HALMAZOK TULAJDONSÁGAI,

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "HALMAZOK TULAJDONSÁGAI,"

Átírás

1 Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI,. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A:= { a csoport tanulói b) B:= { Magyarország városai ma c) C:= { Pilinszky János versei d) D:= { a temészetes számok e) E:= { a természetes számok halmaza f) F:= { az x 5x + 6= 0 egyenlet valós gyökei g) G:= { az x + = 0 egyenlet valós gyökei h) H:= { a prímszámok i) I:= { a legnagyobb prímszám j) J:= { néhány prímszám. Adja meg a következő halmazok elemeit! A:= a 00 nál kisebb négyzetszámok a) b) B:= { a 0 nél kisebb négyzetszámok c) C az x := = egyenlet pozitív gyökei x d) D az x := = egyenlet pzitív gyökeinek a száma x E:= az x x 0 egyenlőtlenség egész gyökei e) f) F:= { a háromjegyű páratlan számok halmaza g) G:= { 79 pozitív osztói 3. Válasszuk ki a következő halmazok közül az egyenlőket! A:= a legkisebb prímszám a) b) B:= { egy prímszám pozitív osztóinak száma c) 3 C:= { az x x = 0 egyenlet valós gyökei d) 3 D:= { az x x = 0 egyenlet valós gyökeinek a száma e) E: = { a ( 0, ) számpár f) F:= { a és 3 közé eső páros számok g) 00 G:= { az x = egyenlet valós gyökei h) H:= { azx = 0ésy = egyenletű egyenesek metszéspontjainak koordinátái

2 Venn-diagram 4. Igazolja az X alaphalmaz A, B, C részhalmazaira az alábbi egyenlőségeket Venndiagram segítségével. a) A\ ( A\ B) = B\ ( B\ A) b) ( A\ \( B\ = ( A\ B) \ C c) ( A\ ( B\ = ( A B) \ C d) ( A\ ( B\ = ( A B) \ C e) ( A B) C = ( A ( B f) A B = A B g) A B = A B h) A B = A ( B A) i) A\ ( B = ( A\ B) ( A\ 5. Legyen A = { 034,,,,,, és B = { nál nem nagyobb pozitív páros számok 8. Szemléltesse a halmazokat Venn-diagramon! Határozza meg az A B, B\ A halmazokat! 6. Legyen A: = {,,,,,, 034 és B:= a 8 nál nem nagyobb pozitív páros számok. Szemléltesse a halmazokat Venn-diagramon! Határozza meg az A B, B\ A halmazok elemit!

3 Műveletek halmazokkal HALMAZOK TULAJDONSÁGAI, 7. Alaphalmazunk legyen a H-B. megyei mezőgazdasági vállalkozók halmaza. Az A halmaz tartalmazza azokat a fenti halmazból, akiknek van traktoruk, a B halmaz tartalmazza azokat a fenti halmazból, akiknek van kombájnuk Írja fel halmazelméleti műveletekkel azon vállalkozók halmazát, akik a) mindkettővel rendelkeznek, b) legalább az egyikkel, c) nincs traktoruk, d) egyikkel sem rendelkeznek, e) csak traktorral nem rendelkeznek, f) legalább egyikkel nem rendelkeznek, g) pontosan egyikkel rendelkeznek. 8. Legyenek az A halmaz elemei 6 pozitív osztói, a B halmaz elemei 4 pozitív osztói, a C halmaz elemei pozitív osztói. Határozzuk meg az A B, B C, C A halmazokat. Lesz-e a kapott halmazok között két egyenlő halmaz? 9. Adjon meg az A = { 0, 0, 30 halmazhoz olyan B, C és D halmazt, hogy az alábbi összefüggések igazak legyenek! A B = { 0, 0, 30, 40, 50, A C = { 0, A\ D =. 0. Legyen A { tíznél kisebb pozitív egész számok =, B = { ,,,,,,,,,, és C = ,,,,,,,,,. Határozza meg az alábbi halmazok elemeit: A B, B\ ( A,( A \ B, A\ C!. Az M = { 3456,,,,, halmaz A, B és C részhalmazairól az alábbiakat tudjuk: A B =, ( A B) C = { 56,, A\ C = { 34,,, C\ B = { 5,. Határozza meg az A, B és C halmazokat!. Legyen az A a budapesti házaspárok, B a budapesti nős férfiak, C a budapesti férjezett nők halmaza. Állapítsa meg, hogy igazak-e a következő állítások? a) B A b) B C = A 3. Határozza meg az A { nullára végződő egész számok B = { 5 tel osz th ató egész számok halmazok különbségét! 4. Legyen az alaphalmaz H = { x Z < x < halmazok: A { x H x páros C = { x H = és 0 5. Legyen továbbá adottak a következő =, B { x H x egyjegyű szám =,,,,,. Határozza meg az ( A B) \ C, ( A B) ( A\,( C B) halmazok elemeit és számosságát! 3

4 5. Legyen az alaphalmaz H = { x Z x <0. Legyenek továbbá adottak a következő halmazok: A = { x H negatív számok, B = { x H páros számok, C = { x H 4 gyel osz th ató számok. a) Határozza meg a B\ C, A C, A B C halmazokat! b) Határozza meg az a)-ban megadott halmazok számosságát! c) Írjon fel a H -nak olyan részhalmazait, melyek egyenlő számosságúak! d) Határozza meg a B C és B C halmazokat! 6. A megadott halmazokkal végezze el a kijelölt műveleteket! a) X = { az egyetem I. évf. általános agrárménök hal lg atói A = { az évfolyam 8 fős. csoportja B = { az évfolyam 8 fős. csoportja C = { az. csoport 5 fő fiú hal lg atója A B, B C, A\ C, B, C b) X = N A = prímszámok B = { pozitív párosak C = { a pozitív egész kitevőjű hatványai A, B C, C\ A, C A, A B c) X = Z A = aa oszth ató5 tel B = C = { bb páros { c c negatív páratlan { 5, 0, 5 D = C A, A B, B D d) X = Z A = a a osz tható 3 mal { th 5 { cc prím B = bb osz ató tel C = D = { 5, 30, 45, 90 ( ) C A, A\ B, B D, A C D 4

5 7. Állapítsa meg, hogy az XY sík mely pontjaival szemléltethetők a következő halmazok? 4 4 {(, ) 0 (, ),, A = x y R x y = { B = x y R x > y > x+ y < 8. Az A = { x Z x 3 és B = { a 8 nál nem nagyobb nem negatív páros számok halmazokkal végezze el az alábbi műveleteket: A B, A B, A\ B. 9. Legyen az alaphalmaz a H = { x Z x < halmazok az alábbiak: A = 3, 0359,,,, { th 3 B = x H x osz ató mal C = { x H x < és az ezen értelmezett A, B és C a) Készítsen Venn-diagramot a halmazokról! b) Határozza meg az ( A \ B és B C halmazok elemeit és számosságát! c) Műveleti jelek felhasználásával írja fel a H halmaznak olyan részhalmazait, melynek számossága Legyen adott az A = { x Rx + x 4 0 és B = { x Rx + x Határozza meg az A B és A B halmazokat! 4 0 halmaz.. Legyenek az A, B, C halmaz elemi az alábbi gyümölcsnevek betűinek a karakterei. A = { ALMA, B = { BANÁN, C = { CITROM. a) Határozza meg az A, B, C halmazok számosságát! b) Határozza meg az ( A B) \ C halmaz elemeit! c) Az elemek felsorolásával írja fel a B \ A halmaz összes részhalmazát! halmazt, ha A = { x N x x { 4!. Határozza meg az A B B = x N x x+ 3. Az A halmaz legyen a ( 00, ), ( 0, ),(, ), ( 0) pontjainak a halmaza, a B ponthalmaz legyen ( 00, ), (, ),( 0) 4 6 és, koordinátapontokkal adott négyszöglap, koordinátájú csúcsok által meghatározott háromszöglap pontjainak a halmaza, a C halmaz pedig legyen a ( 0, ), ( 0, ),( 0, ) csúcspontokkal adott háromszöglap pontjainak a halmaza. Milyen alakzatot határoznak meg az A B, B C, C A és ( A B) C halmazok? 4. Legyen A a -vel osztható kétjegyű számok halmaza, B a 3-mal osztható 00-nál kisebb pozitív számok halmaza, C pedig a 30-cal osztható egész számok halmaza. Határozza meg az A és B, B és C, C és A halmaz közös részét! 5

6 5. Jelölje ( xy, )-nal a koordinátasík tetszőleges pontjának koordinátáit. Legyen A, B és C rendre az olyan ( xy, ) koordinátákkal rendelkező pontok halmaza, amelyekre x+ y, x y ill. y. A sík milyen tartományait határozzák meg az A B és ( A B) C halmazok? D = x y S x R y R és x,,. Az előbbi feladat feltételeit használva határozza meg az ( A B) ( C D) halmazt. 6. Legyen ( ) 7. Ábrázolja derékszögű koordináta-rendszerben azoknak a P( x, y) pontoknak a halmazát, amelyekre: a) x + y = b) x + y > c) x + y + x+ y = d) x + y < 4 e) ( x ) ( y ) Az A és B halmazokról tudjuk, hogy A B = { 3456,,,,,, A\ B {,, A B = { 3,. Határozza meg az A és B halmazt! = 46, 9. Egy irodaházban három légkondicionáló működik. Jelölje az A halmaz azokat a napokat, amikor az első működik, jelölje B azokat a napokat, amikor a. működik és C-vel jelöljük azokat a napokat, amikor a 3. működik. Fogalmazzuk meg, hogy milyen napokat jelölnek a következő halmazok: a) A B C, b) A B C, c) A B C, d) A B C, e) A B C, f) C. 30. Hány elemű az alábbi két halmaz uniója ill. metszete? { 7 th { 3 th A = tel osz ató kétjegyű számok B = mal osz ató kétjegyű számok 6

7 3. Egy mezőgazdasági üzemben bizonyos földterületre háromféle műtrágyát szórtak. Az első típusú műtrágyával 30, a második típusúval 70, a harmadik típusúval 90 hektárt szórtak meg. 00 hektárra első és második típusú, 70 hektárra második és harmadik típusú, 80 hektárra első és harmadik típusú műtrágya is került, 70 hektár területet mindhárom műtrágyával kezeltek. Hány hektár föld kapott műtrágyakezelést? 3. Egy osztályban három nyelvet tanulnak: angolt, németet és spanyolt. Mindenki tanul valamilyen nyelvet, de mindhárom nyelvet csak tanuló tanulja. olyan tanuló van, aki két nyelvet tanul. Angolul 5-en, németül 3-an, spanyolul 9-en tanulnak. Mennyi az osztály létszáma? 33. Egy repülőgépen 9 fiú, 4 lány, 5 magyar gyerek, 9 felnőtt férfi, 7 külföldi fiú, 4 magyar, 6 magyar férfi és 7 külföldi nő utazott. Hányan voltak a repülőgépen? 34. Egy munkahelyen 30-an dolgoznak. A dolgozók közül kilencnek van életbiztosítása, 6 dolgozónak pedig gépjármű-biztosítása, 8 dolgozónak nincs semmilyen biztosítása sem. Hány dolgozónak van mind a kétféle biztosítása? Hány dolgozónak van életbiztosítása? 35. Egy osztály létszáma 3 fő. Az osztályban angolul és oroszul tanulnak és mindenki tanul valamilyen nyelvet. Mindkét nyelvet kilencen tanulják. Bizonyítsa be, hogy angolul és oroszul nem tanulhatnak ugyanannyian! 36. Egy osztály létszáma 30. Az osztályban 3 nyelvet tanítanak: angolt, németet és franciát. Azt tudjuk, hogy minden gyerek legalább egy nyelvet tanul. Angolul 4-en, németül 5-en, franciául pedig 5-en tanulnak. Pontosan két nyelvet összesen 6 diák tanul. Hányan tanulják mindhárom nyelvet? 37. Egy matematika versenyen két feladatot tűztek ki. Az első feladatot a tanulók 70%-a, a másodikat 60%-a oldotta meg. Minden tanuló megoldott legalább egy feladatot, és kilencen mindkét feladatot megoldották. Hányan indultak a versenyen? 38. Egy osztály 8 tanulója közül 8-an felvételizek matematikából, 6-an fizikából, és 4 tanuló mindkét tárgyból. Hányan nem felvételiztek egyik tárgyból sem? 39. Egy egyetem 500 hallgatója közül 300 tud oroszul, 00 angolul, 50 franciául, 0 olvas oroszul és franciául, 30 tud angolul és franciául, 0 beszél oroszul és angolul, 0 pedig mindhárom nyelven. Hányan tudnak legalább az egyik nyelven? Hányan vannak azok, akik egyik nyelvet sem beszélik? 7

8 Részhalmaz 40. Írja fel az { 3,, halmazok összes részhalmazát! 4. Tekintsük a következő halmazokat: { 5 6 0, 0 { th { 6, { 0 A = x Rx x+ = x B = x R x vel osz ató egész szám C = x Rx = k + k N D= x R x + x > 0 4 Állapítsa meg, hogy A, B, C és D halmazok közül melyik részhalmaza N -nek és melyik nem! 4. Igazolja, hogy egy 53 elemű halmaznak ugyanannyi 6 elemű részhalmaza van, mint ahány 37 elemű. 43. Hány elemű az a halmaz, amelynek legalább 000-rel több részhalmaza van, mint eleme? 44. Hányszor annyi 3 elemű részhalmaza van egy 0 elemű halmaznak, mint ahány elemű? Bizonyítások 45. Bizonyítsa be, hogy A B esetén A B = B! 46. Bizonyítsa be a két halmaz egyenlőségét! A \ B = A B a) ( A B) C = ( A ( B b) ( A\ B) \ C = ( A\ \( B\ c) A\ B = A\ ( A B) d) A\ ( B = ( A\ B) ( A\ e) A\ ( B = ( A\ B) ( A\ Nevezetes számhalmazok 47. Legyen A { n N n páros =, B = { n N n < 4, C { n N n X = [ A\ B C ] [ ( A\ B) \ C] halmaz elemei? hogy mik lesznek az ( ) = >. Állapítsa meg, 48. Tekintsük a nevezetes számhalmazokat a szokásos jelölésükkel. Adjuk meg a következő halmazokat: N Z, Q Q, R \ Q, Q \ Q, Q \ Q. 8

9 49. Legyen az alaphalmaz a természetes számok halmaza. Adottak a következő halmazok: A : = { páros számok, B : = { páratlan számok. Adja meg a következő halmazok elemeit: a) ( A B) (A B) ( A B), Teljes indukció b) ( \ B) [( A B) \ (A B) ] c) ( A \ (B A)) ( A B). A, 50. Igazolja teljes indukcióval az alábbi állításokat! ( )( ) nn+ n+ a) n = 6 ( ) n n+ b) n = 4 ( ) n n nn+ c) ( ) n = ( ) n( 4n ) d) ( n ) = 3 e) nn ( + ) = nn ( + )( n + ) 3 f) nn ( + )( n+ ) = nn ( + )( n+ )( n + 3) 4 5. Bizonyítsa be a teljes indukció módszerével, hogy a) 6n ( n + )( 7n + ), n pozitív egész b) 6( n 5) + n, n pozitív egész 4n c) , n pozitív egész n n d) , n pozitív egész e) 6n 3 n, n pozitív egész 9

HALMAZOK TULAJDONSÁGAI,

HALMAZOK TULAJDONSÁGAI, Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI, 1. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A: a csoport tanulói b) B: Magyarország városai ma c) C: Pilinszky

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok

Részletesebben

Halmazelmélet alapfogalmai

Halmazelmélet alapfogalmai 1. Az A halmaz elemei a kétjegyű négyzetszámok. Adja meg az A halmaz elemeit felsorolással! 2. Adott három halmaz: A = {1; 3; 5; 7; 9}; B = {3; 5; 7}; C = {5;10;15} Ábrázolja Venn-diagrammal az adott halmazokat!

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.

Részletesebben

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =? 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára

Feladatok MATEMATIKÁBÓL a 12. évfolyam számára Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa

Részletesebben

MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY

MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY MAGISTER GIMNÁZIUM TANMENET 2012-2013 9. OSZTÁLY Heti 4 óra Évi 148 óra Készítette: Ellenőrizte: Literáti Márta matematika tanár.. igazgató 1 / 5 I. Az általános iskolai ismeretek ismétlése 1. óra: Műveletek

Részletesebben

Érettségi feladatok: Halmazok, logika 1/5

Érettségi feladatok: Halmazok, logika 1/5 Érettségi feladatok: Halmazok, logika 1/5 I. Halmazműveletek 2006. február/12. Az A és a B halmazokról a következőket tudjuk: A B = {1; 2}, A U B = {1; 2; 3; 4; 5; 6; 7}, A \ B = {5; 7}. Adja meg az A

Részletesebben

FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b.

FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b. FELADATOK A RELÁCIÓK, GRÁFOK TÉMAKÖRHÖZ 1. rész A feladatsorban használt jelölések: R = {r R r < 0}, R + = {r R r>0}, [a; b] = {r R a r b}, ahol a, b R és a b. 4.1. Feladat. Adja meg az α = {(x, y) x +

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot 1991. évi verseny, 1. nap 1. Bizonyítsd be, hogy 1 101 + 1 102 + 1 103 +... + 1 200 < 1 2. 2. Egy bálon 42-en vettek részt. Az első lány elmondta, hogy 7 fiúval táncolt, a második lány 8-cal, a harmadik

Részletesebben

Halmazelmélet. 2. fejezet 2-1

Halmazelmélet. 2. fejezet 2-1 2. fejezet Halmazelmélet D 2.1 Két halmazt akkor és csak akkor tekintünk egyenl nek, ha elemeik ugyanazok. A halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele:. D 2.2 Az A halmazt a B halmaz

Részletesebben

Kőszegi Irén MATEMATIKA. 9. évfolyam

Kőszegi Irén MATEMATIKA. 9. évfolyam -- Kőszegi Irén MATEMATIKA 9. évfolyam (a b) 2 = a 2 2ab + b 2 2015 1 2 Tartalom 1. HALMAZOK... 5 2. SZÁMHALMAZOK... 8 3. HATVÁNYOK... 12 4. OSZTHATÓSÁG... 14 5. ALGEBRAI KIFEJEZÉSEK... 17 6. FÜGGVÉNYEK...

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez 1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak

Részletesebben

4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket!

4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket! ) Alakítsd szorzattá a következő kifejezéseket! 4 c) d) e) f) 9k + 6k l + l = ay + 7ay + 54a = 4 k l = b 6bc + 9c 4 + 4y + y 4 4b 9a évfolyam javítóvizsgára ) Végezd el az alábbi műveleteket és hozd a

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Matematika emelt szintû érettségi témakörök 013 Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Tájékoztató vizsgázóknak Tisztelt Vizsgázó! A szóbeli vizsgán a tétel címében megjelölt téma kifejtését

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra

Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra A Kiadó javaslata alapján összeállította: Látta:...... Harmath Lajos munkaközösség vezető tanár Jóváhagyta:... igazgató

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal

Részletesebben

Halmazelmélet. Halmazok megadása

Halmazelmélet. Halmazok megadása Halmazok megadása Halmazelmélet 145. Amikor a halmazt körülírással vagy valamilyen tulajdonságával adjuk meg, bármilyen elemrôl egyértelmûen el kell tudnunk dönteni, hogy beletartozik a halmazba vagy sem.

Részletesebben

MATEMATIKA C 12. évfolyam 5. modul Ismétlés a tudás anyja

MATEMATIKA C 12. évfolyam 5. modul Ismétlés a tudás anyja MATEMATIKA C. évflyam 5. mdul Ismétlés a tudás anyja Készítette: Kvács Kárlyné Matematika C. évflyam 5. mdul: Ismétlés a tudás anyja Tanári útmutató A mdul célja Időkeret Ajánltt krsztály Mdulkapcslódási

Részletesebben

Halmazműveletek feladatok

Halmazműveletek feladatok Halmazműveletek feladatok Soroljuk fel a {a; b; c} halmaz összes részhalmazát! Határozza meg az A és B halmazokat, ha tudja, hogy A B ={1;2;3;4;5}; A B ={3;5}; A\B={1}; B\A={2;4 A={-1; 0; 1; 2; 5; 7; 8}

Részletesebben

Az indukció. Azáltal, hogy ezt az összefüggést felírtuk, ezúttal nem bizonyítottuk, ez csak sejtés!

Az indukció. Azáltal, hogy ezt az összefüggést felírtuk, ezúttal nem bizonyítottuk, ez csak sejtés! Az indukció A logikában indukciónak nevezzük azt a következtetési módot, amelyek segítségével valamely osztályon belül az egyes esetekb l az általánosra következtetünk. Például: 0,, 804, 76, 48 mind oszthatóak

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

2. témakör: Számhalmazok

2. témakör: Számhalmazok 2. témakör: Számhalmazok Olvassa el figyelmesen az elméleti áttekintést, és értelmezze megoldási lépéseket, a definíciókat, tételeket. Próbálja meg a minta feladatokat megoldani! Feldolgozáshoz szükségesidö:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 00. február. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Matematika emelt szint Fontos tudnivalók Formai

Részletesebben

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási

Részletesebben

6. modul Egyenesen előre!

6. modul Egyenesen előre! MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ

MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz

Részletesebben

Matematika tanmenet 2. osztály részére

Matematika tanmenet 2. osztály részére 2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:

Részletesebben

2. Halmazelmélet (megoldások)

2. Halmazelmélet (megoldások) (megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek

Részletesebben

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát! 1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két

Részletesebben

II. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { }

II. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { } II. Halmazok. Relációk II.1. Rövid halmazelmélet A halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. A halmaz alapfogalom. Ez azt jelenti, hogy csak példákon

Részletesebben

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van. HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x

Részletesebben

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET 5. osztály 2015/2016. tanév Készítette: Tóth Mária 1 Tananyagbeosztás Évi óraszám: 144 óra Heti óraszám: 4 óra Témakörök:

Részletesebben

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,

Részletesebben

Halmazok-előadás vázlat

Halmazok-előadás vázlat Halmazok-előadás vázlat Naiv halmazelmélet:. Mi a halmaz? Mit jelent, hogy valami eleme a halmaznak? Igaz-e, hogy a halmaz elemei valamilyen kapcsolatban állnak egymással? Jelölés: a A azt jelenti, hogy

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin

Részletesebben

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.

Részletesebben

Alapfeladatok halmazábra készítésére, egyszerű halmazműveletekre: különbség, metszet, unió.

Alapfeladatok halmazábra készítésére, egyszerű halmazműveletekre: különbség, metszet, unió. HLMZOK 9. évfolyam lapfeladatok halmazábra készítésére, egyszerű halmazműveletekre: különbség, metszet, unió. 1.1. dott az = {1; 2; 3; 4; 5} és = {3; 4; 5; 6; 7} halmaz. Készíts halmazábrát, majd sorold

Részletesebben

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő 2 TANMENET javaslat a szorobánnal számoló 2. osztály számára Szerkesztette: Dr. Vajda József - Összeállította az Első Szorobán Alapítvány megbízásából: Vajdáné Bárdi Magdolna tanítónő Makó, 2001. 2010.

Részletesebben

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM

Részletesebben

Próba érettségi feladatsor 2008. április 11. I. RÉSZ

Próba érettségi feladatsor 2008. április 11. I. RÉSZ Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!

4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve! (9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I. Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. Számfogalmak kialakítása:

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. 5. Add meg az összeadásban szereplő Add meg a kivonásban szereplő Add meg a szorzásban szereplő Add meg az osztásban szereplő Hogyan függ két szám előjelétől a két szám szorzata, hányadosa?

Részletesebben

Kompetencia alapú matematika oktatás Oláhné Téglási Ilona

Kompetencia alapú matematika oktatás Oláhné Téglási Ilona Kompetencia alapú matematika oktatás Oláhné Téglási Ilona Ítéletalkotás, döntés képességének fejlesztése Rezner-Szabó Zsuzsanna Matematikatanár, MA Eszterházy Károly Főiskola 1. feladat Építs piramist!

Részletesebben

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy

3. Öt alma és hat narancs 20Ft-tal kerül többe, mint hat alma és öt narancs. Hány forinttal kerül többe egy narancs egy 1. forduló feladatai 1. Üres cédulákra neveket írtunk, minden cédulára egyet. Egy cédulára Annát, két cédulára Pétert, három cédulára Bencét és négy cédulára Petrát. Ezután az összes cédulát egy üres kalapba

Részletesebben

Mihály Ágnes Marianna Varázslatos számoló 2. évfolyam Megoldások

Mihály Ágnes Marianna Varázslatos számoló 2. évfolyam Megoldások Mihály Ágnes Marianna Varázslatos számoló 2. évfolyam Megoldások 1. Ismétlés 10-ig számolunk 0, 2, 4, 6, 8, 10 páros 1, 3, 5, 7, 9, 11 páratlan 1-nél nagyobb páros számok 10-nél kisebb páratlan számok

Részletesebben

2. Hatványozás, gyökvonás

2. Hatványozás, gyökvonás 2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője

Részletesebben

Szakközépiskola 9. évfolyam. I/1 gyakorló feladatsor

Szakközépiskola 9. évfolyam. I/1 gyakorló feladatsor Szakközépiskola 9. évfolyam I/1 gyakorló feladatsor 1. Adott az A={1,,3,4,5,6} és a B={1,3,5,7,9} halmaz. Adjuk meg elemeinek felsorolásával az AUB és az A\B halmazokat!. Számítsuk ki a 40 és 560 legnagyobb

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Alfa tanár úr 5 tanulót vizsgáztatott matematikából. Az elért pontszámokat véletlen sorrendben írta

Részletesebben

MATEMATIKA C 8. évfolyam 6. modul ATTÓL FÜGG?

MATEMATIKA C 8. évfolyam 6. modul ATTÓL FÜGG? MATEMATIKA C 8. évfolyam 6. modul ATTÓL FÜGG? Készítette: Surányi Szabolcs MATEMATIKA C 8. ÉVFOLYAM 6. MODUL: ATTÓL FÜGG? TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Munkaformák Módszerek Eszközök készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek

Munkaformák Módszerek Eszközök készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek Idő 09. 01. 1. 09. 02. 2. 09. 03. 3. 09. 04. 4. 09. 08. 5. 09. 09. 6. 09.10. 7. 09.11. 8. Tananyag Fejlesztési képességek, Munkaformák Módszerek Eszközök készségek, célok Szervezési feladatok Rendezés,

Részletesebben

Tanmenetjavaslat 5. osztály

Tanmenetjavaslat 5. osztály Tanmenetjavaslat 5. osztály 1. A természetes számok A tanmenetjavaslatokban dőlt betűvel szedtük a tananyag legjellemzőbb részét (amelyet a naplóba írunk). Kisebb betűvel jelezzük a folyamatos ismétléssel

Részletesebben

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április

Részletesebben

értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják

értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják Helyi tanterv matematika általános iskola 5-8. évf. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT ) A PQRS négyszög csúcsai: MATEMATIKA ÉRETTSÉGI 006. május 9. EMELT SZINT P 3; I., Q ;3, R 6; és S 5; 5 Döntse el, hogy az alábbi három állítás közül melyik igaz és melyik hamis! Tegyen * jelet a táblázat

Részletesebben

A Batthyány Általános Iskola és Sportiskola félévi/év végi beszámolója

A Batthyány Általános Iskola és Sportiskola félévi/év végi beszámolója 1.sz. Függelék: A Batthyány Általános Iskola és Sportiskola félévi/év végi beszámolója Osztályfőnökök részére..tanév.. félév..osztály 1. A szakmai munka áttekintése: Statisztika Az osztály létszáma:. fő

Részletesebben

Matematika POKLICNA MATURA

Matematika POKLICNA MATURA Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét

Részletesebben

Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek

Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek Elsôfokú egyváltozós egyenletek 6 Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek. Elsôfokú egyváltozós egyenletek 000. Érdemes egyes tagokat, illetve tényezôket alkalmasan csoportosítani, valamint

Részletesebben

MATEMATIKA 1-12. ÉVFOLYAM

MATEMATIKA 1-12. ÉVFOLYAM MATEMATIKA 1-12. ÉVFOLYAM SZERZŐK: Veppert Károlyné, Ádám Imréné, Heibl Sándorné, Rimainé Sz. Julianna, Kelemen Ildikó, Antalfiné Kutyifa Zsuzsanna, Grószné Havasi Rózsa 1 1-2. ÉVFOLYAM Gondolkodási, megismerési

Részletesebben

MATEMATIKA. 5 8. évfolyam

MATEMATIKA. 5 8. évfolyam MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. évfolyam TANULÓK KÖNYVE 1. FÉLÉV A kiadvány KHF/4361-1/008. engedélyszámon 008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

Matematika tanmenet/4. osztály

Matematika tanmenet/4. osztály Comenius Angol-Magyar Két Tanítási Nyelvű Iskola 2015/2016. tanév Matematika tanmenet/4. osztály Tanító: Fürné Kiss Zsuzsanna és Varga Mariann Tankönyv: C. Neményi Eszter Wéber Anikó: Matematika 4. (Nemzeti

Részletesebben

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete 8. Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Sok optimalizálási probléma esetén

Részletesebben

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV

Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV Tankönyv második kötet Számok és műveletek 0-től 0-ig Kompetenciák, fejlesztési feladatok:

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Matematika helyi tanterv,5 8. évfolyam

Matematika helyi tanterv,5 8. évfolyam Matematika helyi tanterv - bevezetés Matematika helyi tanterv,5 8. évfolyam A kerettanterv B változatának évfolyamonkénti bontása Bevezető Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2006. február 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. február 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

közti kapcsolatok, Ellenőrzés, Játék 21. modul

közti kapcsolatok, Ellenőrzés, Játék 21. modul Matematika A 4. évfolyam MŰVELETi tulajdonságok, a műveletek közti kapcsolatok, Ellenőrzés, Játék 21. modul Készítette: KONRÁD ÁGNES matematika A 4. ÉVFOLYAM 21. modul Műveleti tulajdonságok, a műveletek

Részletesebben

1. A korrelációs együttható

1. A korrelációs együttható 1 A KORRELÁCIÓS EGYÜTTHATÓ 1. A korrelációs együttható A tapasztalati korrelációs együttható képlete: (X i X)(Y i Y ) R(X, Y ) = (X i X) 2. (Y i Y ) 2 Az együttható tulajdonságai: LINEÁRIS kapcsolat szorossága.

Részletesebben

5. évfolyam. Gondolkodási módszerek. Számelmélet, algebra 65. Függvények, analízis 12. Geometria 47. Statisztika, valószínűség 5

5. évfolyam. Gondolkodási módszerek. Számelmélet, algebra 65. Függvények, analízis 12. Geometria 47. Statisztika, valószínűség 5 MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT Matematika RÉ megoldókulcs 0. január. MTEMTIK RÓBÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT dottak a 0; ; ; ; ; ; 5; 7; 7; 8 számjegyek. a Hány darab tízjegyű, 5-tel osztható szám készíthető az adott számjegyekből

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

Fazekas nyílt verseny matematikából 8. osztály, speciális kategória

Fazekas nyílt verseny matematikából 8. osztály, speciális kategória Fazekas nyílt verseny matematikából 8. osztály, speciális kategória 2005. január 12. feladatok kidolgozására két óra áll rendelkezésre. Számológép nem használható. példák tetszőleges sorrendben megoldhatók.

Részletesebben

Curie Matematika Emlékverseny 5. évfolyam Országos döntő 2011/2012. Fontos tudnivalók

Curie Matematika Emlékverseny 5. évfolyam Országos döntő 2011/2012. Fontos tudnivalók A feladatokat írta: Kódszám: Tóth Jánosné, Szolnok Lektorálta:. Kozma Lászlóné, Sajószentpéter 2012.április 14. Curie Matematika Emlékverseny 5. évfolyam Országos döntő 2011/2012. Feladat 1. 2. 3. 4. 5.

Részletesebben

Hraskó András, Surányi László: 11-12. spec.mat szakkör Tartotta: Surányi László. Feladatok

Hraskó András, Surányi László: 11-12. spec.mat szakkör Tartotta: Surányi László. Feladatok Feladatok 1. Színezzük meg a koordinátarendszer rácspontjait két színnel, kékkel és pirossal úgy, hogy minden vízszintes egyenesen csak véges sok kék rácspont legyen és minden függőleges egyenesen csak

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Hossó Aranka Márta. Matematika. pontozófüzet. a speciális szakiskola 9 10. osztálya számára összeállított. Felmérő feladatokhoz. Novitas Kft.

Hossó Aranka Márta. Matematika. pontozófüzet. a speciális szakiskola 9 10. osztálya számára összeállított. Felmérő feladatokhoz. Novitas Kft. Hossó Aranka Márta Matematika pontozófüzet a speciális szakiskola 9 10. osztálya számára összeállított Felmérő feladatokhoz Novitas Kft. Debrecen, 2007 Összeállította: Hossó Aranka Márta Kiadja: Pedellus

Részletesebben