan eljárva kapjuk, hogy az A-ból állított másik két merőleges szakasz négyzetösszege c 2, és a B-ből és C-ből állított 4-4 szakasz négyzetösszege a 2 + c 2 illetve a 2 + b 2. Tehát valóban 2(a 2 + b 2 + c 2 ) a szakaszok négyzetösszege. 2. Van egy lámpánk, ami háromféle színben (piros, kék és zöld) tud világítani. A lámpára három darab háromállású forgókapcsoló is rá van kötve a rajz egy ilyen kapcsolót mutat. Tudjuk, hogy ha mindhárom kapcsoló azonos állásban van, akkor a lámpa is a nekik megfelelő színnel világít. Továbbá, bárhogy is álljanak eredetileg a kapcsolók, ha mindhármat másik állásba fordítjuk, akkor megváltozik a lámpa színe. Mutassuk meg, hogy a kapcsolók egyikének állása a többitől függetlenül meghatározza a lámpa színét. P Z K Megoldás: A három kapcsoló állásának egy as kocka mezőivel jelöljük; egy mezőt olyanra színezünk, amilyen színnel világít a lámpa, ha a kapcsolók a mezőnek megfelelő állásban vannak. Kezdetben három mező színét tudjuk, hiszen annyit tudunk, hogy ha a kapcsolók azonos állásban vannak, akkor a lámpa is az annak megfelelő színnel világít (az ábrán a három 3 3-as négyzet a kocka három rétegének felel meg):

2 Piros betűkkel jelöljük meg, hogy az egyes mezők milyen színűek NEM lehetnek: Vizsgáljuk meg a lilával jelölt mezőt! Zöld nem lehet. Először tegyük fel, hogy piros. Jelöljük be, hogy milyen mezőkön zárja ez ki a piros színt: Ezek alapján, két mező színét megkaptuk: Újra nézzük meg, miket zárhatunk még ki:

3 Így még három mező színét kaptuk meg. Vizsgáljuk az ábrán lilával jelölt mezőt. Zöld nem lehet. Most az általánosság rovása nélkül feltehető, hogy piros. (Réteg sor, piros kék cserével kapható a másik.) Így az alábbiakat tudjuk kizárni: Amikből 4 mező színét meg is kapjuk: Amik az alábbiakat zárják ki:

4 És így már majdnem készen vagyunk: És kész is. Mert így azt kaptuk, hogy csak a réteghez tartozó kapcsoló színétől függ a lámpa színe. Most nézzük a másik esetet, amikor az első lila mezőt kéknek választjuk! Ez az alábbiakat zárja ki: És hasonlóan, ha felváltva zárunk ki és színezünk, elkészülünk:

5 Most azt kaptuk, hogy csak az oszlopokat irányító kapcsolótól függ. Megjegyzés: Miért lehet, hogy az első lila választásánál nem egyenrangú a piros meg a kék? Képzeljük el as kockaként az ábrát. Ekkor a lila kocka a piros kockával lapszomszédos, míg a kékkel csak élszomszédos. Emiatt van az eltérés. 2. Megjegyzés: Az állítás igaz 3 helyett n kapcsolóval is. 3. Az a 1 < a 2 < a 3 < < a n számsorozatra jelölje t 3(a 1, a 2, a 3,..., a n) a benne előforduló 3-tagú számtani sorozatok számát (azaz az olyan i < j < k index-hármasok számát, amelyekre a k a j = a j a i teljesül). Igazoljuk, hogy t 3(a 1, a 2, a 3,..., a n) t 3(1, 2, 3,..., n). Megoldás: Számoljuk meg, hány olyan háromtagú számtani sorozat van, aminek az a i a középső eleme. Minden a i előtti, és utáni elem is legfeljebb egy sorozatban lehet benne. Tehát az ilyen sorozatok száma legfeljebb min(i 1, n i). Így t 3 (a 1, a 2,..., a n ) n i=1 min(i 1, n i). Viszont az 1, 2,..., n számok esetén pontosan min(i 1, n i) olyan sorozat van, aminek i a középső eleme, így t 3 (1, 2,..., n) = n i=1 min(i 1, n i), ezzel bizonyítottuk a kívánt egyenlőtlenséget. 4. Az ABCD téglalap C csúcsának merőleges vetülete a BD átlón E, továbbá E vetülete az AB oldalon F, az AD oldalon G. Bizonyítsuk be, hogy AF 2/3 + AG 2/3 = AC 2/3. Megoldás: Legyen AB = CD = a, AD = BC = b. Ekkor AC = BD = a 2 + b 2. Mivel az EBC és a CBD háromszögek hasonlóak, kapjuk, hogy EC CD = BC BD, ahonnan EC = ab. Innen a a 2 +b 2 Pitagorasz-tételt használva a CDE háromszögre kapjuk, hogy ED = a 2 a2 b 2 a a 2 + b 2 = 4 + a 2 b 2 a 2 b 2 a 2 a 2 + b 2 = a 2 + b. 2 Az EDG és a DBC háromszögek hasonlóak, így GD DE = CB BD, azaz GD = BC DE BD = b a2 a 2 +b 2 a 2 + b = 2 ba2 a 2 + b 2, tehát AG = AD GD = b ba2 a 2 +b 2 = b3 a 2 +b 2. Hasonlóan kapható, hogy AF = AF 2/3 = a 2 (a 2 +b 2 ) 2/3 + b 2 (a 2 +b 2 ) 2/3 = a2 +b 2 (a 2 +b 2 ) 2/3 = (a 2 + b 2 ) 1/3 = AC 2/3. a3. Így AG 2/3 + a 2 +b 2

6 5. a) A királylány kastélya háromszintes, ahol minden szinten egy egyenes folyosó van, melyről 1-től 100-ig számozott szobák nyílnak. A királylány minden éjfélkor vagy átköltözik az egyik szomszédos szobába, vagy az ablakon keresztül egy szinttel feljebb vagy lejjebb mászik egy azonos sorszámú szobába. A herceg célja, hogy megtalálja a királylányt. Ehhez minden délben benyithat két szobába, és megnézheti, hogy ott van-e a királylány. Segítsünk a hercegnek kitalálni egy olyan stratégiát, amellyel biztosan megtalálja. b) A királylány átköltözik egy magasabb, de jóval keskenyebb kastélyba: ennek négy szintje van, de szintenként csak négy szoba található benne. Mutassuk meg, hogy ekkor napi két ajtónyitással már nem feltétlenül tudja megtalálni őt a herceg. Megoldás: a) Az első fordulóban szereplő gondolatmenethez hasonlóan itt is két részre osztjuk a királylány lehetséges kezdőhelyzetét, és megpróbáljuk kiszorítani. Színezzük sakktáblaszerűen két színre a szobákat, legyen fekete az összes első vagy harmadik emeleten lévő páros és a második emeleten lévő és páratlan sorszámú szoba. Minden más szoba legyen fehér. A megoldás alatt végig használni fogjuk azt az egyszerű észrevételt, hogy ha egy napon a királylány fekete szobában van, akkor következő nap fehérben lesz, és ha fehérben volt, akkor feketében lesz. A szobákat számpárokkal fogjuk jelölni, az (a, b)-val jelölt szoba az a-adik emelet b-edik sorszámú szobája. Először tételezzük fel, hogy a királylány fekete szobában van kezdetben. Nyisson be első nap a herceg a (2, 1) és az (1, 2) szobákba. Könnyű látni, hogy a királylány éjfélkor bekövetkezett átköltözése után csak fehér szobában lehet, méghozzá nem lehet az (1, 1)-ben. Nyisson be ezek után a herceg a (3, 1) és a (2, 2) szobákba. Ezek után a királylány ismét fekete szobában lesz, de már nem lehet a (2, 1) szobában. Nyisson be a herceg most az (1, 2) és a (3, 2) szobákba. Ezek után a királylány már csak fehér szobában lehet, de nem lehet az (1, 1) és a (3, 1) egyikében sem. Azt vehetjük észre, hogy ezzel a lépéssorozattal eggyel kiszorítottuk a királylányt, hiszen kezdetben tetszőleges fekete szobában lehetett, míg most már csak olyan fehérben, aminek a sorszáma legalább 2. Ismételgetve a lépéssorozat mindig eggyel eltolva, előbb utóbb elkapjuk a királylányt. Nézzen be tehát legközelebb a herceg a (2, 2) és az (1, 3) szobákba, majd a (3, 2) és a (2, 3) szobákba, végül az (1, 3)-ba és a (3, 3)-ba. Ezzel elértük, hogy a királylány fekete szobában lehessen, de csak olyanban, aminek a sorszáma legalább 3. Ismételgetve az eljárást, előbb utóbb mindenképpen megtaláljuk. Mivel szintenként 100 szoba volt, a lépéshármas 100-szori megismétlésével meg fogjuk találni a királylányt, amennyiben ő fekete szobában kezdett. Ha nem találtuk meg az első 300 napon, akkor fehér szobában kezdett, és a paritás miatt a 300 nap letelte után is egy ilyenben van. Ebben az esetben nézzünk meg tetszőleges 2 szobát a 301-edik napon, ezzel elérjük, hogy átköltözzön egy fekete szobába. Ezek után az előző módszert használhatjuk a királylány megtalálására, hiszen az működik ha ő fekete szobában van. b) Azt mutatjuk meg, hogy bármilyen stratégiát használ is a herceg, a királylány éjféli átköltözése után a herceg legfeljebb egy szobáról zárhatja ki, hogy a királylány ott van. Tehát semmilyen stratégiával sem kaphatjuk el biztosan. Tegyük fel, hogy valamelyik nap reggelén ez a helyzet, és legfeljebb egy szoba kivételével a királylány még bárhol lehet. A herceg délben benéz két szobába, így délutánra összesen legfeljebb három szobáról tudja, hogy ott nincs a királylány. Ahhoz, hogy az éjfél letelte után ismét csak legfeljebb egy szobát zárhasson ki a herceg, elég annyit megmutatnunk, hogy bárhogy választunk ki két szobát, az összes velük szomszédos szobák száma legalább négy. Ez pont azt jelenti, hogy éjfél után nem tudjuk kizárni két szobáról, hogy ott van a királylány, ha éjfél előtt legfeljebb hármat zárhattunk ki. Megjegyezzük, hogy ez az, ami még a háromszintes kastélyban nem lett volna igaz, hiszen az előző rész jelöléseit használva például az (1, 1) és a (3, 1) szobákkal szomszédos szobák száma 3. Ahhoz, hogy az állítást bizonyítsuk, végignézünk néhány esetet. Színezzük ismét sakktáblaszerűen a szobákat. Ha a két szoba, amit körbe akarunk zárni, különböző színű, akkor együtt biztosan legalább négy szomszédjuk van, hiszen a fehér szobának van legalább két fekete, és a fekete szobának van legalább két fehér szomszédja. Most tegyük fel, hogy a két szoba azonos színű. Ha egyik sincs a sarokban, akkor mindkettőnek legalább három szomszédja van, amiből legfeljebb kettő közös, így ismét kapunk legalább négy szomszédot. Ha mindkettő a sarokban van, akkor mindkettőnek van két szomszédja, és ezek mind

7 különbözőek, hiszen ebben az esetben nem lehet közös szomszéduk. Ha pontosan az egyik van sarokban, akkor a másik szobának lehet három vagy négy szomszédja. Ha három van, akkor legfeljebb egy közös szomszédjuk lehet, tehát megvan az összesen négy szomszéd. Ha négy szomszédja van, az már elég sok. Tehát az éjféli átköltözés után valóban csak egy szoba lehet, amiről el tudja dönteni a herceg, hogy nincs ott a királylány, így sohasem tudja biztosan elkapni. 6. (Játék) A játék kezdetén a szervezők néhány kupac gyufaszálat helyeznek az asztalra. Felváltva lépünk, kétféle lépés megengedett: vagy egyetlen gyufát elveszünk valamelyik kupacból, vagy egy kupacot felosztunk két kisebb kupacra. Az veszít, aki nem tud lépni. Megoldás: Legyen x az 1 gyufaszálat tartalmazó kupacok, és y a páros gyufaszálat tartalmazó kupacok száma. Nevezzünk egy állást jónak, ha x és y is páros. Megmutatjuk, hogy ha a kezdeti állás nem volt jó, akkor a kezdő játékos minden lépésével tud jó állást létrehozni, és ezzel nyerni. Ha viszont jó volt a kezdeti állás, akkor a második játékosnak van nyerő stratégiája, ő tud mindig jó állást létrehozni. Ezek igazolásához annyit kell meggondolni, hogy ha egy játékos jó állást hozott létre, akkor a másik játékos a következő lépésével ezt nem tudja megcsinálni, valamint egy nem jó állásból jövő játékos mindig tud jót létrehozni. Tehát ha jól választjuk meg, hogy kezdeni szeretnénk-e, és mi mindig jó állásba lépünk, akkor az ellenfél sohasem, így mi fogunk nyerni, hiszen az utolsó állapot, amiben nincs már egyetlen kupac sincs, egy jó állás. Így mi fogunk utoljára lépni, és így nyerni. Ezek után a stratégia helyességéhez megnézzük a különböző eseteket, hogy igazoljuk, hogy tetszőleges nem jó állásból léphetünk jóba, és ellenfelünk jó állásból kiindulva sehogy sem tud jóba lépni. Először az látjuk be, hogy ha valaki egy jó állást kapott, akkor bármit is csináljon, nem tud jó állást hagyni. Ha valamelyik kupacból elvesz, akkor lehet, hogy az a kupac 1 gyufát tartalmazott, ekkor x eggyel csökken, vagy lehet, hogy többet, ekkor y változik eggyel. Tehát valóban nem jó állás jön így létre. Ha kettéoszt egy páratlan kupacot, akkor y eggyel nő, ha pedig egy párosat, akkor attól függően, hogy két páratlant vagy két párosat csinál-e, y eggyel csökken vagy nő. Tehát jó állásból nem lehet jót létrehozni. Ha viszont valaki egy nem jó állást kapott, akkor mindenképpen tud jót létrehozni. Ha x volt páratlan és y páros, akkor elvéve egy 1-es kupacot, jó állást kapunk. Ha x páros volt és y páratlan, akkor egy párost szétosztva két páros vagy két páratlan részre egy jó állást hozunk létre, ha páros sokkal növeljük az 1-es kupacok számát. Erre pedig úgy lehet figyelni, hogy ha egy 2-es kupacot bontunk szét, akkor azt két 1-es kupacra osztjuk, (másra nem is tudjuk), viszont ha legalább 4 kavicsot tartalmazó kupacot osztunk szét, akkor azt meg tudjuk tenni 1-es kupac létrehozása nélkül. Ha x és y is páratlan volt, akkor egy páros kupacot kettéosztunk egy 1-es és egy 1-nél nagyobb páratlan részre, hogy jó állást kapjunk. Ezt csak akkor nem tudjuk megtenni, ha az összes páros kupacban 2 gyufa van, ekkor viszont az egyikből elvehetünk 1-et, és jó állást kapunk.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő, 1. nap - 015. május 9. ÖTÖDIK OSZTÁLY - ok 1. Egy háromjegyű szám középső számjegyét elhagyva egy kétjegyű számot kaptunk. A két szám összege

Részletesebben

Hraskó András, Surányi László: 11-12. spec.mat szakkör Tartotta: Surányi László. Feladatok

Hraskó András, Surányi László: 11-12. spec.mat szakkör Tartotta: Surányi László. Feladatok Feladatok 1. Színezzük meg a koordinátarendszer rácspontjait két színnel, kékkel és pirossal úgy, hogy minden vízszintes egyenesen csak véges sok kék rácspont legyen és minden függőleges egyenesen csak

Részletesebben

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy 1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba

Részletesebben

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz

Részletesebben

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes 9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik 1991. évi verseny, 1. nap 1. Számold össze, hány pozitív osztója van 16 200-nak! 2. Bontsd fel a 60-at két szám összegére úgy, hogy az egyik szám hetede egyenlő legyen a másik szám nyolcadával! 3. Van

Részletesebben

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot 1991. évi verseny, 1. nap 1. Bizonyítsd be, hogy 1 101 + 1 102 + 1 103 +... + 1 200 < 1 2. 2. Egy bálon 42-en vettek részt. Az első lány elmondta, hogy 7 fiúval táncolt, a második lány 8-cal, a harmadik

Részletesebben

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =? 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

13. Lőszabatosság.doc

13. Lőszabatosság.doc XIII. LŐFEGYVER LŐSZABATOSSÁGÁNAK ELLENŐRZÉSE ÉS BESZABÁLYOZÁSA A lőfegyver lőszabatosságát azért kell ellenőrizni, hogy megállapítsuk, megfelelő-e a középső találati pont helyzete és a lövedékszórás az

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

Az alap kockajáték kellékei

Az alap kockajáték kellékei Egy játék Dirk Henn-től 2-6 játékos számára Ez a játék két játszási lehetőséget is kínál! Az Alap Kockajáték, és az Alcazaba Variáns. Az alapjáték az Alhambra családba tartozó, teljesen önálló játék, amely

Részletesebben

3. Az y=x2 parabolához az y=x egyenletű egyenes mely pontjából húzható két, egymásra merőleges érintő?

3. Az y=x2 parabolához az y=x egyenletű egyenes mely pontjából húzható két, egymásra merőleges érintő? Észforgató középiskolásoknak 1.Egy tálba egymás után felütünk tíz darab tojást. A tojások közül kettő romlott, de ez csak a feltöréskor derül ki. A záptojások az összes előttük feltört tojást használhatatlanná

Részletesebben

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve! (9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 10. évfolyam TANULÓK KÖNYVE. FÉLÉV A kiadvány KHF/4365-1/008. engedélyszámon 008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2006/2007-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2006/2007-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Alapkezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2006/2007-es tanév első (iskolai) forduló haladók I. kategória

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Egy asztal körül 24-en ülnek, mindannyian mindig igazat mondanak. Minden lány azt mondja, hogy a közvetlen szomszédjaim közül pontosan az egyik fiú, és minden fiú azt mondja, hogy mindkét közvetlen

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 00. február. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Matematika emelt szint Fontos tudnivalók Formai

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Az első oldalon 1-gyel kezdve egyesével beszámozták egy könyv összes oldalát. Hány oldalas ez a könyv, ha ehhez 55 számjegyet használtak fel? Az első 9 oldalhoz 9 számjegyet használtak, a további

Részletesebben

Curie Matematika Emlékverseny 5. évfolyam Országos döntő 2011/2012. Fontos tudnivalók

Curie Matematika Emlékverseny 5. évfolyam Országos döntő 2011/2012. Fontos tudnivalók A feladatokat írta: Kódszám: Tóth Jánosné, Szolnok Lektorálta:. Kozma Lászlóné, Sajószentpéter 2012.április 14. Curie Matematika Emlékverseny 5. évfolyam Országos döntő 2011/2012. Feladat 1. 2. 3. 4. 5.

Részletesebben

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

Összetevők. Fejlesztés és szabálykönyv: Viktor Kobilke Illusztrációk és grafika: Dennis Lohausen

Összetevők. Fejlesztés és szabálykönyv: Viktor Kobilke Illusztrációk és grafika: Dennis Lohausen Fejlesztés és szabálykönyv: Viktor Kobilke Illusztrációk és grafika: Dennis Lohausen Az élet (és halál) játéka, szerzők Inka és Markus Brand 2-4 játékos részére 12 éves kortól Egy teljesen új fejezet nyílik

Részletesebben

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke? 5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,

Részletesebben

4. modul Poliéderek felszíne, térfogata

4. modul Poliéderek felszíne, térfogata Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Fordította: Uncleszotyi

Fordította: Uncleszotyi Fordította: Uncleszotyi Kiegészítette: Adhemar EL GRANDE 1 Összetevők Egy játéktábla 5 Grande (vezetők - nagy kockák) öt különböző színben 155 Caballero (lovagok - kis kockák) 5 színben (31 db színenként)

Részletesebben

10. évfolyam, ötödikepochafüzet

10. évfolyam, ötödikepochafüzet 10. évfolyam, ötödikepochafüzet (Hasonlóság, trigonometria) Tulajdonos: ÖTÖDIK EPOCHAFÜZET TARTALOM I. Geometriai transzformációk... 3 I.1. A geometriai transzformációk ismétlése... 3 I.2. A vektorok ismétlése...

Részletesebben

Mátrixok. 2015. február 23. 1. Feladat: Legyen ( 3 0 1 4 1 1 ( 1 0 3 2 1 0 B = A =

Mátrixok. 2015. február 23. 1. Feladat: Legyen ( 3 0 1 4 1 1 ( 1 0 3 2 1 0 B = A = Mátrixok 25. február 23.. Feladat: Legyen A ( 3 2 B ( 3 4 Határozzuk meg A + B, A B, 2A, 3B, 2A 3B,A T és (B T T mátrixokat. A deníciók alapján ( + 3 + 3 + A + B 2 + 4 + + ( 4 2 6 2 ( ( 3 3 2 4 A B 2 4

Részletesebben

Elsőfokú egyenletek...

Elsőfokú egyenletek... 1. Hozza egyszerűbb alakra a következő kifejezést: 1967. N 1. Elsőfokú egyenletek... I. sorozat ( 1 a 1 + 1 ) ( 1 : a+1 a 1 1 ). a+1 2. Oldja meg a következő egyenletet: 1981. G 1. 3x 1 2x 6 + 5 2 = 3x+1

Részletesebben

0663 MODUL SÍKIDOMOK. Háromszögek, nevezetes vonalak. Készítette: Jakucs Erika, Takácsné Tóth Ágnes

0663 MODUL SÍKIDOMOK. Háromszögek, nevezetes vonalak. Készítette: Jakucs Erika, Takácsné Tóth Ágnes 0663 MODUL SÍKIDOMOK Háromszögek, nevezetes vonalak Készítette: Jakucs Erika, Takácsné Tóth Ágnes Matematika A 6. évfolyam 0663. Síkidomok Háromszögek, nevezetes vonalak Tanári útmutató 2 MODULLEÍRÁS A

Részletesebben

Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád

Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád Dr. Katz Sándor: Lehet vagy nem? Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád A kreativitás fejlesztésének legközvetlenebb módja a konstrukciós feladatok megoldása.

Részletesebben

Tükrözés a sík átfordításával

Tükrözés a sík átfordításával Matematika A 2. évfolyam Tükrözés a sík átfordításával 37. modul Készítette: Szili Judit 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés fókuszai

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2006. február 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. február 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

VERSENYKIÍRÁS HÉTPRÓBÁSOK BAJNOKSÁGA 2016 ORSZÁGOS EGYÉNI ÉS CSAPAT DIÁKVERSENY 2015/2016-OS TANÉV

VERSENYKIÍRÁS HÉTPRÓBÁSOK BAJNOKSÁGA 2016 ORSZÁGOS EGYÉNI ÉS CSAPAT DIÁKVERSENY 2015/2016-OS TANÉV VERSENYKIÍRÁS HÉTPRÓBÁSOK BAJNOKSÁGA 2016 ORSZÁGOS EGYÉNI ÉS CSAPAT DIÁKVERSENY 2015/2016-OS TANÉV A verseny helyszíne: Hejőkeresztúri IV. Béla Általános Iskola, 3597 Hejőkeresztúr, Petőfi Sándor út 111.

Részletesebben

Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger

Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger. feladat Állítsunk merőlegeseket egy húrnégyszög csúcsaiból a csúcsokon át nem menő átlókra. Bizonyítsuk be, hogy a merőlegesek talppontjai

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő

Részletesebben

SupOrt. talpfelvétel készítő program felhasználói leírás v3.1

SupOrt. talpfelvétel készítő program felhasználói leírás v3.1 SupOrt talpfelvétel készítő program felhasználói leírás v3.1 L&M Product Service Kft. 1074 Budapest, Csengery u. 28. Tel: (+36-1)-413-2184 e-mail: lundmkft@gmail.com Tartalomjegyzék: Tartalomjegyzék:...

Részletesebben

Bevezetés. Párhuzamos vetítés és tulajdonságai

Bevezetés. Párhuzamos vetítés és tulajdonságai Bevezetés Az ábrázoló geometria célja a háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelműen és egyértelműen visszaállítható (rekonstruálható) módon történő való

Részletesebben

TARTALOMJEGYZÉK ELŐSZÓ... 7 1. GONDOLKOZZ ÉS SZÁMOLJ!... 9 2. HOZZÁRENDELÉS, FÜGGVÉNY... 69

TARTALOMJEGYZÉK ELŐSZÓ... 7 1. GONDOLKOZZ ÉS SZÁMOLJ!... 9 2. HOZZÁRENDELÉS, FÜGGVÉNY... 69 TARTALOMJEGYZÉK ELŐSZÓ............................................................ 7 1. GONDOLKOZZ ÉS SZÁMOLJ!............................. 9 Mit tanultunk a számokról?............................................

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

Invariánsok. Petar Kenderov és Ivaylo Kortezov. Tekintsünk néhány feladatot, mielőtt megmagyarázzuk, hogy mik is azok a invariánsok.

Invariánsok. Petar Kenderov és Ivaylo Kortezov. Tekintsünk néhány feladatot, mielőtt megmagyarázzuk, hogy mik is azok a invariánsok. Invariánsok Petar Kenderov és Ivaylo Kortezov Tekintsünk néhány feladatot, mielőtt megmagyarázzuk, hogy mik is azok a invariánsok. A1 Feladat A Bátor Lovag találkozott a Három-fejű Sárkánnyal és elhatározta,

Részletesebben

Felszín- és térfogatszámítás (emelt szint)

Felszín- és térfogatszámítás (emelt szint) Felszín- és térfogatszámítás (emelt szint) (ESZÉV 2004.minta III./7) Egy négyoldalú gúla alaplapja rombusz. A gúla csúcsa a rombusz középpontja felett van, attól 82 cm távolságra. A rombusz oldalának hossza

Részletesebben

OKOS KERTÉSZ Vidám játékok okos kertészeknek A doboz tartalma Ki melyik játékváltozatot próbálja ki először?

OKOS KERTÉSZ Vidám játékok okos kertészeknek A doboz tartalma Ki melyik játékváltozatot próbálja ki először? TARTALOM Vidám játékok okos kertészeknek... 3 A doboz tartalma... 3 Ki melyik játékváltozatot próbálja ki először?... 3 Előkészületek a játékokhoz... 4 Általános szabályok... 4 Játékváltozatok... 4 Óvodásoknak...4

Részletesebben

A játék tartozékai és előkészületei. 3-5 játékos részére, 10 éves kortól

A játék tartozékai és előkészületei. 3-5 játékos részére, 10 éves kortól A játék alapötlete Valahol az ismert világ peremén rejtőzik a mesés kincseket rejtő völgy, a csodás Valdora. A világ minden részéről érkeznek ide a kalandorok, hogy hírnévre és gazdagságra tegyenek szert.

Részletesebben

Készítette: niethammer@freemail.hu

Készítette: niethammer@freemail.hu VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény

Részletesebben

Kismedve Szeged 2015

Kismedve Szeged 2015 Kismedve Szeged 2015 Főfeladatok 1. Micimackó, Malacka és Tigris töprengenek. Micimackó azt mondja: Hármunk közül csak Malacka hazudós. Malacka azt mondja: Hármunk közül egyedül Tigris hazudós. Tigris

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

Gondolkodjunk a fizika segı tse ge vel!

Gondolkodjunk a fizika segı tse ge vel! SZAKDOLGOZAT Gondolkodjunk a fizika segı tse ge vel! Simon Ju lia Matematika BSc., tana ri szakira ny Te mavezeto : Besenyei A da m adjunktus Alkalmazott Analı zis e s Sza mı ta smatematikai Tansze k Eo

Részletesebben

Általános tudnivalók

Általános tudnivalók Általános tudnivalók A versenyen tetszőleges íróeszköz használható. (Például ceruza, toll, filctoll, színes ceruza.) Az íróeszközökről a versenyzőknek maguknak kell gondoskodniuk. Instrukciós füzetekkel

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév. forduló haladók I. kategória Megoldások

Részletesebben

23. Kombinatorika, gráfok

23. Kombinatorika, gráfok I Elméleti összefoglaló Leszámlálási alapfeladatok 23 Kombinatorika, gráfok A kombinatorikai alapfeladatok esetek, lehetőségek összeszámlálásával foglalkoznak Általában n jelöli a rendelkezésre álló különbözőfajta

Részletesebben

Az Állami Autópálya Kezelő Zrt. Általános Szerződési Feltételei e-matricát értékesítő viszonteladók részére. 4. számú melléklet

Az Állami Autópálya Kezelő Zrt. Általános Szerződési Feltételei e-matricát értékesítő viszonteladók részére. 4. számú melléklet Az Állami Autópálya Kezelő Zrt. Általános Szerződési Feltételei e-matricát értékesítő viszonteladók részére 4. számú melléklet Az Állami Autópálya Kezelő Zrt. e-matrica értékesítésére vonatkozó együttműködési

Részletesebben

10. évfolyam, negyedik epochafüzet

10. évfolyam, negyedik epochafüzet 10. évfolyam, negyedik epochafüzet (Geometria) Tulajdonos: NEGYEDIK EPOCHAFÜZET TARTALOM I. Síkgeometria... 4 I.1. A háromszög... 4 I.2. Nevezetes négyszögek... 8 I.3. Sokszögek... 14 I.4. Kör és részei...

Részletesebben

Tájékozódás számvonalon, számtáblázatokon

Tájékozódás számvonalon, számtáblázatokon Matematika A 2. évfolyam Tájékozódás számvonalon, számtáblázatokon 12. modul Készítette: Bóta Mária Kőkúti Ágnes matematika A 2. évfolyam 12 modul Tájékozódás számvonalon, számtáblázatokon modulleírás

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ NYOLCADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ NYOLCADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ NYOLCADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Az apa, az anya és a három lányuk együtt 118 évesek. Az anya 10 évvel idősebb, mint a három lány együtt.

Részletesebben

Átrendezések és leszámlálások ÚTMUTATÓ Hegedüs Pál 1-2015.június 30.

Átrendezések és leszámlálások ÚTMUTATÓ Hegedüs Pál 1-2015.június 30. Átrendezések és leszámlálások ÚTMUTATÓ Hegedüs Pál 1-2015.június 30. 1. Határozzuk meg, hány egybevágósága van egy négyzetnek! Melyek azonos jellegűek ezek között? Ez egy általános bevezető feladat tud

Részletesebben

1. Az ábrán a pontok a szabályos háromszögrács 10 pontját jelentik (tehát az ABC háromszög egyenlőoldalú, a BDE háromszög egyenlőoldalú, a CEF

1. Az ábrán a pontok a szabályos háromszögrács 10 pontját jelentik (tehát az ABC háromszög egyenlőoldalú, a BDE háromszög egyenlőoldalú, a CEF 1. Az ábrán a pontok a szabályos háromszögrács 10 pontját jelentik (tehát az ABC háromszög egyenlőoldalú, a BDE háromszög egyenlőoldalú, a CEF háromszög egyenlőoldalú, stb ). A 10 pont közül ki kell választani

Részletesebben

Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak)

Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Erre a dokumentumra az Edemmester Gamer Blog kiadványokra vonatkozó szabályai érvényesek. 1. feladat: Határozd meg az a, b és

Részletesebben

Városok Viadala JUNIOR, 1990-91. sz, második forduló ... 99

Városok Viadala JUNIOR, 1990-91. sz, második forduló ... 99 JUNIOR, 990-9. sz, els forduló. Adott két pozitív valós szám. Bizonyítsuk be, hogy ha az összegük kisebb, mint a szorzatuk, akkor az összegük nagyobb 4-nél. (N. Vasziljev, 4 pont) 2. Egy szabályos háromszög

Részletesebben

Kódelméleti elemi feladatgyűjtemény Összállította: Hraskó András és Szőnyi Tamás

Kódelméleti elemi feladatgyűjtemény Összállította: Hraskó András és Szőnyi Tamás Kódelméleti elemi feladatgyűjtemény Összállította: Hraskó András és Szőnyi Tamás 1. Mérlegelés 1.1 Egy cég 10 szériában gyártott egész kg-os súlyokat. Az első szériában 1, a másodikban 2, a harmadikban

Részletesebben

Michael Kiesling / Wolfgang Kramer

Michael Kiesling / Wolfgang Kramer Michael Kiesling / Wolfgang Kramer és a Kerekasztal lovagjai JÁTÉK ÖTLET A játékosok lovagok egy csoportját vezetik Artúr király udvarában. Megpróbálják folyamatosan növelni a csoportjuk presztízsét azáltal,

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Legrövidebb utat kereső algoritmusok. BFS (szélességi keresés)

Legrövidebb utat kereső algoritmusok. BFS (szélességi keresés) Legrövidebb utat kereső algoritmusok Adott gráfban szeretnénk egkeresni két pont között a legrövidebb utat (a két pont távolsága érdekel). Ezt úgy fogjuk tudni megtenni, hogy közben megkapjuk az összes

Részletesebben

Szeminárium-Rekurziók

Szeminárium-Rekurziók 1 Szeminárium-Rekurziók 1.1. A sorozat fogalma Számsorozatot kapunk, ha pozitív egész számok mindegyikéhez egyértelműen hozzárendelünk egy valós számot. Tehát a számsorozat olyan függvény, amelynek az

Részletesebben

BSG: Express. Szabálykönyv készítette: Evan Derrick - BGG felhasználónév: derrickec. Játszható: 3-5 játékossal Játékidő: 45-60 perc

BSG: Express. Szabálykönyv készítette: Evan Derrick - BGG felhasználónév: derrickec. Játszható: 3-5 játékossal Játékidő: 45-60 perc BSG: Express Szabálykönyv készítette: Evan Derrick - BGG felhasználónév: derrickec Játszható: 3-5 játékossal Játékidő: 45-60 perc A BSG: Express játékot a Sci Fi tévécsatorna Battlestar Galactica című

Részletesebben

Kompetencia alapú matematika oktatás Oláhné Téglási Ilona

Kompetencia alapú matematika oktatás Oláhné Téglási Ilona Kompetencia alapú matematika oktatás Oláhné Téglási Ilona Ítéletalkotás, döntés képességének fejlesztése Rezner-Szabó Zsuzsanna Matematikatanár, MA Eszterházy Károly Főiskola 1. feladat Építs piramist!

Részletesebben

Mikrohullámok vizsgálata. x o

Mikrohullámok vizsgálata. x o Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia

Részletesebben

8/2014. (X.10.) KLIK elnöki utasítás

8/2014. (X.10.) KLIK elnöki utasítás 8/2014. (X.10.) KLIK elnöki utasítás III. Fejezet A térítési díj és a tandíj 1. A térítési díj és a tandíj alapja 3. (1) Az intézményben a tanévre fizetendő térítési díj és a tandíj meghatározásának alapja

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Térgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Térgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Térgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

EGÉSZ SZÁMOK. 36. modul

EGÉSZ SZÁMOK. 36. modul Matematika A 3. évfolyam EGÉSZ SZÁMOK 36. modul Készítette: zsinkó erzsébet matematika A 3. ÉVFOLYAM 36. modul EGÉSZ számok MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Megoldások 4. osztály

Megoldások 4. osztály Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,

Részletesebben

ÉLETPÁLYA- ÉPÍTÉS MATEMATIKA TANÁRI ÚTMUTATÓ KOMPETENCIATERÜLET B. 6. évfolyam

ÉLETPÁLYA- ÉPÍTÉS MATEMATIKA TANÁRI ÚTMUTATÓ KOMPETENCIATERÜLET B. 6. évfolyam ÉLETPÁLYA- ÉPÍTÉS KOMPETENCIATERÜLET B MATEMATIKA TANÁRI ÚTMUTATÓ 6. évfolyam A kiadvány az Educatio Kht. kompetenciafejlesztő oktatási program kerettanterve alapján készült. A kiadvány a Nemzeti Fejlesztési

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

Az alábbi feladatok közül a megadottat készítse el objektum-orientált módszerrel. Fontos, hogy objektum-orientált módon gondolkozzon és úgy is

Az alábbi feladatok közül a megadottat készítse el objektum-orientált módszerrel. Fontos, hogy objektum-orientált módon gondolkozzon és úgy is Az alábbi feladatok közül a megadottat készítse el objektum-orientált módszerrel. Fontos, hogy objektum-orientált módon gondolkozzon és úgy is valósítsa meg! Például a játékos egy objektum, amelynek vannak

Részletesebben

3. Geometria. I. Feladatok

3. Geometria. I. Feladatok 3. Geometria I. Feladatok 1. Egy körben adott két, egymásra merőleges átmérő. Az egyik végpontból húzott húrt a másik átmérő 2 és 4 egység hosszú szakaszokra bontja. Mekkora a kör sugara? Kalmár László

Részletesebben

Készítette: Citynform Informatikai Zrt.

Készítette: Citynform Informatikai Zrt. Iratkezelő rendszer Felhasználói kézikönyv Iktatás és érkeztetés Készítette: Citynform Informatikai Zrt. Citynform Iratkezelő Rendszer iktatás és érkeztetés A Bevezetésnek kettős célja van: segédlet a

Részletesebben

Tárgyév adata 2013. december 31. Tárgyév adata 2014. december 31. A tétel megnevezése

Tárgyév adata 2013. december 31. Tárgyév adata 2014. december 31. A tétel megnevezése A tétel megnevezése Tárgyév adata 2013. december 31. Tárgyév adata 2014. december 31. 1. Pénzeszközök 19 798 163 488 2. Állampapírok 411 306 73 476 a) forgatási célú 411 325 73 408 b) befektetési célú

Részletesebben

Leggyakrabban használt adatbányászási technikák. Vezetői információs rendszerek

Leggyakrabban használt adatbányászási technikák. Vezetői információs rendszerek Leggyakrabban használt adatbányászási technikák ADATBÁNYÁSZÁS II. 1. A társításelemzés társítási szabályok (asszociációs szabályok) feltárását jelenti. Azt vizsgájuk, hogy az adatbázis elemei között létezik-e

Részletesebben

MATEMATIKA A 10. évfolyam

MATEMATIKA A 10. évfolyam MATEMATIKA A 10. évfolyam 8. modul Hasonlóság és alkalmazásai Készítették: Vidra Gábor, Lénárt István Matematika A 10. évfolyam 8. modul: Hasonlóság és alkalmazásai A modul célja Időkeret Ajánlott korosztály

Részletesebben

Megoldások, megoldás ötletek (Jensen-egyenlőtlenség)

Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) Mivel az f : 0; ; x sin x folytonos az értelmezési tartományán, ezért elég azt belátni, hogy szigorúan gyengén konkáv ezen az intervallumon Legyen 0

Részletesebben

Í ÍÍÍ Í Í Í Ö Ö Ö Ö Ö Ö Ö Ö Ú É Í Ö Á Á É Ö É Ö É É Á Á Ö Ú Ö Ö Í Á É É Í Á É Í Ö Ö Á Á É Í Ö Ö Ö Ö Ö Ö Á É Ö É É Ö É Ö Í Á É É Ö Ö É Ö Í Í Í Í Ö Ö Ö Í Ö É Ö É É Ö Ö Í É Ö Í É É Ö Í É Á É É Ű Ö Í É É Ö

Részletesebben

A Rubik kocka kirakása (Bővített változat)

A Rubik kocka kirakása (Bővített változat) A Rubik kocka kirakása (Bővített változat) 1.) Fehér kereszt kirakása Ennél a lépésnél megkeressük egymás után a 4 olyan élkockát (élkocka az, aminek csak két színe van), amiben van fehér szín. Ezeket

Részletesebben

6. modul Egyenesen előre!

6. modul Egyenesen előre! MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Minden jog fenntartva. E dokumentumnak, vagy részletének nyomtatott formában történõ rögzítése, illetve akár ingyenes, akár ellenérték fejében

Minden jog fenntartva. E dokumentumnak, vagy részletének nyomtatott formában történõ rögzítése, illetve akár ingyenes, akár ellenérték fejében Minden jog fenntartva. E dokumentumnak, vagy részletének nyomtatott formában történõ rögzítése, illetve akár ingyenes, akár ellenérték fejében történõ közzététele, sokszorosítása és terjesztése tilos.

Részletesebben

NETFIT modul Tanári felület Felhasználói útmutató. Magyar Diáksport Szövetség

NETFIT modul Tanári felület Felhasználói útmutató. Magyar Diáksport Szövetség NETFIT modul Tanári felület Felhasználói útmutató Magyar Diáksport Szövetség 2014 2 Tartalom 1 Alap működési jellemzők... 4 1.1 Dátum kitöltés... 4 1.2 Irányítószám / Település kitöltése... 4 1.3 Belföldi

Részletesebben

10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M

10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M 10. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Hányféleképpen. 6. modul. Készítette: Köves Gabriella

Hányféleképpen. 6. modul. Készítette: Köves Gabriella Hányféleképpen 6. modul Készítette: Köves Gabriella Hányféleképpen? A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Kombinatorikai feladatok megoldása szerep játékkal, mozgásos játékkal,

Részletesebben

2-5 játékos számára 10 éves kor felett, játékidő 60 perc. Oleyli klán: A sárga klán mindenre és mindenkire irigy amivel nem rendelkezik.

2-5 játékos számára 10 éves kor felett, játékidő 60 perc. Oleyli klán: A sárga klán mindenre és mindenkire irigy amivel nem rendelkezik. Játékszabály 2-5 játékos számára 10 éves kor felett, játékidő 60 perc Képzeld el, hogy úgy 10.000 éve... A klánod felhagyott az ősi nomád életformával és négy másik klán társaságában letelepedett a völgyben.

Részletesebben

V. Matematikai Tehetségnap 2014. október 11. IV. osztály

V. Matematikai Tehetségnap 2014. október 11. IV. osztály V. Matematikai Tehetségnap 014. október 11. IV. osztály Munkaid : 45 perc. Minden feladatnak pontosan egy helyes válasza van. Minden helyes válasz 1 pontot ér. Megválaszolatlanul hagyott kérdésre, illetve

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 113 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fontos tudnivalók

Részletesebben

Oktatási Hivatal. A döntő feladatai. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]

Oktatási Hivatal. A döntő feladatai. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008] OKTV 7/8 A öntő felaatai. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz a fenti feltételeknek?.

Részletesebben

ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC.

ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC. ANALITIKUS MÉRTAN INFORMATIKA CSOPORT I. VEKTORALGEBRA 1. Feladatlap Műveletek vektorokkal 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AB + BD + DC; b) AD + CB + DC; c) AB + BC

Részletesebben

Oktatási Hivatal. A döntő feladatainak megoldása. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]

Oktatási Hivatal. A döntő feladatainak megoldása. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008] OKTV 7/8 A öntő felaatainak megolása. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz

Részletesebben