4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!"

Átírás

1 (9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora AB =c és AC =b. Fejezze ki ezek segítségével az A csúcsból a szemközti oldal F felezőpontjába mutató AF vektort! 3) Az ABCD négyzet AD oldalvektorát jelöljük a-val és AB oldalvektorát b-vel. F a CD oldal felezőpontja. Fejezze ki AF vektor a-val és b-vel! 4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve! 5) Az ABCD négyzet középpontja K, az AB oldal felezőpontja F. Legyen a = KA és b = KB. Fejezze ki az a és b vektorok segítségével a KF vektort!

2 (9/2) Vektorok, Koordináta Geometria 6) Az ábra alapján fejezze ki az a és a c vektorral az EF, KB, CA, KF vektorokat, ha ABCDEF egy szabályos hatszög és K a középpontja 7) Egy négyzet egyik csúcsából a négyzet két szomszédos csúcsába mutató vektor a; b. Írja fel ezen vektorok segítségével a négyzet átlóvektorait! 8) Egy ABCD paralelogramma BC és CD oldalainak felezőpontjai E és F. Írja fel az a és b vektorok segítségével az AF és FE vektorokat! 9) Az ábrán ABCD paralelogrammát láthatunk. Adja meg az ábrán azt a P pontot, melyre teljesül, hogy (4 10) Az ABCD négyzet középpontja O, a DC oldal D-hez közelebbi harmadoló pontja H (lásd ábra). Írja fel az a és b vektorok segítségével az OC és HB vektorokat! OC=? HB=?

3 (9/3) Vektorok, Koordináta Geometria 11) Adottak az a = (6; 4) és az a b = (11; 5) vektorok. Adja meg a b vektort a koordinátával! 12) Fejezze ki az i és a j vektorok segítségével a c = 2a b vektort, ha a = 3i 2j és b = -i + 5j! 13) A (-4; 5) és B (2; 13). Melynek az AB koordinátái, és mekkora a vektorhossza? 14) Számítsa ki a következő vektorok skaláris szorzatát! Határozza meg a két vektor által bezárt szöget!. a.) (5; 8) b.)( 40; 25) (3 15) Egy rombusz átlóinak hossza 12 és 20. Számítsa ki az átlóvektorok skalárszorzatát! Válaszát indokolja! (1 16) Melyik állítás igaz az alábbiak közül? a) Vektorok skaláris szorzása kommutatív művelet. b) A vektorok skaláris szorzása asszociatív művelet. 17) Mekkora szöget zár be egymással az alábbi két vektor : a (3; 7) b (5; -2)? 18) Adott két pont: A (-4; ½) és B (1; 3/2). Írja fel az AB szakasz felezőpontjának koordinátáit! (2 19) Adott az A (2;-5) és B (1; 3) pont. Határozza meg az AB szakasz felezőpontjának koordinátáit! 20) Az AB szakasz egyik végpontjának a koordinátái: A (-2; 6), a szakasz felezőpontjának a koordinátái: F (0; 3). Határozza meg a B pont koordinátáit! 21) Egy P pontnak az A (3; -2) pontra vonatkozó tükörképe a P (-5; 1) pont. Adja meg a P pont koordinátáit! 22) Egy szakasz két végpontja: A (-3; 6), és B (3; -6). Határozza meg a szakasz A-hoz közelebbi harmadoló pontjának koordinátáit! 23) Milyen hosszú AB szakasz, ha végpontjai: A (-2; 3), és B (1; -1)? Határozza meg a szakasz A- hoz közelebbi harmadoló pontjának koordinátáit! 24) Egy háromszög csúcsai: A (-1;-2), B (2; 3), C (5; -1). Határozzuk meg az ABC háromszög súlypontjának koordinátáit! 25) Egy háromszög csúcsai A (-1; -2), B (2; 3), C (-4; 10). Adja meg a háromszög súlypontjának koordinátáit! 26) Határozza meg az A (1; 1), B (0; 6) és C (-4; -1) pontok által meghatározott háromszög súlypontjának koordinátáit!

4 (9/4) Vektorok, Koordináta Geometria 27) Az ABC háromszög két csúcsa A (-2; 4) és B (1; -17) a háromszög súlypontja: S (2; -4). Határozza meg a háromszög hiányzó csúcspontjának koordinátáit! 28) Írja fel a (-2; 7) ponton átmenő n (5; 8) normálvektorú egyenes egyenletét! 29) Írja fel a P (-2; 1) ponton áthaladó 2x y = 3 egyenesre merőleges egyenes egyenletét! 30) Írja fel annak az egyenesnek az egyenletét, amely átmegy a P 0 (3; -5) ponton és párhuzamos a 4x + 5y = 0 egyenletű egyenessel! 31) Adja meg annak a lineáris függvénynek a hozzárendelési szabályát, amelynek képe párhuzamos az x -3x + 5 függvény képével és átmegy a (-1; 2) ponton! 32) Mekkora az A (-2; 3) és a B (2; -6) pontok által meghatározott egyenes meredeksége! 33) Az f elsőfokú függvény grafikonja olyan m meredekségű egyenes, amely illeszkedik a P pontra. Adja meg az f függvény hozzárendelési szabályát, ha a, m = 3 és P (0; 2); b, m = 2/3 és P (-1/5; 4/3)! 34) Írja fel annak az egyenesnek az egyenletét, amely áthalad az origón és párhuzamos az A (3; 2) és a B (-3; 5) pontok által meghatározott egyenessel! 35) Írja fel annak az egyenesnek az egyenletét, amely áthalad az origón és merőleges az A (-1; 2) és a B (2; 7) pontok által meghatározott egyenesre! 36) Adott két pont: A (3; 4), B (-2; 2). Írja fel az A és B pontokon átmenő egyenes egyenletét! (3 37) Írja fel a P (4; 3) ponton átmenő, a 4x + 3y = 11 egyenessel párhuzamos egyenes egyenletét (2 38) Írja fel annak az egységnek az egyenletét, amely áthalad az origón és merőleges az A (-4; 3) és a B (-1; 8) pontok által meghatározott egyenesre! 39) Írja fel annak az egyenesnek az egyenletét, amely az y tengelyt -2-ben metszi, és irányszöge 60 o! 40) Adja meg az 5x - 3y = 2 egyenletű egyenes és az y tengelyt metszéspontjának koordinátáit! (2 41) Adott két pont: A (5; 3), B (-2; 6). Írja fel az általuk meghatározott egyenes origóra vonatkozó tükörképének egyenletét! 42) A K (-2; 3) ponton átmenő egyenes merőleges a 3x = 5y - 7 egyenletű egyenesre. Írja fel az egyenes egyenletét. 43) Egy fényforrásból kiinduló két fénysugár egyenlete 2x - 8y -2 = 0, illetve 4x + y - 21 = 0. Melyik pontban van a fényforrás?

5 (9/5) Vektorok, Koordináta Geometria 44) Rajta van-e az e és f egyenesek metszéspontja a g egyenesen, ha az egyenesek egyenletei: e: 3x - 4y = 7; f: x + y =6; g: 7x - 21y = -1 45) Válasszunk ki az alábbi egyenes egyenletek közül azt a kettőt, amelyeknél a nekik megfelelő egyenesek merőlegesek egymásra! a, y = -1/3x + 7 b, x + 4y = 3 c, y = 3x + 7 d, 2x - 6y = 10 (2 46) Milyen az alábbi egyenesek kölcsönös helyzete? e: x - 2y = 2 f: 2x + y = 3 g: 6x + 3y = 9 h: 5x - 10y = 6 (12 47) Péter egy régi matematika - könyvet lapozgat, ahol az egyik faladatban két egymásra merőleges egyenesre vonatkozóan talál egy faladatot. Az egyik egyenes egyenlete jól olvasható: -4x + 5y = 6. A másik egyenes egyenletében azonban az x együtthatóját nem tudja kiolvasni, mert elmosódott. Mi lehet az elmosódott szám (az alábbi egyenletben A-val jelöltük), ha a másik egyenlet: Ax - 8y = 7. Segítsünk neki kitalálni A értékét! (4 48) Határozza meg P pont távolságát az origótól, ha tudjuk, hogy illeszkedik az y tengelyre, és egyenlő távolságra van A (4; -2) B (8; -10) pontoktól! 49) Határozza meg az ACB háromszög magasságpontjának koordinátáit, ha A (-1; 3), B (-5; 3) és C (-5; 8)! 50) Tekintsük az A (-2; 8) és a B (6;-4) pontokat a koordináta síkban! Aduk meg az összes olyan a) szabályos háromszög b) négyzet; további csúcsait, melyeknek az AB szakasz oldala! (17 51) Mekkora annak a háromszögnek a területe, melynek csúcsai A (-2; 50), B (13; 6), és C (72; 45)? (12 52) Határozza meg az ABC területét, magasságpontjának és súlypontjának a távolságát! A (-5; -2), B (3; -3), C (1; 4) (12 53) Egy számítógép képernyőjén megjelenített térképrészleten az A település koordinátái: (24; 60) a B településé (-13; 23) míg a C településé (24; -14). a) Mekkora az AB távolság? b) Milyen messze van a C település az A-t és B-t összekötő egyenes úttól? c) Mi annak a pontnak a két koordinátája ebben a rendszerben, amelyik mindhárom településtől egyenlő távolságra van? 54) Egy háromszög két csúcspontjának koordinátái: A (2; 2), B (2; 8). A harmadik csúcsának első koordinátája 1. Mekkora a háromszög területe? 55) Egy háromszög csúcsai: A (-3; 1), B (2; -2), C (5; 3). Határozza meg a háromszög a) oldalainak hosszát; b) területét; c) magasságát! (12

6 (9/6) Vektorok, Koordináta Geometria 56) Adott egy háromszög három csúcspontja koordinátával: A (-4; -4), B (4; 4), C (-4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból induló magasságvonal metszéspontjának koordinátáit! 57) Az ABC háromszög két csúcsa A (4; 2) és B (-2; -1) Két oldalegyenesének egyenlete : 3x-y=10 és 3x+4y=-10 a) Határozza meg a C csúcs koordinátáit! b) Adja meg a B csúcshoz tartozó magasság egyenesének egyenletét! c) Számítsa ki a b oldal hosszát! d) Határozza meg a háromszög területét! (17 58) Egyenlő szárú derékszögű háromszögnél az átfogó végpontjainak koordinátái: A (-2; 5) és B (6; -1). a) Határozza meg a háromszög súlypontjának koordinátáit! b) Adja meg a háromszög magasságpontját! c) Határozza meg a háromszög területét! d) Mekkora a körülírt körbe írt szabályos hatszög területe? (17 59) Három falu közösen tervez egy szennyvíztisztító telep létesítését, a falvak térképszelvényről levett koordinátái km-ben: A (16; 18), B (28; 2), C (18; 26). a) Mely pontban építsenek szennyvíztisztító telepet, ha azt szeretnék, hogy mindhárom falutól ugyanolyan távolságban legyen? Adjuk meg a pont koordinátáit! (6 b) Mekkora ez a távolság? c) Tervezik még a faluk egymással, és a falukat a teleppel összekötő utak építését. Hány km utat szeretnének építeni? (6 60) Az e egyenestől tudjuk, hogy a meredeksége ½ és az y tengelyt 4-ben metszi. a) Ábrázolja koordináta-rendszerben az e egyenest és írja fel az egyenletét! b) Mutassa meg, hogy a P (2; 5) pont rajta van az e egyenesen! Állítson merőlegest ezen a ponton át az egyenesre. Írja fel ennek ez egyenesnek az egyenletét! c) E két egyenest elmetsszük a 4x 3y = -17 egyenletű egyenessel, a metszéspontok A és B. Számítsa ki az A és B metszéspontok koordinátáit! d) Számítsa ki a PAB háromszög területét! e) Adja meg a PAB háromszög köré írható kör középpontjának koordinátáit! (17 61) a)ábrázolja koordináta-rendszerben az e egyenest, melynek egyenlete: 4x + 3y = -11. Számítással döntse el, hogy a P (100; -136) pont rajta van-e az egyenesen! Az egyenesen lévő Q pont második koordinátája 107. Számítsa ki a Q pont első koordinátáját! b) Írja fel az AB átmérőjű kör egyenletét ahol A (-5; 3) és B (1; -5). Számítással döntse el, hogy az S (1; 3) pont rajta van-e a körön! c) Adja meg az ABC háromszög C csúcsának koordinátáit, ha tudja, hogy az S (1; 3) pont a háromszög súlypontja! (17 61) Az ABC háromszög csúcsai: A (0; 0), B (10; 2), C (2; 2).

7 (9/7) Vektorok, Koordináta Geometria a) Határozza meg a háromszög területét! b) Határozza meg az AB oldalegyenes egyenletét! c) Írja fel annak az egyenesnek az egyenletét, amely párhuzamos az y tengellyel és felezi a háromszög területét! d) Írja fel olyan másodfokú egyenletet, amelynek gyökei B koordinátái! 62) Egy család a házuk kertjében kör alakú medencét építtet. Azt szeretnék, hogy a medence helyét úgy tervezzék meg, hogy a fák a medence partjától két méterre legyenek, a bokrok pedig egy méter távolságban. Az építő kertről az alábbi rajzot készítette a koordinátarendszerében, a medencét az építtetők kívánalmainak megfelelő helyre helyezte. (A koordináta-rendszer egy egysége a valóságban egy méternek felel meg.) Mekkora a medence sugara? (12 63) Egy négyzet oldalegyenesei a koordinátatengelyek és az x = 1, valamint az y = 1 egyenletű egyenesek. a) Ábrázolja derékszög koordinátarendszerben a négyzetet és adja meg csúcsainak koordinátáit! b) Írja fel a négyzet köré írható kör egyenletét! c) Állapítsa meg, hogy a négyzet kerülete hány százaléka a kör kerületének! d) Az y = -4x + 2 egyenletű egyenes a négyzetet két részre bontja. Számítsa ki e részek területének arányát! (17 64) Legyen az e egyenes egyenlete x + 3y = 9 és tekintsük a P (7; 4) pontot! a) Határozza meg a P pont e egyenesre eső merőleges vetületét! b) Forgassa el az e egyenest a P pont körül +90 o -al! Írja fel az így kapott egyenes egyenletét! c) Adja meg annak a P középpontú körnek az egyenletét, melynek kerületéből az e egyenes a kerület 25%-át vágja le! (17 65) Egy egyenes áthalad a P (3; 4) ponton. Ez az egyenes az y tengely pozitív feléből kétszer akkora húrt metsz ki, mint az x tengely pozitív feléből. a) Írja fel az egyenes egyenletét! b) Mekkora a területe annak a háromszögnek, amelyet az egyenes és a koordináta-tengelyek zárnak közre? (17 66) Az O origónak az A (1; 4) pontra vonatkozó tükörképe A, a B (4; 2) pontra vonatkozó tükörképe B. a) Számítsa ki az ABB A négyszög területét! b) Az AA, BB oldalak felezőpontján átmenő egyenes mekkora területű háromszöget vág le a koordinátatengelyekből? (17

8 (9/8) Vektorok, Koordináta Geometria 67) Mekkora a területe az x 2 + y 2 4x + 6y 3 = 0 egyenletű körnek? 68) Egy kör középpontja K (-3; 1). Írja fel a kör egyenletét, ha tudja, hogy a kör érinti az x tengelyt! 69) Egy kör sugarának hossza 4, középpontja a (-3; 5) pont. Írja fel a kör egyenletét! 70) Illeszkedik-e a (-2; 1) középpontú, 5 egység sugarú körre a P (1; -3) pont? Állítását számítással igazolja! 71) Egy kör egyik átmérőjének végpontjai A (2; -3) és B (5; 2). Írja fel a kör egyenletét! 72) Határozza meg az x 2 + y 2 + 4y = 0 egyenletű kör középpontját és sugarát! 73) Adja meg az x 2 + y 2 = 100 körnek azon pontjait, amelynek második koordinátája -6! 74) Tekintsük az x 2 + y 2 + 2x 10y + 1 = 0 egyenletű kört! a) Mekkora a kör sugara? b) Hány közös pontja van ennek a körnek az x tengellyel? c) Adja meg ennek a körnek a (-4; 1) pontjába húzható érintőjének egyenletét! d) Mekkora az ezen körbe írható négyzetek területe? (12 75) Legyen egy kör átmérőjének két végpontja A (-3; 6) és B (5; -4). Adja meg ennek a körnek az egyenletét és az x tengellyel párhuzamos érintőjének egyenletét! (12 76) Egy sétarepülés Szeged felett, vízszintes síkban, körpályán repül. A légi irányító három alkalommal jelzi a gép helyzetét a számítógép képernyőjén megjelenített térképen az A (-4; 7), B (2; -11), C (10; 5) pontokban. a) Mi a perülő pályájának az egyenlete ebben a koordináta-rendszerben? b) Adja meg az AB szakasz B-hez közelebbi harmadoló pontjának koordinátáit! 77) Adott a koordináta-rendszerben az A (9; -8) középpontú, 10 egység sugarú kör. a) Számítsa ki az y = -16 egyenletű egyenes és a kör közös pontjainak koordinátáit! b) Írja fel a kör P (1; -2) pontjába húzható érintőjének egyenletét! Adja meg ennek az érintőnek az iránytangensét (meredekségét)! (12 78) Hol metszik az x 2 + y 2 = 100 egyenletű kör 6 abszcisszájú pontjaiba húzott térintői egymást? Mekkora ennek a két érintőnek a hajlásszöge? (12 79) Egy kör középpontja az O (-1; 3) pont, sugara 5 egység. a) Határozzuk meg, hogy hol metszik egymást a kör 3 abszcisszájú pontjaiban húzott érintők! b) Mekkora szöget zár be ez a két érintő egymással? ( ) Adott az x + y 6x + 8y 56 = 0 egyenletű kör és az x 8,4 = 0 egyenletű egyenes. a) Számítsa ki a kör és az egyenes közös pontjainak koordinátáit! (6 b) Mekkora távolságra van a kör középpontja az egyenestől? (5 Egy 9 cm sugarú kört egy egyenes két körívre bont. Az egyenes a kör középpontjától 5,4 cm távolságra halad. c) Számítsa ki a hosszabb körív hosszát! (A választ egy tizedesjegyre kerekítve adja meg!) (6

9 (9/9) Vektorok, Koordináta Geometria 81) Egy derékszögű háromszög (AB) átfogójának végpontjai: A (-2; 3) és B (8; 21). A háromszög területe 84,5 négyzetegység. a) Határozzuk meg a háromszög körülírt körének egyenletét! (4 b) Határozzuk meg a harmadik csúcs koordinátáit! (13 82) A k kör egyenlete: x 2 + y 2-4x + 10y -23 = 0. a) Számítsa ki a k kör és az y = 1,5x + 5 egyenletű f egyenes közös pontjának koordinátáit! (5 Egy k kör középpontja a C (2; -5) pont, és ez a kör érinti a 3x 2y 3 = 0 egyenletű e egyenest. b) Számítsa ki az érintési pont koordinátáit, és írja fel a k kör egyenletét! (7 c) Igazolja, hogy a k körnek a középpontjából való kétszeres nagyítottja a k kör! (5 83) 1,5 km magasságon állandó sebességgel repülő vadászgép mozgását figyelik a földi irányító központba. A mozgást vízszintes síkbeli koordináta-rendszerben követik nyomon. A gép 1 perc alatt az (5; 15) pontból a (14; 17) pontba került. (A koordináta-rendszerben egy egység egy km-t jelent.) a) Hány km/h a gép sebessége? b) Hol lesz a vadászgép újabb 1,5 perc elteltével, ha nem változik a sebessége? 84) Egy egyenes áthalad a (0; 5) és az (1; 3) ponton. E két pont olyan másodfokú függvény grafikonjára (parabolára) is illeszkedik, amelynek tengelypontja éppen a (0; 5) pont. a) Írja fel az egyenes egyenletét! b) Adja meg a másodfokú függvényt! c) Határozza meg a másodfokú függvény zérushelyeit!

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

6. modul Egyenesen előre!

6. modul Egyenesen előre! MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Elsőfokú egyenletek...

Elsőfokú egyenletek... 1. Hozza egyszerűbb alakra a következő kifejezést: 1967. N 1. Elsőfokú egyenletek... I. sorozat ( 1 a 1 + 1 ) ( 1 : a+1 a 1 1 ). a+1 2. Oldja meg a következő egyenletet: 1981. G 1. 3x 1 2x 6 + 5 2 = 3x+1

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Geometriai alapfogalmak

Geometriai alapfogalmak Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Síkgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria V. Geometria V. DEFINÍCIÓ: (Középponti szög) Ha egy szög csúcsa egy adott kör középpontja, akkor a kör középponti szögének nevezzük. DEFINÍCIÓ: (Kerületi szög) Ha egy szög csúcsa egy adott körvonal pontja,

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes 9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok

Részletesebben

MATEMATIKA KOMPETENCIATERÜLET A

MATEMATIKA KOMPETENCIATERÜLET A MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

Felszín- és térfogatszámítás (emelt szint)

Felszín- és térfogatszámítás (emelt szint) Felszín- és térfogatszámítás (emelt szint) (ESZÉV 2004.minta III./7) Egy négyoldalú gúla alaplapja rombusz. A gúla csúcsa a rombusz középpontja felett van, attól 82 cm távolságra. A rombusz oldalának hossza

Részletesebben

TARTALOMJEGYZÉK ELŐSZÓ... 7 1. GONDOLKOZZ ÉS SZÁMOLJ!... 9 2. HOZZÁRENDELÉS, FÜGGVÉNY... 69

TARTALOMJEGYZÉK ELŐSZÓ... 7 1. GONDOLKOZZ ÉS SZÁMOLJ!... 9 2. HOZZÁRENDELÉS, FÜGGVÉNY... 69 TARTALOMJEGYZÉK ELŐSZÓ............................................................ 7 1. GONDOLKOZZ ÉS SZÁMOLJ!............................. 9 Mit tanultunk a számokról?............................................

Részletesebben

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz

Részletesebben

10. évfolyam, ötödikepochafüzet

10. évfolyam, ötödikepochafüzet 10. évfolyam, ötödikepochafüzet (Hasonlóság, trigonometria) Tulajdonos: ÖTÖDIK EPOCHAFÜZET TARTALOM I. Geometriai transzformációk... 3 I.1. A geometriai transzformációk ismétlése... 3 I.2. A vektorok ismétlése...

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

4. előadás. Vektorok

4. előadás. Vektorok 4. előadás Vektorok Vektorok bevezetése Ha adottak a térben az A és a B pontok, akkor pontosan egy olyan eltolás létezik, amely A-t B- be viszi. Ha φ egy tetszőleges eltolás, akkor ez a tér minden P pontjához

Részletesebben

I. rész. x 100. Melyik a legkisebb egész szám,

I. rész. x 100. Melyik a legkisebb egész szám, Dobos Sándor, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: 005. november 1. feladat A 70-nek 80%-a mely számnak a 70%-a? I. rész. feladat Egy szabályos

Részletesebben

Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger

Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger Egy csodálatos egyenesről (A Simson-egyenes) Bíró Bálint, Eger. feladat Állítsunk merőlegeseket egy húrnégyszög csúcsaiból a csúcsokon át nem menő átlókra. Bizonyítsuk be, hogy a merőlegesek talppontjai

Részletesebben

Mezei Ildikó-Ilona. Analitikus mértan

Mezei Ildikó-Ilona. Analitikus mértan Mezei Ildikó-Ilona Analitikus mértan feladatgyűjtemény Kolozsvár 05 Tartalomjegyzék. Vektoralgebra 3.. Műveletek vektorokkal.................................. 3.. Egyenes vektoriális egyenlete..............................

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot 1991. évi verseny, 1. nap 1. Bizonyítsd be, hogy 1 101 + 1 102 + 1 103 +... + 1 200 < 1 2. 2. Egy bálon 42-en vettek részt. Az első lány elmondta, hogy 7 fiúval táncolt, a második lány 8-cal, a harmadik

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő

Részletesebben

Bolyai János Matematikai Társulat

Bolyai János Matematikai Társulat Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév első (iskolai) forduló haladók II.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I. Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.

Részletesebben

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke? 5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,

Részletesebben

MATEMATIKA tankönyvcsaládunkat

MATEMATIKA tankönyvcsaládunkat Bemutatjuk a NAT 01 és a hozzá kapcsolódó új kerettantervek alapján készült MATEMATIKA tankönyvcsaládunkat 9 10 1 MATEMATIKA A KÖTETEKBEN FELLELHETŐ DIDAKTIKAI ESZKÖZTÁR A SOROZAT KÖTETEI A KÖVETKEZŐ KERETTANTERVEK

Részletesebben

10. évfolyam, negyedik epochafüzet

10. évfolyam, negyedik epochafüzet 10. évfolyam, negyedik epochafüzet (Geometria) Tulajdonos: NEGYEDIK EPOCHAFÜZET TARTALOM I. Síkgeometria... 4 I.1. A háromszög... 4 I.2. Nevezetes négyszögek... 8 I.3. Sokszögek... 14 I.4. Kör és részei...

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA A 10. évfolyam

MATEMATIKA A 10. évfolyam MATEMATIKA A 10. évfolyam 8. modul Hasonlóság és alkalmazásai Készítették: Vidra Gábor, Lénárt István Matematika A 10. évfolyam 8. modul: Hasonlóság és alkalmazásai A modul célja Időkeret Ajánlott korosztály

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam TANULÓI MUNKAFÜZET 2. FÉLÉV A kiadvány KHF/4356-14/2008. engedélyszámon 2008.11.25. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

Kőszegi Irén MATEMATIKA. 9. évfolyam

Kőszegi Irén MATEMATIKA. 9. évfolyam -- Kőszegi Irén MATEMATIKA 9. évfolyam (a b) 2 = a 2 2ab + b 2 2015 1 2 Tartalom 1. HALMAZOK... 5 2. SZÁMHALMAZOK... 8 3. HATVÁNYOK... 12 4. OSZTHATÓSÁG... 14 5. ALGEBRAI KIFEJEZÉSEK... 17 6. FÜGGVÉNYEK...

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. október 18. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI 2011. október 18. EMELT SZINT I. MATEMATIKA ÉRETTSÉGI 0. október 8. EMELT SZINT I. ) Kinga 0. születésnapja óta kap havi zsebpénzt a szüleitől. Az első összeget a 0. születésnapján adták a szülők, és minden hónapban 50 Fttal többet adnak,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I. MATEMATIKA ÉRETTSÉGI 01. május 8. EMELT SZINT I. 1) Egy 011-ben készült statisztikai összehasonlításban az alábbiakat olvashatjuk: Ha New York-ban az átlagfizetést és az átlagos árszínvonalat egyaránt

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2015. október 13. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2015. október 13. 8:00. Az írásbeli vizsga időtartama: 240 perc É RETTSÉGI VIZSGA 2015. október 13. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 13. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT ) A PQRS négyszög csúcsai: MATEMATIKA ÉRETTSÉGI 006. május 9. EMELT SZINT P 3; I., Q ;3, R 6; és S 5; 5 Döntse el, hogy az alábbi három állítás közül melyik igaz és melyik hamis! Tegyen * jelet a táblázat

Részletesebben

Próba érettségi feladatsor 2008. április 11. I. RÉSZ

Próba érettségi feladatsor 2008. április 11. I. RÉSZ Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Geometriai példatár 2.

Geometriai példatár 2. Nyugat-magyarországi Egyetem Geoinformatikai Kara Baboss Csaba Szabó Gábor Geometriai példatár 2 GEM2 modul Metrikus feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi

Részletesebben

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013 Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2013. május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2013. május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

Hraskó András, Surányi László: 11-12. spec.mat szakkör Tartotta: Surányi László. Feladatok

Hraskó András, Surányi László: 11-12. spec.mat szakkör Tartotta: Surányi László. Feladatok Feladatok 1. Színezzük meg a koordinátarendszer rácspontjait két színnel, kékkel és pirossal úgy, hogy minden vízszintes egyenesen csak véges sok kék rácspont legyen és minden függőleges egyenesen csak

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 10. évfolyam TANULÓK KÖNYVE. FÉLÉV A kiadvány KHF/4365-1/008. engedélyszámon 008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

Három dimenziós barlangtérkép elkészítésének matematikai problémái

Három dimenziós barlangtérkép elkészítésének matematikai problémái Szegedi Tudományegyetem Természettudományi és Informatikai Kar Bolyai Intézet Geometria Tanszék Három dimenziós barlangtérkép elkészítésének matematikai problémái Szakdolgozat Írta: Pásztor Péter Matematika

Részletesebben

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.

Részletesebben

Egy irányított szakasz egyértelműen meghatároz egy vektort.

Egy irányított szakasz egyértelműen meghatároz egy vektort. VEKTOROK VEKTOROK FOGALMA Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon, hogy az egyik pont a kezdőpont, a másik pont a végpont, akkor irányított szakaszt kapunk. Egy irányított szakasz

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Gyakorló feladatok vektoralgebrából

Gyakorló feladatok vektoralgebrából Gyakorló feladatok ektoralgebrából Az alábbi feladatokban, hasak nem jelezzük másként, az i, j, k bázist használjk.. a.) Milyen messze annak egymástól az A(,,) és a B(4,-,6) pontok? b.) Számítsa ki az

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 008. október 1. KÖZÉPSZINT I. 1) Adja meg a 4 egyjegyű pozitív osztóinak halmazát! A keresett halmaz: {1 4 6 8}. ) Hányszorosára nő egy cm sugarú kör területe, ha a sugarát háromszorosára

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I. 1) x x MATEMATIKA ÉRETTSÉGI 007. október 5. EMELT SZINT I. a) Oldja meg a valós számok halmazán az alábbi egyenletet! (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egyenletrendszert! lg x

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2006/2007-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2006/2007-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Alapkezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2006/2007-es tanév első (iskolai) forduló haladók I. kategória

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük:

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük: 14. Vektorok I. Elméleti összefoglaló Vektor Az irányított szakaszokat vektoroknak nevezzük: Jelölés: a kezdő és a végpont megadásával: AB ; egy kisbetűvel: v, írásban aláhúzás is szokásos: a; nyomtatásban

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2008. május 6. 2008. május 6. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2008. május 6. 2008. május 6. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc I. rész II. rész a feladat sorszáma maximális pontszám 1. 13 2. 10 3. 14 4. 14 16 16 16 16 elért pontszám maximális pontszám 51 64 8 nem választott feladat MINDÖSSZESEN 115 elért pontszám dátum javító

Részletesebben

Gondolkodjunk a fizika segı tse ge vel!

Gondolkodjunk a fizika segı tse ge vel! SZAKDOLGOZAT Gondolkodjunk a fizika segı tse ge vel! Simon Ju lia Matematika BSc., tana ri szakira ny Te mavezeto : Besenyei A da m adjunktus Alkalmazott Analı zis e s Sza mı ta smatematikai Tansze k Eo

Részletesebben

Lineáris algebra I. Vektorok és szorzataik

Lineáris algebra I. Vektorok és szorzataik Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

3. Geometria. I. Feladatok

3. Geometria. I. Feladatok 3. Geometria I. Feladatok 1. Egy körben adott két, egymásra merőleges átmérő. Az egyik végpontból húzott húrt a másik átmérő 2 és 4 egység hosszú szakaszokra bontja. Mekkora a kör sugara? Kalmár László

Részletesebben

XX. Nemzetközi Magyar Matematika Verseny

XX. Nemzetközi Magyar Matematika Verseny XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0;

= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0; 98 Az egyenes egyenletei. a) A( 0) B(0 6) AB_ - 6i& n( ) x + y = b) x - y =- c) 6x - y = 0 d) 6x + y = e) x + y = f) x + y = a g) x - y = a.. A(a 0) B(0 b) AB_ -a bi n (b a) bx + ay = ab osszuk el a $

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

2. feladat Legyenek 1 k n rögzített egészek. Mennyi az. x 1 x 2...x k +x 2 x 3...x k+1 +...+x n k+1 x n k+2...x n

2. feladat Legyenek 1 k n rögzített egészek. Mennyi az. x 1 x 2...x k +x 2 x 3...x k+1 +...+x n k+1 x n k+2...x n Országos Középiskolai Tanulmányi Verseny, 2012 13-as tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a javító

Részletesebben

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1413 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria 1) Egy gömb alakú labda belső sugara 13 cm. Hány liter levegő van benne? Válaszát indokolja! 2) Egy forgáskúp alapkörének átmérője egyenlő a

Részletesebben

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA Pék Johanna BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA (Matematika tanárszakos hallgatók számára) Tartalomjegyzék Előszó ii 0. Alapismeretek 1 0.1. Térgeometriai alapok............................. 1 0.2. Az ábrázoló

Részletesebben

Matematika POKLICNA MATURA

Matematika POKLICNA MATURA Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika

Részletesebben

Geometria, 11 12. évfolyam

Geometria, 11 12. évfolyam Geometria, 11 1. évfolyam Dobos Sándor, Hraskó ndrás, Kiss Géza és Surányi László 014. június 8. 4 TRTLOMJEGYZÉK Tartalomjegyzék Feladatok 5 1. Geometriai szerkeszthetőség.......................... 5 1.1.

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

MATEMATIKA ÉRETTSÉGI 2009. május 5. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2009. május 5. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 009. május 5. KÖZÉPSZINT I. 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x 1x 4 0 Az egyenlet gyökei 1, 5 és 8. ) Számítsa ki a 1 és 75 számok mértani közepét! A mértani

Részletesebben

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy 1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba

Részletesebben

KÖZÉPISKOLAI MATEMATIKAI ÉS FIZIKAI LAPOK ALAPÍTOTTA: ARANY DÁNIEL 1894-ben

KÖZÉPISKOLAI MATEMATIKAI ÉS FIZIKAI LAPOK ALAPÍTOTTA: ARANY DÁNIEL 1894-ben 2015.2.5 21:19 65. oldal 1. lap KöMaL, 2015. február KÖZÉPISKOLAI MATEMATIKAI ÉS FIZIKAI LAPOK ALAPÍTOTTA: ARANY DÁNIEL 1894-ben 65. évfolyam 2. szám Budapest, 2015. február Megjelenik évente 9 számban,

Részletesebben

Kompetencia alapú matematika oktatás Oláhné Téglási Ilona

Kompetencia alapú matematika oktatás Oláhné Téglási Ilona Kompetencia alapú matematika oktatás Oláhné Téglási Ilona Ítéletalkotás, döntés képességének fejlesztése Rezner-Szabó Zsuzsanna Matematikatanár, MA Eszterházy Károly Főiskola 1. feladat Építs piramist!

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest)

NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest) NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre bontása csak ott lehetséges,

Részletesebben