Feladatok MATEMATIKÁBÓL a 12. évfolyam számára

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Feladatok MATEMATIKÁBÓL a 12. évfolyam számára"

Átírás

1 Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa meg a ] ; 7[\[; 4] halmazművelet eredményét! Az eredményt ábrázolja számegyenesen! 3. Ábrázolja Venn-diagramon a következő halmazokat! { é } { é } { } 4. Ábrázolja a következő halmazokat Venn-diagramon! { N kisebb 0 tól és osztható 6 tal} { N kisebb 30 tól és osztható 4 gyel} 5. Adjon meg olyan A, B és C halmazokat, amelyekre érvényes, hogy az -gyel jelzett terület végtelen sok elemet tartalmaz! A B C 6. Egy középiskolába 700 tanuló jár. Közülük 0% sportol rendszeresen a két iskolai szakosztály közül legalább az egyikben. Az atlétika szakosztályban 36 tanuló sportol rendszeresen, és pontosan olyan diák van, aki az atlétika és a kosárlabda szakosztály munkájában is részt vesz. a) Készítsen halmazábrát az iskola tanulóiról a feladat adatainak feltüntetésével! b) Hányan sportolnak a kosárlabda szakosztályban? 7. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 3 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás nézték meg figyelmesen az ábrákat: Ádám, Tamás 5 eltérést talált, de csak 7 olyan volt, amelyet mindketten észrevettek. a) Hány olyan eltérés volt, amelyet egyikük sem vett észre? Közben Enikő is elkezdte számolni az eltéréseket, de ő sem találta meg az összeset. Mindössze 4 olyan volt, amelyet mind a hárman megtaláltak. Egyeztetve kiderült, hogy az Enikő által bejelöltekből hatot Ádám is, kilencet Tamás is észrevett, és örömmel látták, hogy hárman együtt az összes eltérést megtalálták.

2 b) A feladat szövege alapján töltse ki az alábbi halmazábrát arról, hogy ki hányat talált meg! Ádám Tamás Enikő 8. Egy középiskolába 60 tanuló jár. Az iskola diákbizottsága az iskolanapra három kiadványt jelentetett meg: I. Diákok Hangja II. Iskolaélet III. Miénk a suli! Később felmérték, hogy ezeknek a kiadványoknak milyen volt az olvasottsága az iskola tanulóinak körében. A Diákok Hangját a tanulók 5%-a, az Iskolaéletet 40%-a, a Miénk a suli! c. kiadványt pedig 45%-a olvasta. Az első két kiadványt a tanulók 0%-a, az első és harmadik kiadványt 0%-a, a másodikat és harmadikat 5%-a, mindhármat pedig 5%-a olvasta. a) Hányan olvasták mindhárom kiadványt? b) A halmazábra az egyes kiadványokat elolvasott tanulók létszámát szemlélteti. Diákok Hangja Iskolaélet Miénk a suli! Írja be a halmazábra mindegyik tartományába az oda tartozó tanulók számát!

3 9. Adottak az I 4;7, J 6;, K 3;6, ;5 L intervallumok. a) Ábrázolja számegyenesen, és írja fel intervallum formában a következő halmazokat: L K ; K I ; I \ J ; J \ I ; L I \ K ; K J \ L! b) Legyen a ; H az alaphalmaz. Erre a halmazra írja fel a következő halmazokat intervallum formában és ábrázolja őket számegyenesen is! L ; J ; I J ; I K 0. A Visító Vízilovak diákzenekar saját számaiban gitár vagy dob szólal meg. 3 olyan szám van, amelyben gitároznak, 0-ben dobolnak és 8 olyan szám van, amelyben a gitárt dob kíséri. Hány saját száma van a zenekarnak?. Hányadik hatványra kell emelni a 4 4 -t, hogy 8 8 -t kapjunk?. Mennyi idő alatt tesz meg a fény mm-t, ha a fény sebessége m/s? 3. A következő állításokról döntse el, hogy melyik igaz és melyik hamis! Állítását indokolja magyarázattal, vagy példával! a) A pozitív számok minden egész kitevőjű hatványa pozitív. b) Az egész számok minden pozitív egész kitevőjű hatványa pozitív. c) A negatív egész számoknak van olyan negatív egész kitevőjű hatványa, amely pozitív. d) A pozitív egész számok egész kitevőjű hatványai is pozitív egészek. e) Az egész számok negatív egész kitevőjű hatványai nem egész számok. 4. Van-e olyan p prímszám, hogy a) p+5 is prímszám? b) p+9 is prímszám? 5. Milyen számjegyek kerülhetnek az x és y helyére, ha a) 00 35xy b) 6 35x c) 4 4x5y 6. Hány nullára végződik a ? 7. Egy baktériumtenyészetben a baktériumok száma óránként háromszorosára növekszik. a) Ha az időmérés kezdetén egyetlen baktérium van a tenyészetben, mennyi lesz a baktériumok száma az ötödik óra végén? b) Hányszorosára növekszik a baktériumok száma a tizedik óra kezdetétől a tizenharmadik óra végéig? 8. Egy 50-től kisebb pozitív egész szám -vel, 3-mal és 5-tel osztva maradékot ad. Melyik ez a szám? 9. Melyik az a legkisebb pozitív egész szám, amellyel a 600-at elosztva hányadosként négyzetszámot kapunk? 0. Egy téglalap kerülete 74 cm. A téglalap minden oldalára kifelé négyzeteket rajzolunk. A négy négyzet területének összege 64 cm. Mekkora a téglalap területe?

4 . Alakítsa úgy az alábbi kifejezéseket, hogy teljes négyzet jelenjen meg a kapott kifejezésekben! a) x x 3 b) x 8x+0 c) x +x+50 d) x 6x+3. Kiemeléssel alakítsa szorzattá az alábbi kifejezéseket! a) 5a 3 b 5a b 3 +0a b b) 7a 3 b 5 +7a b 6 34ab 4 c) 6a 4 b 3 +4a b 4 40a 4 b 4 3. Csoportosítással alakítsuk szorzattá az alábbi kifejezéseket! a) ab+3b a 6 b) ax+bx+a+b c) 0bx +a 4x 5ab 4. A nevezetes azonosságok felhasználásával alakítsuk szorzattá az alábbi kifejezéseket! a) 6x 4 b) 6x +x+6 c) 36a 84a Zsebszámológép használata nélkül, nevezetes azonosságok alkalmazásával számítsa ki a következő műveletek eredményét! a) b) c) Egyszerűsítsük a következő törteket! a) 0x 5x x 5x 4x 4x b) 4x 6x x 0 c) 3x x 0 7. Ábrázolja és jellemezze a következő függvényeket! (Értelmezési tartomány, értékkészlet, zérus hely, korlátosság, menete, szélsőérték, paritás, aszimptota.) a) f x x 3 b) g x x c) h x x

5 8. Ábrázolja és jellemezze a következő függvényeket! (Értelmezési tartomány, értékkészlet, zérus hely, korlátosság, menete, szélsőérték, paritás, aszimptota.) a) f x x b) g x x c) h x x 9. Ábrázolja és jellemezze a következő függvényeket! (Értelmezési tartomány, értékkészlet, zérus hely, korlátosság, menete, szélsőérték, paritás, aszimptota.) a) f x x 4 b) g x x 4 c) h x x Ábrázolja és jellemezze a következő függvényeket! (Értelmezési tartomány, értékkészlet, zérus hely, korlátosság, menete, szélsőérték, paritás, aszimptota.) a) f x x b) g x x x c) h x x 3. Oldja meg grafikusan az alábbi egyenleteket! a) x x 4 b) x x c) x x 3 3. Oldjuk meg algebrai úton az alábbi egyenleteket! a) x x x 3x 6 0 b) 5x 3 4x x 8 5x 3 0 c) 4x x 5x Oldjuk meg algebrai úton az alábbi egyenleteket! a) 3 x x 3x 3 b) x 7 x 4 3 c) x 3 x x Oldjuk meg algebrai úton az alábbi egyenleteket! a) x x 3 b) x x 4 x 6 c) x Az apa órás munkával vágja fel a tűzifát, ez a munka a fiának 6 órát vesz igénybe. Mennyi idő alatt végeznek együtt a favágással?

6 36. Egy anya 9 éves volt, amikor a fia született. Mostantól számítva év múlva az életkora évvel lesz kevesebb, mint a fia akkori életkorának kétszerese. Hány évesek most? 37. Ha kilenc kályhában öt és fél nap alatt tizenkét köbméter bükkfa ég el, mennyi nap alatt ég el tizenkét kályhában kilenc köbméter bükkfa? (Karinthy Frigyes: Tanítom a kisfiamat) 38. Egy szemüvegeket forgalmazó cég reklámja szerint a vásárló annyi százalékkal csökkentheti a megvásárolt szemüvegkeret árát, ahány éves. a) Hány százalékkal csökkentheti a kész szemüveg árát egy 7 éves vásárló, ha a kiválasztott lencse Ft-ba, a keret pedig 5000 Ft-ba kerül? b) Hány évesnek kell lennie annak a vásárlónak, aki a teljes szemüveg árát 7%- kal szeretné csökkenteni egy ugyanolyan szemüveg vásárlása esetén, mint az előző? c) Milyen értékű keret vásárlása esetén érhetné el, egy 7 éves vásárló, hogy szemüvegének ára a teljes ár 0 %-ával csökkenjen, ha Ft-os lencsére van szüksége? 39. Egy osztály tanulóinak hatoda kollégista, fele helyben lakik a szüleinél, 7 fiú és 5 lány pedig bejáró. Tudjuk még azt is, hogy a lányok negyede bejáró. Hány fiú és hány lány van az osztályban? 40. Egy vállalat két üzeme 3:7 arányban részesedik a termelésből. Hány százalékkal növekszik a vállalat termelése, ha az első üzem %-kal, a második pedig 0 %-kal növeli a teljesítményét? 4. Oldjuk meg az egyenlő együtthatók módszerével az alábbi egyenletrendszereket: a) + 5 = = = 6 b) 4 = 5 c) + 5 = = 5 + = 4 d) 3 6 = 6 4. Réka nagyon szereti a virágokat. Elhatározza, hogy virágpalántákat fog vásárolni az erkélyládákba. A vásárlásra 0000 Ft-ot szán. A palánták árát feltérképezve, latolgatja, hogy melyikből mennyit vegyen. Ha muskátli és 5 petúniát vesz, akkor 60 Ft-ja marad. Ha muskátlit és 4 petúnia palántát vesz, akkor még 80 Ft-tal ki kell egészítenie a pénzét. Mennyibe kerülnek a muskátli illetve a petúnia palánták? 43. A laboratóriumban kétféle sóoldat áll rendelkezésünkre. Ha az elsőből 4 cm 3 -t és a másodikból cm 3 -t összekeverünk, akkor 50%-os oldatot kapunk. Ha az elsőből cm 3 -t és a másodikból 4 cm 3 -t keverünk össze, akkor 30%-os lesz az oldat. Hány százalékosak az eredeti oldatok? 44. A baromfiudvarban tyúkok, nyulak és kacsák élnek. Az állatoknak összesen 38 feje és 9 lába van. Melyik fajtából mennyi van, ha tudjuk, hogy a kacsák és nyulak számának aránya 3:?

7 45. Az alábbi állításokról döntsük el, hogy melyik igaz és melyik hamis! a) Van olyan háromszög, amelynek pontosan két szimmetriatengelye van. b) Van olyan háromszög, amelynek háromnál több szimmetriatengelye van. c) Van olyan síkidom, amelynek végtelen sok szimmetriatengelye van. d) Minden rombusznak két szimmetriatengelye van. e) Van olyan konkáv négyszög, amely tengelyesen szimmetrikus. f) Ha egy háromszögnek van két egyenlő oldala, akkor tengelyesen szimmetrikus. g) Ha egy háromszögnek van két egyenlő szöge, akkor tengelyesen szimmetrikus. h) Ha egy négyszögnek van két egyenlő oldala, akkor tengelyesen szimmetrikus. i) Ha egy négyszög tengelyesen szimmetrikus, akkor a négyszögnek van két egyenlő oldala. j) Ha egy paralelogramma tengelyesen szimmetrikus, akkor rombusz. k) Ha egy sokszög tengelyesen szimmetrikus, akkor szabályos. l) Ha egy sokszög szabályos, akkor tengelyesen szimmetrikus. m) Van olyan tengelyesen szimmetrikus négyszög, amelynek szimmetriatengelye a négyszögnek pontosan egy csúcsán megy át. n) A szabályos sokszög bármely szimmetriatengelye tartalmazza a sokszög legalább egy csúcsát. o) Van olyan szabályos sokszög, amelynek minden szimmetriatengelye a sokszög pontosan egy csúcsát tartalmazza. 46. Szerkesszük meg a rombuszt, ha adott egyik átlójának hossza és az átló valamelyik végpontjában található szöge! (Adatok: átló hossza: 50 cm; szög: 30 ) 47. Adott a Descartes-féle derékszögű koordináta-rendszerben az háromszög, amelynek csúcsai (3; ), ( ; 5) é ( 4; ). Tükrözzük ezt a háromszöget a megadott pontokra, és írjuk fel az így kapott háromszög csúcsainak koordinátáit! a) Az adott pont az origó. b) Az adott pont a (0; 4) pont. c) Az adott pont a ( ; ) pont. 48. Az téglalap alakú biliárdasztalon két golyó található: P és Q. Szerkesszük meg, hogy milyen irányba kell ellökni a P golyót, ha azt akarjuk, hogy az ellökött golyó előbb az a), majd az oldalt érintve eltalálja a golyót! b), majd, és végül a oldalról visszapattanva eltalálja a golyót! D C Q P A B

8 49. András és Béla egy szabályos hatszög alakú asztalon a következő játékot játssza: felváltva helyeznek el az asztalon -os érméket úgy, hogy azok egymást nem fedhetik, és a lerakott érméknek teljes terjedelmükben az asztalon kell lenniük. Az veszít, aki nem tud már a szabályoknak megfelelően érmét elhelyezni az asztalon. A játékot András kezdi. Nyerhet-e András ebben a játékban, ha ügyesen játszik? 50. Számítsuk ki, hogy a háromszög oldalai mekkora szögben látszódnak a háromszög magasságpontjából, ha a háromszög két szöge 60 és 80! 5. Egy trapéz szárait összekötő középvonal hossza 5 cm. A trapéz két alapjának hossza úgy aránylik egymáshoz, mint :3. Számítsuk ki a trapéz alapjainak hosszát! 5. Forgassuk el az négyzetet az csúcs körül a) kal; b) 440 -kal! 53. Adott az és a pont. Szerkesszünk olyan pontot a síkban, amely körül +90 -kal elforgatva az pontot, a pontot kapjuk! 54. Az derékszögű háromszögben a csúcsnál derékszög van. =8 cm =5 cm. A háromszög belsejében felveszünk egy pontot, amelyre az, és az háromszögek egyenlő területűek. a) Határozzuk meg az pont távolságát a befogóktól. b) Határozzuk meg az pont távolságát a derékszögnél lévő csúcstól! 55. Egy thai-boksz mérkőzés küzdőtere 8 m oldalú négyzet. Hány méterre van a küzdőtér négy sarkától az a versenyző, aki a négyzet egyik átlójának egyik harmadoló pontjában áll? 56. Két különböző sugarú kör metszi egymást. Az egyik metszésponton keresztül szerkesszünk olyan egyenest, amelynek a körökbe eső részei, mint húrok egyenlő hosszúak! 57. Egy ABC egyenlő szárú háromszög alapja 60 cm, magassága 40 cm. Az AB alap F felezőpontjából bocsássunk merőlegeseket a szárakra, ezek talppontjai legyenek D és E pontok. Mekkora a CEFD négyszög kerülete és területe? 58. Egy konvex négyszög átlói merőlegesek egymásra. Mekkora a négyszög területe, ha átlóinak hossza e és f? 59. Mekkorák a derékszögű háromszög hegyesszögei, ha az ábrán látható módon három egyenlőszárú háromszögre tudjuk felbontani? 60. Egy település központjában két, egymást 45 -ban metsző egyenes út találkozik. A két utat a településen kívül, szintén egy egyenes útszakasszal kívánják összekötni. Úgy akarják megtervezni ezt az útszakaszt, hogy ennek kereszteződései a meglévő utakkal ugyanakkora távolságra legyenek a település központjától. A megépítendő útra elkülönített pénz 5 km hosszúságú út megépítését teszi lehetővé. Hová kell tervezni az új út megépítését?

Érettségi feladatok: Halmazok, logika 1/5

Érettségi feladatok: Halmazok, logika 1/5 Érettségi feladatok: Halmazok, logika 1/5 I. Halmazműveletek 2006. február/12. Az A és a B halmazokról a következőket tudjuk: A B = {1; 2}, A U B = {1; 2; 3; 4; 5; 6; 7}, A \ B = {5; 7}. Adja meg az A

Részletesebben

EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK

EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK X. Témakör: feladatok 1 Huszk@ Jenő X.TÉMAKÖR EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK Téma Egyenletek, egyenlőtlenségek grafikus megoldása Egyszerűbb modellalkotást igénylő, elsőfokú egyenletre

Részletesebben

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.

Részletesebben

Szakközépiskola 9. évfolyam. I/1 gyakorló feladatsor

Szakközépiskola 9. évfolyam. I/1 gyakorló feladatsor Szakközépiskola 9. évfolyam I/1 gyakorló feladatsor 1. Adott az A={1,,3,4,5,6} és a B={1,3,5,7,9} halmaz. Adjuk meg elemeinek felsorolásával az AUB és az A\B halmazokat!. Számítsuk ki a 40 és 560 legnagyobb

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 008. október 1. KÖZÉPSZINT I. 1) Adja meg a 4 egyjegyű pozitív osztóinak halmazát! A keresett halmaz: {1 4 6 8}. ) Hányszorosára nő egy cm sugarú kör területe, ha a sugarát háromszorosára

Részletesebben

MATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára

MATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára MEGOLDÓKULCS MATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára 2012. december 17. 10:00 óra NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tollal dolgozz! Zsebszámológépet nem asználatsz. A feladatokat tetszés szerinti

Részletesebben

Geometriai alapfogalmak

Geometriai alapfogalmak Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.

Részletesebben

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot 1991. évi verseny, 1. nap 1. Bizonyítsd be, hogy 1 101 + 1 102 + 1 103 +... + 1 200 < 1 2. 2. Egy bálon 42-en vettek részt. Az első lány elmondta, hogy 7 fiúval táncolt, a második lány 8-cal, a harmadik

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket!

4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket! ) Alakítsd szorzattá a következő kifejezéseket! 4 c) d) e) f) 9k + 6k l + l = ay + 7ay + 54a = 4 k l = b 6bc + 9c 4 + 4y + y 4 4b 9a évfolyam javítóvizsgára ) Végezd el az alábbi műveleteket és hozd a

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT Matematika Próbaérettségi Megoldókulcs 016. január 16. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Egyszerűsítse a következő kifejezést: Válaszát

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

TARTALOMJEGYZÉK ELŐSZÓ... 7 1. GONDOLKOZZ ÉS SZÁMOLJ!... 9 2. HOZZÁRENDELÉS, FÜGGVÉNY... 69

TARTALOMJEGYZÉK ELŐSZÓ... 7 1. GONDOLKOZZ ÉS SZÁMOLJ!... 9 2. HOZZÁRENDELÉS, FÜGGVÉNY... 69 TARTALOMJEGYZÉK ELŐSZÓ............................................................ 7 1. GONDOLKOZZ ÉS SZÁMOLJ!............................. 9 Mit tanultunk a számokról?............................................

Részletesebben

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve! (9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora

Részletesebben

ö ö ö ö ő ö ö ő ö ő ő ő ö ö ő ő ö ö ő ő ű ű ő ő ö ű ő ö ö ő ö ő ö ú ő ö ű ű ő ő ö ű ő ö ö ű ű ő ö ű ő ö ö ű ű ű ű ű ű ű ö ű ő É ö ú ö ö ö ö Ő ö ö ö ö ő ö ö ő ö ö ő ö ö ő ű ö ö ö ö ö ö ő Ö ő ö ö ő ö ő ö

Részletesebben

Próba érettségi feladatsor 2008. április 11. I. RÉSZ

Próba érettségi feladatsor 2008. április 11. I. RÉSZ Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Valószínűségszámítás A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

I. rész. x 100. Melyik a legkisebb egész szám,

I. rész. x 100. Melyik a legkisebb egész szám, Dobos Sándor, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: 005. november 1. feladat A 70-nek 80%-a mely számnak a 70%-a? I. rész. feladat Egy szabályos

Részletesebben

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin

Részletesebben

HALMAZOK TULAJDONSÁGAI,

HALMAZOK TULAJDONSÁGAI, Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI,. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A:= { a csoport tanulói b) B:= { Magyarország városai ma c) C:=

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

10. évfolyam, negyedik epochafüzet

10. évfolyam, negyedik epochafüzet 10. évfolyam, negyedik epochafüzet (Geometria) Tulajdonos: NEGYEDIK EPOCHAFÜZET TARTALOM I. Síkgeometria... 4 I.1. A háromszög... 4 I.2. Nevezetes négyszögek... 8 I.3. Sokszögek... 14 I.4. Kör és részei...

Részletesebben

Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek

Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek Elsôfokú egyváltozós egyenletek 6 Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek. Elsôfokú egyváltozós egyenletek 000. Érdemes egyes tagokat, illetve tényezôket alkalmasan csoportosítani, valamint

Részletesebben

13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert!

13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! A 13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! x y 600 x 10 y 5 600 12 pont írásbeli vizsga, II. összetev 4 / 20 2008. október 21. 14. a) Fogalmazza meg, hogy az f : R R, f x

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

Kőszegi Irén MATEMATIKA. 9. évfolyam

Kőszegi Irén MATEMATIKA. 9. évfolyam -- Kőszegi Irén MATEMATIKA 9. évfolyam (a b) 2 = a 2 2ab + b 2 2015 1 2 Tartalom 1. HALMAZOK... 5 2. SZÁMHALMAZOK... 8 3. HATVÁNYOK... 12 4. OSZTHATÓSÁG... 14 5. ALGEBRAI KIFEJEZÉSEK... 17 6. FÜGGVÉNYEK...

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

6. modul Egyenesen előre!

6. modul Egyenesen előre! MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez 1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak

Részletesebben

Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra

Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató

Részletesebben

Számtani- és mértani sorozatos feladatok (középszint)

Számtani- és mértani sorozatos feladatok (középszint) Számtani- és mértani sorozatos feladatok (középszint) (KSZÉV Minta (2) 2004.05/II/16) a) Egy számtani sorozat első tagja 9, különbsége pedig 4. Adja meg e számtani sorozat első 5 tagjának az összegét!

Részletesebben

PÉNZÜGYI SZÁMÍTÁSOK. I. Kamatos kamat számítása

PÉNZÜGYI SZÁMÍTÁSOK. I. Kamatos kamat számítása PÉNZÜGYI SZÁMÍTÁSOK I. Kamatos kamat számítása Kamat: a kölcsönök után az adós által időarányosan fizetendő pénzösszeg. Kamatláb: 100 pénzegység egy meghatározott időre, a kamatidőre vonatkozó kamata.

Részletesebben

MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY

MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY Heti 4 óra Évi 148 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató 1 / 5 I. Az általános iskolai ismeretek ismétlése 1. óra: Műveletek

Részletesebben

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Anna, Béla és Csaba összesen 36 diót talált a kertben. Annának és Bélának együtt 27, Bélának és Csabának együtt 19 diója van. Mennyi diót találtak külön-külön a gyerekek? A 36 dióból 27 Annáé

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy 1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0814 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA KOMPETENCIATERÜLET A

MATEMATIKA KOMPETENCIATERÜLET A MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest)

NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest) NÉGYOSZTÁLYOS FELVÉTELI A Gyakorló feladatsor I. megoldásai Számadó László (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre bontása csak ott lehetséges,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2009. május 5. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2009. május 5. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 009. május 5. KÖZÉPSZINT I. 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x 1x 4 0 Az egyenlet gyökei 1, 5 és 8. ) Számítsa ki a 1 és 75 számok mértani közepét! A mértani

Részletesebben

4. modul Poliéderek felszíne, térfogata

4. modul Poliéderek felszíne, térfogata Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott

Részletesebben

Á Á É É É ö É Ó ú Á ú Á Á Á Á ö Á ő ű ú ö ö ú ű ú É ő ö ú ú ű ö ű ő Ú Ú ú ő ö ö ő ö ö Á ö Á ö ú ű ö ö ö ö ö ö ö ö ö ő ö ö ö ö ő ö Á ö ő ö ö ő ú ú ö ö ő ö ö ö ö ú ö ú ö ő ú ö ö ö ö ö ú ö ú ú ö Ú ő ű ő ö

Részletesebben

A lineáris programozás 1 A geometriai megoldás

A lineáris programozás 1 A geometriai megoldás A lineáris programozás A geometriai megoldás Készítette: Dr. Ábrahám István A döntési, gazdasági problémák optimalizálásának jelentős részét lineáris programozással oldjuk meg. A módszer lényege: Az adott

Részletesebben

Matematika POKLICNA MATURA

Matematika POKLICNA MATURA Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT ) A PQRS négyszög csúcsai: MATEMATIKA ÉRETTSÉGI 006. május 9. EMELT SZINT P 3; I., Q ;3, R 6; és S 5; 5 Döntse el, hogy az alábbi három állítás közül melyik igaz és melyik hamis! Tegyen * jelet a táblázat

Részletesebben

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik 1991. évi verseny, 1. nap 1. Számold össze, hány pozitív osztója van 16 200-nak! 2. Bontsd fel a 60-at két szám összegére úgy, hogy az egyik szám hetede egyenlő legyen a másik szám nyolcadával! 3. Van

Részletesebben

É É Á É É ó ó ö ű ó ó ó ű ó ö ö ű ó ó ő ö ű ó ó ű ú ö ű ó ó ó ó ö ű ó ó ó ö ű ő ő ő ó ö ű ú ö ó ó ó ú ő ő ü ó ó ó ö ű ű ö ő ó ú ó ö ü ö ű ó ó ö ő ö ó ö ö ő ő ö ó ő ö ő ó ő ó ő ú ú ö ű ó ú ö ő ű ö ó ó ó

Részletesebben

ő Á ú ő ú ő ú ú ú ő ő ő ű ú ű ő ő ú ő ő ő ú Á ő ú ő ő ú ő ő É É ú ő ő Ú ő É ú ú ő ő ő ő ő É ő ő ú É ű ű ű ú ő ő É ő ű ő ő É ú É ú ő ő ű ú ű ő ő ú ú Ú ú Ü ő ű ú ő ű ő ő ú ő ő ő ő ú ő ő ú ú ő ú ő ú ű ű É

Részletesebben

ó á á á á á ó á ó Á ö é á ó Ú á á á ó Á ö é á á á ó ó ó á á ó á ó Ú á é á ó ü é ü é á á á á ó é é á ú á ó á é ó á ó Ó é á ó é á ó ó á Ó Ö é á ó á ó é é é ü é ó á Ó é é é ó ó ó á ó é é ó á ü ó é á ó é é

Részletesebben

Á Ó Ö Á É É É É Ő ű Á Ó ű Ö ű ű ű Ó ű Ö Ú Ö Ú ű ű ű ű Ö ű ű ű ű ű Ü Á ű ű ű ű ű ű ű ű Ö Ó ű Ö ű ű Ü ű ű ű Ö ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű Á Á ű É ű ű ű ű ű Ö ű ű ű ű ű Ó Ü Á É Ű ű ű ű ű Á ű ű ű Á É ű Ú Ó

Részletesebben

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,

Részletesebben

É ú ú ú ú ú ú ú ú ú É É ú ű ú ű ú Ú Ü ú ú ú ú ű ú ú ű ú ú ú ú ú ú ű ú ú ű Ü ű ű ú É É ű É ű É ú ú ú ű É ú ú ú ú ú ú ú ú ú ú ú ű ú ú ű Á ú É ű ű ú ú ú ú ű ű ű ú ű ú ú ú ú ú ú ű ú ú Ú ű ú ű ű ú ú ű Ü ú ű

Részletesebben

Fazekas nyílt verseny matematikából 8. osztály, speciális kategória

Fazekas nyílt verseny matematikából 8. osztály, speciális kategória Fazekas nyílt verseny matematikából 8. osztály, speciális kategória 2005. január 12. feladatok kidolgozására két óra áll rendelkezésre. Számológép nem használható. példák tetszőleges sorrendben megoldhatók.

Részletesebben

ű É ű Á Ü É É ű ű Ű ÓÓ Ü É Ü Ú Ú ű Ú Ö Ö Ü ű ű Ű Ú Ö Ü Ö Ú Ó Ó Á É Ú Ű Ú Ú Ú Ú Ú ű Ú Ű Ú ű ű Ú ű ű Ú Ú É Á Ú Ú É É ű ű ű Ú ű ű Ú ű Ú Ó É Ű Ó ű Ú ű ű ű Á ű ű Ú ű ű É ű ű ű ű Ó Ú Á Ú ű Á ű Á Ú Ó ű ű Á ű

Részletesebben

Á Á ó ő ő ó Ő ó ó ó Ó Ó Ó ó Ó Ó Ó Ó ó ő ó ó Ő Ó Ó Ó Ó ó Ó Ó Ó Á Ó ó Ó ó Ó Ó Ó ó Ó ó Ó Ó Ó Ó Ó Ó ó Ó ó Ó Ó Ó Ó Ó Ó ó Á Ó ó ó Ő ó ó ó Ó ó Ú ó Ó Ó ó Ó Ó Ő ó Ó ó ó Ó ó Ó Ó Ó ó ó ó Ó ó ó ó Ó Ú Ó Ó ó ó ő ö Ó

Részletesebben

É Ó Ö Á ú Á ú ú ú ú Ó ú ú ú ú ű ú Á ÁÉ Á ű ű ú ú É ú É É ű ű É ű Ú ű Ü ú ű ú Ö Ú ű Ö Ö ú Ő ú ű Ö ú ú Ú Ó ú ú ű ú Ö Ú Ü Á Á Á É Ü ű Ü Ö É Á Ü Ó É Ö É ű Ü Á Á Á ú Ü Ö Á É Ü Á ú Ö Ö ú Ö Á ú É É Ö É Á Á Á

Részletesebben

Ú ő É ő ű ő ű Á É ő Ó Á Á ő ű ű Á ű Ú É ő É Ú Ö ő ő Á ő ő Á É É Á ő ő ő ő ő ő Á Ó Á É Ú Á Á Á ő Á Á Á Á Á É ő ő ű ő ő É ő ő Á Á Ó Ü Á É Á ő Á ő ő ő Á É Ü ő Á Á ő Ö ő ő Á É ő ő ű ő Ö Á Á Ú Á Á Á É É ő ű

Részletesebben

É ú ú Á É ú É ű Á Ú ú ú ú ű ú É ű ú ú ű ú ú ű ú ú ű ú ú ú ú ú ú ű ű ű ú Á Á ű É É ú ú ú ú ú ú ű Ü ű ű ű Ö Ú ú Ú ú ű ú ú ű ú ű ű ú ú Ö ű ú ú ú ű ű ű ű ú ú É É ű ű É É ú ú ű Á ú ú ú É Ú ű ú ú ű ú ú ú Ü ú

Részletesebben

ö É ö ö ő ő ö ó ó ú ő ó ö ö ő ő ö ö ó ű ű ó ú ó ő ő ö ű ó ő ö ö ű ű ó ú ő ó ó ö ű ó ő ö ö ű ű ó ő ő ö Ü Ü ö ű ó ő ö ö ű ű ó ő ó Ü Ü ó ő ő ű ö ö ű ű ű ű ő ö ó ű ó ö ű ö ó ö ó ö ő ó ö ö ő ó ö ö ö ű Ö ö ö

Részletesebben

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =? 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

É É É É É Ö Á Á É Ő ű ű ű Ü ű ű ű Ú Á ű Ö ű Ú Á Ú ű Ó Ú Ú Ú Ú ű Ú Ú ű É ű ű É É É ű É É Ü ű ű É Á ű Á Á Ü Á Ü É Ú Á Ú Ó Ü Ü Ú ű ű Ú Ü Ü ű Ú É Ö ű ű Ü Ó Á Ö Ö ű Ö É É ű ű É ű ű ű Ú ű Ö É Ó ű Ú Ú Ú É Ú Ú

Részletesebben

Á ő ő ő ö ö Ó ő ú ö Á É É ü Ö ő ö ő ő ö Ó ö Ú Ó ő ő ő ö Ö Ú Ú ő Ö ú ö ő ú ú ú Ó ö Ó Ó Ú Ú Ú Ú Ö Ó ő ő ú ő ű ü ő ö ö ö ő ü Ó Ó ő ő Ó ö Ó Ó ü ő ő Ó ő ö ő ő Ó ő ő ő Ú ö ő Ó Ó ő Ó ő Ö ő ö ő ü ü ű ö ö ö Ó ö

Részletesebben

Ú ű Ú ű ű ű Á ű Ö Á ű ű ű ű ű ű Ö ű Á ű ű Á ű ű ű ű ű Á ű Ú Ü Ü ű ű Ü Ü Ö ű ű ű ű ű Ú Ü ű ű ű ű ű Ú Ó ű ű ű Á É ű ű ű Ű ű ű ű É Á Á Á Á Ó Ó ű Ü Ú Ú Ö Ú ű Ö Ő Ú Ú ű Ó Ő Ú Ö Ö Ő Ű É ű Ó É Á Á ű ű Ú Á É É

Részletesebben

Ó Ú Ö Ú É Ö É Á ű ű ű ű ű ű ű ű Á ű Á Ú ű Ü ű ű Ü ű Ó ű ű Ú ű Ö Ö ű ű ű ű Á É Ó ű ű Ü Ö ű ű Ü Ú É ű ű ű ű É Ü Ü Ü É Ü Ü Ü Ü ű ű ű ű ű ű ű Ú É ű ű ű ű É Ü ű ű ű ű ű ű ű ű ű Ú ű Ö ű Ü ű ű ű ű É ű Ó ű ű É

Részletesebben

Á É ö ö ő ő ő Ú Ü ö ö ő ő ö ú ő ö ő ö ú ü ö Ü Ó ö ö ö ö ö ő ö ú ú ö ü Ü ö ö ö ö ö ö ő ö ö ő ö ü ő ö ő ü Ü Ó Ó ö ö ő Ü Ó ö ő ő ő ő Á ő ő Ü ő ö ő ő ő ő ő ő ő ő ő ő ő ő ő É ü É ö ö É Ó ő ő ő ő Ü É ő Ó ő ő

Részletesebben

Á Á é é ő ö ó é é é é é ő é é é ő ő ő é ü ő ó ó ó ö ö é é ő é ő é ő ö é é é é é é é ő é ű ő é é é é é ó ő ö é ú ö é ö é é ö ő ó ő ó é ő é ő ő é ő ó ó é ő ő é é ü ő é ó é ö ő é ő é ó ő é é ő é é ő é é é

Részletesebben

Á ú ő ú Ú ü Ö ú Á Ó ú ü ő ő ő ú Ö ú É ú ű ü É ü ú ő ő ő ú ú ü ü Ö Ö ú ő ő ű É ü ü ü ú ő ő ú ü ü ő ő ő ú ü ő Ö ű ő ü ő ü ő ő Á É ő ü ő ü ú ú ő ü ü ü ő ü ő Ó ü ü ü ü ú É ő ü ü ü ú ő ü Ó ü ü ő ú ő ő ü ü ú

Részletesebben

ú ú ű ú ú Ú É É Ó ű ű ü ú ü ű ü ú ú ü ü ü ú ü ú ü ü ü ü ú ű ü ü ú ű ü ü ü Á ű ű ú ű ü ü ú ű ü ű ú ü ü ü ú ű ü ü ü ű ú ü ú ü ü ü ű ű ú ü ú ű Ö ú ü ü ü ü ü ú ű Ö ü Ú É ú ú ü ü ü ü ü ü ü ü ü ú ü ú ü ú ü ü

Részletesebben

ö Á É É ö ö Ö ö ű ö ő ö ő ö ú ü ö Ü ö ö ö ö ü ö ú ö ő ü ö Ú ü ü ö Ü ö ö ö ö ö ö ö ö ö ö ö ö ü ő ö ú ö ö ü ö ö ö ö ő ő ö ű ö ö ű ö ö ő Ü ö Ü ö ü Ü ö ö ö ú Ó ö ö ö ö ö ő ö ö ú ö ő ö ö ő ő ö ö ö ü ö ö É ö

Részletesebben

ö ű ö ö ö ö ü ö ö ü ö ö ö ö ö ö ű ö ü ú ö ö ö ö ű ü ü Ö ü ö ű ű ű ö ú Ü Á Á Á ö ö ú ü ú Ü ö ö ö ö ö ú Ü Ü ö ö Ü ö ü ö ú ö ü ö ü ü Ü ü ű ö ü ö Ü Ú Ü ü Ü ü Ü ú Ü ö ö ü ö ö ű ű ü ö ű Á ö ü ö ö ú ö Ü Á Ü Ő

Részletesebben

Á ű Ú ÚÉ Á Á Ü Ü ű Ü Ü Ü Ú Ü Ü Ü É Ú Ü ű Ü Ü Ö ű ű Ü Ü Ü Ü Ü ű ű ű Ú ű ű Ú ű ű ű ű Á Ú É Á ű Á É Á Ú ű Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á ű Á Á Á Á Á É ű Ü ű Á ű ű ű Á ű Ú Ó Á Á ű Ú ű Ü ű Ü Á Á ű ű É

Részletesebben

ő ő ő ü ő ő ő ő ő ő ő ű Ö ő Ö ő ő ő ő ő ő ő ő ü Ö ő ő ü É ő ő ü ő Ú üü ő ő Á Á É É Á ü Ú ő Ó ű ő É ő ű ő ő ő ő ő ű É Ö ű Ú Ö É ő ű ü ő ü É É É É É ő É ü ű ő ü űú ű ü ű Ú É ü ű É É É ő Ó ő ű Á ÚÚ ő ő É

Részletesebben

É Ú ú Á Ú Ú Á Á Ú ú ú ú Ú ú Á Ú Ü Ü ű ű ú ú ú ú Ü ú Ü Ú ú ű ú É ú Ü ű ú ú Ú É É Á Á Á Á Ü ú Á Á É Ú É ú Á Ü É Ü Ü Ü Ü Á Á ű ú ű ú Ü ű Á ú ű ű ú ű ű ű ú ű ű ű ű ú Ü É ű ú ű Ü ű ú ű Ü Ü Ü ú Ú ú ú ú ű ú ű

Részletesebben

ö ő ö Ö ö ó ő ő ő ú ö ö ő ó ü ö ö ő ő ő ő ő ö ő ö ő ó ő ö ő ő ő ú ó ő ö ó ö ő ó ö ő ő ő ó ő ő ő ő ö ö ő ö ő ó ú ö ö ő ő ó ő ő ú ő ü ő ó ö ö ő ő ő ü ö ö ő ó ó ö ő ő ö ő ö ö ö ö ő ő ő ü ű ö ö ő ő ó ö ö ö

Részletesebben

ú ő ü ő ő ü ő ű ű ő ü ü ő ő Ü Á ő ü ő ő ü ő ő ü ő ú ő ő ő ü ő ő ő ő ő ő ü ő ü ő ő ű ű ő ü ő ő ő ü ő ü ő ű ő ü ő ő ő ő ü ü ü ő ő ű ú ü ü ő ő ő ő ü ü ő ő ő ü ő ő ő ő ű ő ú ő ő ü ő ő ü ő ő ő ű ő ő ű ü ü ő

Részletesebben

Ó Á É Ő É ő ő ő ó ó ó ó ó ő Ö ó ő ó ü ő ó ő ű ó ó ó ő ő ő ő ő ű ő ó ü ó ő ő ő ő ó ü ó ó ó ű ő ó ő ó ő ú ő ő ü ő ó ü ó ő ő ő ü ó ó ő ő ü ő ó ő ó ő ű ő ő ű ő ó ó ó ó ó ó ő ő ó ó ó ő ó ő ü ó ű ő ő Á ó ó Ó

Részletesebben

Á ö ü ö ő ö ű ö ú ú ö ú ő ő Á ő ő ö ú ü ő ő ú ő ő ő ő ö ü ő ő ú ő ö ö ü ü ő ö ü ü ö ő ú ő ő ő ö ú ú ö ö ú ő ü ü Ü ő ö ő ű ü ö ú ú ú ö ő ö ő ö ú ö ű ő ő ö ő ö ü ö É É É É Ú É É É É É öö É É ő É ö É

Részletesebben

ú Ö ó ú ó ú Ö ő ü ú ő ó ü ú ő ü ú ő ó ó ó ó Ö ő ü ü ü ü ő ú ű ü ú Ö ő ü ő ó ü ü ü ő ő ő ü ó ő ü ú ő ü ő ő ő ó ó ő ó ó ü ő ó ü ó ó ü ú ó ó ő ú Ö ó ü ó ő ó ő ó ő ó ó ü ó ó ó ó ú ő ü ó ü ú ó ő ü ó ő ő ő ü

Részletesebben

ü Ü ö ö ö Á ő ö ö ö ü ú ö ő Á ő ö ő ü ú ő ő ő ö ö ö ő ú ő ő ő ö ő ö ű ő ő ő Ú ö ü ő ő ú ú ö ő ö ő ú ú ő ú ö ö ő ú ő ü Ü ö ő É ő ő ü ö ő ú ő ö ű ő ő ü ő Ú ű Ö ü ő ú ő ő ő ú Ú ü ö ő ő ú ő ű ő ö ö ü ö ö ő

Részletesebben

ö ü ö ú ú ö Á Ú ü ö ö ü ű É ú ü ü ű ö ö ö ö ö ö ö ö ű ú ü ö ü ü ű ö ö ö ö ö ö ö ü ö ű ű ú ö ü ö ö ö ű ö ű ö ö ü ú ü ö ü ö ü ü ö ö ö ö ö ü ö ű ü ö ö ű ö ö ö ö ü ú É ö ö ö ö ö ö ö ú ú ö ö ö ö ö ö ú ú ú ú

Részletesebben

É Ő É é ö í é í é í í Ú é é é í í ő ö ö é É Ó É Á í é ő é í í í Í Í í í É É É í é é í Í é Íő é í é í é í í Í ú é é ű í í é í í Í ö ö ő é ö ö é é í Á ő é é é í é Í ö é é é é é é ö Í ö é é é í í é ö í í

Részletesebben

ú Á ö ü ö ú ű ü ü ö ö ű ö ö ö ü ö ü ö ű ü ö ú ú ü ü ü ú ö ö ö ű ű ü ú ű ü ö ö Á ö ü ű ö ö ü ö ü ö ö ü ö ö ü ö ö ö Á ü ú ö ö ü ö ö ö ú ö ü ö ö ú ú ü ö ű ö ö ö úö ö ö ö ö ö ű ö ú ö ö ö ü ü ö ú ö ö ú ö ö

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2015. október 13. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2015. október 13. 8:00. Az írásbeli vizsga időtartama: 240 perc É RETTSÉGI VIZSGA 2015. október 13. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 13. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2013. május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2013. május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz

Részletesebben

MATEMATIKA tankönyvcsaládunkat

MATEMATIKA tankönyvcsaládunkat Bemutatjuk a NAT 01 és a hozzá kapcsolódó új kerettantervek alapján készült MATEMATIKA tankönyvcsaládunkat 9 10 1 MATEMATIKA A KÖTETEKBEN FELLELHETŐ DIDAKTIKAI ESZKÖZTÁR A SOROZAT KÖTETEI A KÖVETKEZŐ KERETTANTERVEK

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam TANULÓI MUNKAFÜZET 2. FÉLÉV A kiadvány KHF/4356-14/2008. engedélyszámon 2008.11.25. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. 5. Add meg az összeadásban szereplő Add meg a kivonásban szereplő Add meg a szorzásban szereplő Add meg az osztásban szereplő Hogyan függ két szám előjelétől a két szám szorzata, hányadosa?

Részletesebben