Halmazok-előadás vázlat

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Halmazok-előadás vázlat"

Átírás

1 Halmazok-előadás vázlat Naiv halmazelmélet:. Mi a halmaz? Mit jelent, hogy valami eleme a halmaznak? Igaz-e, hogy a halmaz elemei valamilyen kapcsolatban állnak egymással? Jelölés: a A azt jelenti, hogy az a eleme az A halmaznak. (Az a az A halmazhoz tartozik.) Mit jelent a A? Azt követeljük meg, hogy a halmazt az elemei egyértelműen meghatározzák: Csak olyan halmazokkal foglalkozunk, amelyeknél a A állítás igazsága egyszersmind a A állítás hamis voltát vonja maga után, illetve az a A állítás igaz voltából az a A állítás hamissága következik. Az alábbi, ún. antinomiák (2. antinomia később) indokolják, miért szükséges a fenti furcsa kikötés: 1. Antinomia: Tekintsük a magyar nyelven legfeljebb 100 karakterrel definiálható egész számok halmazát, jelöljük ezt H-val. Legyen az n egész szám definíciója az alábbi: A legkisebb, magyar nyelven száz írásjellel (a szóközt beleértve) nem definiálható természetes szám. (A fenti mondat pontosan 100 karakter) Vajon n H igaz, vagy n H? Halmazok megadása, példák: - felsorolás : A:={3, 4} - valamely tulajdonság megadása (részhalmaz, ld. később): B:={x x R, x megoldása az (x-3)(x-4)=0 egyenletnek} Definíció: Az A és a B halmazok egyenlők, ha ugyanazok az elemeik. Nyilván a fenti példákban A=B. 1

2 Definíció: Üres halmaznak nevezzük azt a halmazt, amely egy elemet sem tartalmaz. Jele:. Definíció: Az A halmaz részhalmaza a B halmaznak, ha A minden eleme B-nek is eleme. Jelölés: A B. Ha A B és A B, akkor azt mondjuk, hogy A valódi részhalmaza B-nek. Jelölés: A B. A definíció szerint minden halmaz részhalmaza önmagának: A A reflexív A részhalmaz definícióját átfogalmazhatjuk úgy is, hogy A B, ha A-nak nincsen olyan eleme, amely ne lenne B-nek is eleme. Ennélfogva A, hiszen nincsen eleme. Igaz-e, ha A B és B C, akkor A C? (tranzitivitás) Igaz-e, ha A B, akkor B A? (kommutativitás) 2. Antinomia (Russel): Elképzelhető, hogy vannak olyan halmazok, amelyek önmagukat tartalmazzák. Ugyanígy, vannak olyan halmazok, amelyek önmagukat nem tartalmazzák. Legyen a H halmaz azon halmazok halmaza, amelyek önmagukat nem tartalmazzák. Vajon H eleme-e önmagának? Mondjunk példát olyan halmazra, amelyik tartalmazza önmagát! Példa: A B tulajdonságai: reflexív: A A tranzitív: A B és B C, akkor A C NEM kommutatív 1. Állítás: A=B akkor és csak akkor, ha A B és B A. Ez az állítás használható halmazok azonosságának bizonyítására. Definíció: Az A halmaz P(A) hatványhalmazán az A részhalmazainak halmazát értjük. 2

3 Példák: A:= {1, 2}, P(A)={,{1},{2},{1,2}} P( )={ } P({ })={,{ }} Feladatok: - Adja meg a B:= {,{1}} halmaz hatványhalmazát! - Adja meg a C:= {{1}, C} halmaz hatványhalmazát! Műveletek halmazok között Definíció: Az A és B halmazok egyesítése (uniója, összege) az az A B-vel jelölt halmaz, amelynek elemei vagy A-nak, vagy B-nek elemei. A B:={x x A vagy x B } Definíció: Az A és B halmazok közös része (metszete,szorzata) az az A B-vel jelölt halmaz, amelynek elemei A-nak is és B-nek is elemei. A B:= {x x A és x B } Ha az A és B halmazoknak nincsen közös része, vagyis A B=, akkor azt mondjuk, hogy az A és B halmazok diszjunktak. Definíció: Az A és a B halmazok különbsége, A\B vagy a B halmaz A halmazra vonatkozó komplementere, A azon elemeinek halmaza, amelyek nincsenek B-ben. A\B = B A :=: {x x A és x B} 3

4 Tulajdonságai: A\ =? \A=? Szokás az ún. univerzális halmaz, vagy univerzum bevezetése, ez a feladattal kapcsolatos összes lehetséges objektumok összessége, jelölés: U. A B halmaz univerzumra vonatkozó komplementerének jele: B. Szokásos univerzumok: - valós számok, R - pozitív valós számok, R + - nem negatív egészek, N - egészek, Z Feladatok: Mi a pozitív egész számok halmazára vonatkozó komplementere a páros pozitív egészek halmazának? Mi a valós számok halmazára vonatkozó komplementere a racionális számok halmazának? A definíciók egyszerű következményei: A U=U A U=A A A=A A A=A A =A A = A\ =A \A= Műveleti azonosságok: 4

5 1. A B=B A A B=B A kommutatív 2. (A B) C=A (B C) (A B) C=A (B C) asszociatív 3. a.) A (B C)= (A B) (A C) disztributív b.) A (B C)= (A B) (A C) disztributív 3. a.) bizonyítása: A (B C)= (A B) (A C) X:= A (B C) bal oldal Y:= (A B) (A C) jobb oldal Azt kell biz., hogy X Y, és Y X. a.) X Y Legyen x tetszőleges eleme X-nek. Tetszőleges azt jelenti, hogy bármely (más) X-beli elemre az alábbiak elmondhatók, igy tehát valójában X minden elemére bizonyítunk. Ekkor x A és x B C. Az utóbbi miatt x B, vagy x C. Így vagy x A, és x B, ami azt jelenti, hogy x A B, vagy, hasonlóképpen: x A C ami éppen azt jelenti, hogy x (A B) (A C). Tehát minden X-beli elem Y-beli is, tehát X Y. b.) Y X. Legyen y tetszőleges eleme Y-nak. Ekkor vagy y A B, vagy y A C. Az első esetben y A és y B. Utóbbi miatt y B C, tehát y A (B C). Ehhez hasonlóan második esetben y A és y C, így y B C, amiből következik, hogy y A (B C). Ezzel beláttuk, hogy minden Y- beli elem X-beli is, Y X. Feladat: Igazolja a 3. b.) azonosságot! 5

6 További azonosságok (De Morgan): 4. a.) A B = A B b.) A B = A B Biz.: 4. a.) Legyen A B = A B H 1 = A B = A B =H 2. Bármely x H 1 x A B x A és x B x A B = H 2, H 1 H 2 Bármely x H 2 x A és x B x A és x B x A B, tehát x A B = H 1 H 2 Feladat: Igazolja a 4.b.) De Morgan azonosságot is! Venn-diagramm: A U A U B A U B A A B A B 6

7 Feladat: Illusztrálja a műveleti azonosságokat és a De Morgan azonosságokat Venn-diagramm segítségével! Definíció: Halmaz számosságán a halmaz elemeinek számát értjük. Jelölés: A. Ha ez véges szám, akkor azt mondjuk, hogy az A halmaz véges, ellenkező esetben az A halmaz végtelen. {3, 4} =2 Feladatok: (Logikai szita) A B =? A B C =? A B C D =? Definíció: Legyenek D 1, D 2, D n adott halmazok. E halmazok Descartes (direkt) szorzata: D 1 x D 2 x x D n : = {( d 1, d 2, d n ) d k D k 1 k n } A direkt szorzat tehát olyan rendezett érték n-eseket tartalmaz, amelynek k. eleme a k. halmazból való. Példák: 1. A={1,2} és B={7,8,9} akkor A B={(1,7),(1,8),(1,9),(2,7),(2,8),(2,9)} 7

8 2. Adatok:= Nevek x Városok x Utcanevek x Házszámok= {(Nagy Janka, Budapest, Fő u., 1), (Nagy Janka, Budapest, Fő u., 16), (Nagy Janka, Budapest, Fő u., 17),.. (Nagy Janka, Budapest, Kossuth L. u., 1),. (Nagy János, Budapest, Fő u. 1.),.} Alkalmazás: adatbáziskezelés - relációs algebra 3. R x R={(x,y) x R és y R}, Descartes koordináta-rendszer Definíció: Relációnak nevezzük a D 1 x D 2 x x D n direkt szorzat bármely részhalmazát: r D 1 x D 2 x x D n Példa: { (Nagy Janka, Budapest, Kossuth L. u., 1), (Nagy János, Budapest, Fő u., 1)} Adatok Definíció: Bináris reláció, ha n=2: r D 1 x D 2 Bináris relációk néhány jellemzője: Reflexív: (a, a) r Kommutatív: ha (a, b) r, akkor (b, a) r Anti-kommutatív (nem kommutatív): ha (a, b) r, akkor (b, a) r Tranzitív: ha (a, b) r, és (b, c) r, akkor (a, c) r 8

9 Feladatok: Döntsük el az alábbi relációkról, hogy a fenti jellemzők közül melyekkel rendelkeznek? 1. x, y N, (x,y) r, ha x osztója y-nak. 2. x, y R, (x,y) r, ha x kisebb (kisebb vagy egyenlő) mint y. 3. x, y R, (x,y) r, ha x = y. A természetes számok halmaza (Az 1 számból az 1 ismételt hozzáadásával keletkező számok axiomatikus megadása.) Peano axiómák: 1. Az 1 természetes szám. 2. Minden természetes számnak van rákövetkezője. 3. Nincsen olyan természetes szám, aminek az 1 rákövetkezője lenne. 4. Csak egyenlő természetes számoknak vannak egyenlő rákövetkezőik. 5. Ha a természetes számok valamely A részhalmazára igaz az, hogy az 1 természetes számot tartalmazza, továbbá, ha az n természetes szám eleme, akkor ennek rákövetkezője is eleme, akkor A azonos a természetes számok halmazával. Az 5. axióma nem független a többitől, az első 4 és a halmazelmélet segítségével. Az 5. axióma az alapja az ún. teljes indukciós bizonyításnak. Ha azt akarjuk bizonyítani, hogy egy állítás teljesül az összes természetes számra, akkor először bizonyítani kell, hogy 1-re igaz az állítás. Második lépésként pedig azt kell bizonyítani, hogy a tulajdonság öröklődése fennáll, vagyis, ha a tulajdonság teljesül az n természetes számra, akkor teljesül a rákövetkezőjére is. 9

10 Példa: 1. Páratlan számok összege: 1=1 1+3= = =16 Állítás: (2k-1)=k 2 Bizonyítás (teljes indukcióval): 1.Megvizsgáljuk, k=1-re igaz-e: 1=1 tehát igaz. 2.Tegyük fel hogy k=n-ra igaz: 1+3+ (2n-1)=n 2 3.Bizonyítjuk, hogyha k=n-ra igaz, akkor hogy k= n+1-re is: (2k-1)+(2k+1)?= (k+1) (2k-1) = k 2, k 2 +(2k+1)=k 2 +2k+1= (k+1) 2 az állítás igaz. 2. n elemű halmaz hatványhalmazának számossága: P(A) =2 n, ha A =n Bizonyítás (teljes indukcióval): 1. n=1-re igaz, mert egyelemű halmaz részhalmazai az üreshalmaz és és az egyetlen elemet tartalmazó halmaz, vagyis száma Tfh. P(A)= 2 n ha A =n 3. Azt akarjuk bizonyítani, hogyha A =n P(A) = 2 n AKKOR T =n+1 P(T) =2 n+1. Az általánosság megszorítása nélkül feltehető, hogy T=A {a}.( a az az elem, ami az n elemű halmazban nem volt benne.) a T=A {a} és T\{a}=S=A P(S) = 2 n az indukciós feltétel miatt. P(S):={,S 1, S 2,, S k } (összesen 2 n darab) P(T):={ {a},{s 1 {a}},{s 2 {a}},, {S k {a}}} P(S) Könnyen látható, hogy egyértelmű megfeleltetés van T-nek a-t tartalmazó és a-t nem tartalmazó részhalmazai között. P(T) = 2 n +2 n =2 2 n =2 n+1 10

11 Feladatok: Bizonyítsa teljes indukcióval az alábbi összefüggéseket: 1. n<2 n 2. Bernoulli egyenlőtlenség Természetes számok és halmazok A természetes számok halmaza felépíthető csak halmazelméleti fogalmakkal. Ekkor a halmaz számossága azonosítható a természetes számmal. 0:= 0 =0 1:={0}={ } 1 =1 2:={0, 1}={, { }}=1 {1} 2 =2 3:= {0, 1, 2}= {, { }, {, { }}}=2 {2} 3 =3.. n:={0, 1, 2, 3, n}=..= n {n} n =n 11

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006 A matematika alapjai 1 A MATEMATIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2006 Köszönöm Koós Gabriella végzős hallgatónak, hogy felhívta a figyelmemet az anyag előző változatában szereplő néhány

Részletesebben

2. Halmazelmélet (megoldások)

2. Halmazelmélet (megoldások) (megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Halmazelmélet. 2. fejezet 2-1

Halmazelmélet. 2. fejezet 2-1 2. fejezet Halmazelmélet D 2.1 Két halmazt akkor és csak akkor tekintünk egyenl nek, ha elemeik ugyanazok. A halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele:. D 2.2 Az A halmazt a B halmaz

Részletesebben

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a

Részletesebben

1.1 Halmazelméleti fogalmak, jelölések

1.1 Halmazelméleti fogalmak, jelölések 1.1 Halmazelméleti fogalmak, jelölések Alapfogalmak (nem definiáljuk) Halmaz x eleme az A halmaznak x nem eleme A halmaznak Jelölések A,B,C, x A x A SiUDWODQ V]iRN Halmaz megadása: Elemeinek felsorolásával:

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

Lineáris algebra I. Vektorok és szorzataik

Lineáris algebra I. Vektorok és szorzataik Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

Ü ű Ú Ö Ü É É ű É Ö Ü É ű Á ű Ú Ú Ú Á Á ű Á É É Ú Á ű Ó Ó Á Ú Á ű Ü Á Ú Ú Á ű Ú Á Ú Á Á Ú Ú Á Á Á Á Á É Ú Ú ű Á Á Ú Á Ú Á É Á É É Á Ú Ú É Á Á Á É É Á Á É Á É Á É Ü Ú Ó Á Á É Á ű Ü Á Ú Á Ü Á É É ű ű Á Ú

Részletesebben

HALMAZOK TULAJDONSÁGAI,

HALMAZOK TULAJDONSÁGAI, Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI,. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A:= { a csoport tanulói b) B:= { Magyarország városai ma c) C:=

Részletesebben

Gáspár Csaba. Analízis

Gáspár Csaba. Analízis Gáspár Csaba Analízis Készült a HEFOP 3.3.-P.-004-09-00/.0 pályázat támogatásával Szerzők: Lektor: Gáspár Csaba Szili László, egyetemi docens c Gáspár Csaba, 006. Tartalomjegyzék. Bevezetés 5. Alapvető

Részletesebben

MATEMATICĂ ÎN ÎNVĂŢĂMÂNT PRIMAR ŞI PREŞCOLAR Îndrumător de studiu Codul disciplinei: PLM3309

MATEMATICĂ ÎN ÎNVĂŢĂMÂNT PRIMAR ŞI PREŞCOLAR Îndrumător de studiu Codul disciplinei: PLM3309 PREŞCOLAR (ÎN LIMBA MAGHIARĂ, LA SATU MARE) EXTENSIA UNIVERSITARĂ: SATU MARE ANUL UNIVERSITAR: 2015/2016 SEMESTRUL: I. MATEMATICĂ ÎN ÎNVĂŢĂMÂNT PRIMAR ŞI PREŞCOLAR Îndrumător de studiu Codul disciplinei:

Részletesebben

Ismerkedés az Abel-csoportokkal

Ismerkedés az Abel-csoportokkal Ismerkedés az Abel-csoportokkal - Szakdolgozat - Készítette: Takács Mária (Matematika BSc, Tanári szakirány) Témavezető: Kiss Emil (Algebra és Számelmélet Tanszék, Matematikai Intézet) Eötvös Loránd Tudományegyetem

Részletesebben

II. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { }

II. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { } II. Halmazok. Relációk II.1. Rövid halmazelmélet A halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. A halmaz alapfogalom. Ez azt jelenti, hogy csak példákon

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 2. MA3-2 modul. Eseményalgebra

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 2. MA3-2 modul. Eseményalgebra Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 2. MA3-2 modul Eseményalgebra SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

MATEMATIKA tankönyvcsaládunkat

MATEMATIKA tankönyvcsaládunkat Bemutatjuk a NAT 01 és a hozzá kapcsolódó új kerettantervek alapján készült MATEMATIKA tankönyvcsaládunkat 9 10 1 MATEMATIKA A KÖTETEKBEN FELLELHETŐ DIDAKTIKAI ESZKÖZTÁR A SOROZAT KÖTETEI A KÖVETKEZŐ KERETTANTERVEK

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

BEVEZETÉS A FUZZY-ELVŰ SZABÁLYOZÁSOKBA. Jancskárné Dr. Anweiler Ildikó főiskolai docens. PTE PMMIK Műszaki Informatika Tanszék

BEVEZETÉS A FUZZY-ELVŰ SZABÁLYOZÁSOKBA. Jancskárné Dr. Anweiler Ildikó főiskolai docens. PTE PMMIK Műszaki Informatika Tanszék BEVEZETÉS A FUZZY-ELVŰ SZABÁLYOZÁSOKBA Jancskárné Dr. Anweiler Ildikó főiskolai docens PTE PMMIK Műszaki Informatika Tanszék A fuzzy-logika a kétértékű logika kalkulusának kiterjesztése. Matematikatörténeti

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

Absztrakt algebra I. Csoportelmélet

Absztrakt algebra I. Csoportelmélet Absztrakt algebra I. Csoportelmélet Dr. Tóth László egyetemi docens Pécsi Tudományegyetem 2006 Bevezetés Ez az anyag tartalmazza az Algebra és számelmélet című tárgy 4. féléves részének kötelező elméleti

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Vektortér. A vektortér elemeit vektornak, a test elemeit skalárnak nevezzük. Ezért a függvény neve skalárral való szorzás (nem művelet).

Vektortér. A vektortér elemeit vektornak, a test elemeit skalárnak nevezzük. Ezért a függvény neve skalárral való szorzás (nem művelet). Vektortér A vektortér (lineáris tér, lineáris vektortér) két, már tanult algebrai struktúrát kapcsol össze. Def.: Legyen V nemüres halmaz, amelyben egy összeadásnak nevezett művelet van definiálva, és

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

Á Ö É É É É Í Ü Ó ÜÓ Ő É ő ó Ü ó ő ü ö ó ö ü ő ü ő ö ő ő ú ö ó ü ú Ü ó ő ö ó ö ö ö ö ö ü ü ő úő ú ű ő ö ö ö ő ó ö ó ű ü ü ö ö ó ó ű ó ó ü ü ö ő ö ó ö ő ö ü ö ü ö ö ö ü ü ő ü ő ő ú ú ö ú ö ő ő ó ü ő ő ú

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

Lineáris algebra I. Kovács Zoltán. Előadásvázlat (2006. február 22.)

Lineáris algebra I. Kovács Zoltán. Előadásvázlat (2006. február 22.) Lineáris algebra I. Kovács Zoltán Előadásvázlat (2006. február 22.) 2 3 Erdős Jenő emlékének. 4 Tartalomjegyzék 1. A szabadvektorok vektortere 7 1. Szabadvektorok összeadása és skalárral való szorzása...............

Részletesebben

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Matematika emelt szintû érettségi témakörök 013 Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Tájékoztató vizsgázóknak Tisztelt Vizsgázó! A szóbeli vizsgán a tétel címében megjelölt téma kifejtését

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Bácsó Sándor Diszkrét Matematika I. egyetemi jegyzet mobidiák

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal fejezet Mátrixok Az előző fejezetben a mátrixokat csak egyszerű jelölésnek tekintettük, mely az egyenletrendszer együtthatóinak tárolására, és az egyenletrendszer megoldása közbeni számítások egyszerüsítésére

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Hraskó András, Surányi László: 11-12. spec.mat szakkör Tartotta: Surányi László. Feladatok

Hraskó András, Surányi László: 11-12. spec.mat szakkör Tartotta: Surányi László. Feladatok Feladatok 1. Színezzük meg a koordinátarendszer rácspontjait két színnel, kékkel és pirossal úgy, hogy minden vízszintes egyenesen csak véges sok kék rácspont legyen és minden függőleges egyenesen csak

Részletesebben

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét!

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! 5. gyakorlat Lineáris leképezések Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! f : IR IR, f(x) 5x Mit rendel hozzá ez a függvény két szám összegéhez? x, x IR, f(x +

Részletesebben

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,

Részletesebben

LÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest 2010-10-24 2. javított kiadás

LÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest 2010-10-24 2. javított kiadás LÁNG CSABÁNÉ SZÁMELMÉLET Példák és feladatok ELTE IK Budapest 2010-10-24 2. javított kiadás Fels oktatási tankönyv Lektorálták: Kátai Imre Bui Minh Phong Burcsi Péter Farkas Gábor Fülöp Ágnes Germán László

Részletesebben

ü Ó Ű ü Ó Ü Ó Ű Ó Ü Ű Ü ű Ó Ű Ó Ű ü ű ű Ű ű Ű Ű Ó Á Ű Ű Ű Ű Ó Ű Ü Ű ű Ű Ó Ó Ó ű Ó Ö Ű Ű Ó Ó Ű Ü Ü Ó Ü Ó ű Á Á ü Ű Ü ű Ü Ó Ü Ü Á Ű Ó Ó Ó Ű Ü Ó Ű Ű Ü ű Ű Ű Ű Ű Ó Ü Ó Ű É Ó Ű Ó Ó ű Ó ü Ő Ü É Ö Ű ű Ü ű Ű Ö

Részletesebben

Matematikai logika. Nagy Károly 2009

Matematikai logika. Nagy Károly 2009 Matematikai logika előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2009 1 1. Elsőrendű nyelvek 1.1. Definíció. Az Ω =< Srt, Cnst, F n, P r > komponensekből álló rendezett négyest elsőrendű

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre

4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre 4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre Az értékelő függvény létezése (folytatás) p. 1/8 4.2. Tétel: Legyen gyenge rendezés az X halmazon. Legyen továbbá B X, amelyre

Részletesebben

LEKÉRDEZÉSEK SQL-BEN. A relációs algebra A SELECT utasítás Összesítés és csoportosítás Speciális feltételek

LEKÉRDEZÉSEK SQL-BEN. A relációs algebra A SELECT utasítás Összesítés és csoportosítás Speciális feltételek LEKÉRDEZÉSEK SQL-BEN A relációs algebra A SELECT utasítás Összesítés és csoportosítás Speciális feltételek RELÁCIÓS ALGEBRA A relációs adatbázisokon végzett műveletek matematikai alapjai Halmazműveletek:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Lineáris algebra és mátrixok alkalmazása a numerikus analízisben

Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Eötvös Loránd Tudományegyetem Természettudományi kar Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Szakdolgozat Készítette: Borostyán Dóra Matematika BSc matematikai elemző Témavezető:

Részletesebben

Boronkay György Műszaki Középiskola és Gimnázium

Boronkay György Műszaki Középiskola és Gimnázium Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Halmazok

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

22. szakkör (Csoportelméleti alapfogalmak 1.)

22. szakkör (Csoportelméleti alapfogalmak 1.) 22. szakkör (Csoportelméleti alapfogalmak 1.) A) A PERMUTÁCIÓK CIKLIKUS SZERKEZETE 1. feladat: Egy húsztagú társaság ül az asztal körül. Néhányat közülük (esetleg az összeset) párba állítunk, és a párok

Részletesebben

MATEMATIKAI PARADOXONOK

MATEMATIKAI PARADOXONOK EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR MATEMATIKAI PARADOXONOK BSc MATEMATIKA SZAKDOLGOZAT TANÁRI SZAKIRÁNY Készítette: Hajnal Anna Témavezető: Korándi József BUDAPEST, 2015 Tartalomjegyzék

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5 1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat

Részletesebben

Gyakorló feladatok ZH-ra

Gyakorló feladatok ZH-ra Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT ) A PQRS négyszög csúcsai: MATEMATIKA ÉRETTSÉGI 006. május 9. EMELT SZINT P 3; I., Q ;3, R 6; és S 5; 5 Döntse el, hogy az alábbi három állítás közül melyik igaz és melyik hamis! Tegyen * jelet a táblázat

Részletesebben

Halmazelmélet alapfogalmai

Halmazelmélet alapfogalmai 1. Az A halmaz elemei a kétjegyű négyzetszámok. Adja meg az A halmaz elemeit felsorolással! 2. Adott három halmaz: A = {1; 3; 5; 7; 9}; B = {3; 5; 7}; C = {5;10;15} Ábrázolja Venn-diagrammal az adott halmazokat!

Részletesebben

Nemzeti versenyek 11 12. évfolyam

Nemzeti versenyek 11 12. évfolyam Nemzeti versenyek 11 12. évfolyam Szerkesztette: I. N. Szergejeva 2015. február 2. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó

Részletesebben

A lineáris tér. Készítette: Dr. Ábrahám István

A lineáris tér. Készítette: Dr. Ábrahám István A lineáris tér Készítette: Dr. Ábrahám István A lineáris tér fogalma A fejezetben a gyakorlati alkalmazásokban használt legfontosabb fogalmakat, összefüggéseket tárgyaljuk. Adott egy L halmaz, amiben azonos

Részletesebben

A bemeneti feszültség 10 V és 20 V között van. 1. ábra A fuzzy tagsági függvény

A bemeneti feszültség 10 V és 20 V között van. 1. ábra A fuzzy tagsági függvény BÁRKÁNYI PÁL: FUZZY MODELL MATEMATIKAI HÁTTERE SPECIÁLIS KATONAI RENDSZEREKRE ALKALMAZVA A katonai rendszerek műszaki megbízhatóságának vizsgálatai során, több matematikai módszert alkalmazhatunk, mint

Részletesebben

Egyetemi matematika az iskolában

Egyetemi matematika az iskolában Matematikatanítási és Módszertani Központ Egyetemi matematika az iskolában Hegyvári Norbert 013 Tartalomjegyzék 1. Irracionális számok; 4. További irracionális számok 7 3. Végtelen tizedestörtek 7 4. Végtelen

Részletesebben

Számítástudomány matematikai alapjai segédlet táv és levelező

Számítástudomány matematikai alapjai segédlet táv és levelező Számítástudomány matematikai alapjai segédlet táv és levelező Horváth Árpád 2008. december 16. A segédletek egy része a matek honlapon található: http://www.roik.bmf.hu/matek Kötelező irodalom: Bagyinszki

Részletesebben

FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b.

FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b. FELADATOK A RELÁCIÓK, GRÁFOK TÉMAKÖRHÖZ 1. rész A feladatsorban használt jelölések: R = {r R r < 0}, R + = {r R r>0}, [a; b] = {r R a r b}, ahol a, b R és a b. 4.1. Feladat. Adja meg az α = {(x, y) x +

Részletesebben

Geometriai axiómarendszerek és modellek

Geometriai axiómarendszerek és modellek Verhóczki László Geometriai axiómarendszerek és modellek ELTE TTK Matematikai Intézet Geometriai Tanszék Budapest, 2011 1) Az axiómákra vonatkozó alapvető ismeretek Egy matematikai elmélet felépítésének

Részletesebben

É Ü Ü ú ú Á Ú ű É ú Ö Ü É Ü Á ű Á Á ú ú ú É Á ú ű É Ö É Á Ú Á ú ú É É ű ű ű Á ű Á ú Á ű ű ű ú Á Á ű ú ú ú ű ű ú ű ú ű Á ÁÁ É Á Á Á ű ű ú Ü É ú ű ű ű ű ű ű Ú Ü ű ű ű ú ú ű ű É ú ű ű Á ú ű É ú Ü Ú Ú Ü Ű

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév. forduló haladók I. kategória Megoldások

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

2. gyakorlat Állapot alapú modellezés Megoldások

2. gyakorlat Állapot alapú modellezés Megoldások 2. gyakorlat Állapot alapú modellezés ok 1. Közlekedési lámpa Közlekedési lámpát vezérlő elektronikát tervezünk. a) Készítsük el egy egyszerű piros sárga zöld közlekedési lámpa olyan állapotterét, amely

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Á Á ő É ö ö ő É ő ö ö ő ö É É Á ő É ő ö ö ö ő ő ő ő ő ő Ó É ő ő ő ő ü ő ő ü ü ö ö ő ő ú ű ű ö ő ö ú ő ü ő Ü ö ö ő ö ü ő ö ö ö ö ö ő ő ö ö ő ő ö ú ü ű ü ú ő É Á ő ő ö ő ő Ü ö ő ö ö ü ő ő ú ű ü ő Í ö ü ú

Részletesebben

ö ü ö Ö ü ü ü ü Í Í Í Í ű ö ö ű ú ö ö ö ü ú ü ü ü ü ü ü ü ü ö ü ú ü ü ú ü ö ü ü ü ü ú ú ö ö ü ú Ö Ő Ü É Ó Ö Ó Ó ö ö ö ö É ü ö Í ö Ó Ó ű Ó Ó ű ü Ó Ó Í ü Ó Ü ü ü Ö ü ü Í ö ü ü ú ú ü ü ü ö ö ö ö ü ü ö ü ü

Részletesebben

É É Í ü ü ü ű ü ü ü ü ü ü ú Í ű ú ü ű Á ú Ú ű űü Ú Ú É É ű Ú ü ú ű ú ű ü ű Í Í Ú É Ú Ú Ú Í ú ú Ú Ú É ü űü ü ü ü Ú ű ú ü ú ü ú ű ű ü ú ü ú ü Ú ü ú ü ü ú úü ú ú ü ú ü ú Ú ű ú ü ú Ú ű ü Ú ú ü ú ú ü ü ú ú

Részletesebben

ő ő Á ő ő ő ü ő ü ő ő ő ű ő ő ő ü ő ő ő ő ő ő ő ő ü ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ű ő ő ü ü ű ő ő ő Á ő ü Ó ő ő ő ő ő ü ő ü ő ő ő ő ü ő ő ü ő ő ü ő ü ő ü ő ő ő ő ő ü ő ü ü ő ő ő ű ő ű ü ü ő ő

Részletesebben

Í ü ú ü ü ü ü ú ű ű Á ü ü ű ü ű ű ü ü ü ü ü ü ü ű ű ű ű ű ü ű ü ű ü ü ű Ö ű ű ű ü Ö Í ü ű ü ű ű ű ű Í ü ű ű ü ű ű ü ű ü ű ü ű ű ü ű ű ű ű ű ü ü ü ű ü ű ü Í ű ü ű ű ű ü ű ü ü ű ü ű ü ű ü ű ű ű ű ü ü ü ü

Részletesebben

Ü Ö Á Á Á Á É É Ü ű ű ű ű Á Ú Ü Ü ű Á Ú Ü Á Ü Ü Ü ű É Ü É Á ÜÜ Ü Á Ü Ü Ü Ü Ü Ü ű Ú ű ű ű Ü Ú Ü Ü ű Ü ű ű ű ű ű ű ű ű ű Ü Ü ű ű ű ű ű Ü Ü Ü Ú Ü Ü ű Ü Ü ű Ú Ú Ü ű ű Ü Ü Ü ű ű Ú ű Ő Ü Ü Ü Ü Ü Ö Ú ű Ú ű ű

Részletesebben

ü Í Í Í Í Í Í Ö Í Í ú ő ü Ú ő Í Í Í ü ü ő ő ő ú Í ú ő Ó Í ő ü ű ű Í ő Í ű ű Í ú Í ú ü ú ő ő ü Ü Í Í ú Ó ű ő Í ő ő ü ő ő ő Í Í ü ü ú Ú ü ü ü ő ű ü ő ő ú ő ü ő ú ő ő ő ű ő ő ü ü ű ü ő ü ő ú ő ő ü ő ő ő ü

Részletesebben

ö Ö ü ö ü ö Ö í ü ö ü ű ö ö í ö ö ö ö í ü í ö í ö ö ü ú ö í ö ö ö í ö ú ü ö ö ö ű ö ü í í ö í í ö ö ö ü Í í Ú ú ü ű ö í ű ö ö ö ü ú ö ö í ö í ú ö ö ö ö Ö ü Ö ű ö Ö ü ö ö ö ö ü ű ö í ú í Á ü í í ö ü ö Ö

Részletesebben

Ü É É ü ü ú ú Á ü ú ü ú ú ú ü ű É ü ü Ü É Á Á Á ú ü Ö Á ű ű ú ű É ú Ű ű ü ü ú ű ü ú ü ű ü ú ú ü Ú ú Ó ú ü ű ü Í ü ú ü ü ü ü ú ü ú ú ü ú ü ú ű ű ü Ü Ű ú ü ű ú ű ú ú ü Ü ü ü Ü ü Ü ü ü Ó Ö ü Ú ú ü ú ű ü ú

Részletesebben

ő ú É É ő ő ő ő ő ű ő ő ő ő ő ő ő ú ű ő ú ü ü ő ő ü ő ú ú ü ő ő ő Ó É ő ő ő ő ő ő ő ő ő ü ő ő ő Í ü ű ő ő Í ü ő úú ú ű ü É Ő Í ü ő ő ő ő ü ő ű ő ü ő ü Ű ü ü ú ü ü ü ü ú ő ő ő ő ű ő ő ú ü ő ü ő ő ű ü ő

Részletesebben

É É ő ő ő ő Ü ú ú ő ú ú ú ú Ú ő ű ú ű ú ő ú ú ú É É ú Ú ő ő ú ú Ó Ó ú ú ú ő É É Ü Ó É ő ű ú ő ő É ú ú ú ő ő ő ő ő ú ő ő ú ú ú ű ő ő ő ű ő ő ú ő ú ú Ó ő ú ú ú ú ú ő ú ő Ó ő ő ő ú ú ő ő ő ú ű ú ű ű ű ú ő

Részletesebben

Í ú Í Ú É Á É Á Ü Ü Ü É Ü Á É Á Á Í Á Á Á Á É É Á Á Ú É ú Í Ú Í Í ú ú ú Í ú ú ú ú Í ú Ú ú ú ú ú ú ú ú Í Í Í Í Ú Í ú Ú Ú Ö Í ú ú Ú É Ú É ú ű ú ú ú ú ú ú ű ű ú Í ú ú Ú É ú ú ű ú ú ú ú Ú ű Ú ú Ú ú Ú É ű ű

Részletesebben

Ö Ú É ő ú Ü Ú É É ö ú ő ú ú ú ú ö ö ú ő ú ú ö ú Ő ö ő Ö Ú Ó ö ü ú Ü ö ú ü ü ú Ü Ú Ö Ú É ü Ú Ó ú Ú É É ő ú ő ő Ö ö Ö ü Ó Ú ú É ú ú ö úú ú ö Ü Ú É ö ő ő Ó É Ú Ú Ú Ó É É Ü É Ú Ú É ú ö ú ö ő Ú É ö ü ö ő ü

Részletesebben

ű ő Ü ő Ü ő ő ő ő ő ő ő Ó Ú Ú Ü Ú ű Ú Ö ő ő Ó ő Ú ő ő Ú Ú ű ő ő ő ő ő Ú ő ő ő ű ő Ú Ú ő ő ő ő ő Ü ő Ú ő ő ő ű ő Ú Ú ő Ú ő Ú ő Ü ő ő Ö ő ő Ú ő Ú Ú Ü ű Ö ű Ö Ó ő Ó Ú ő ő ő ű ő Ó Ú ő Ü Ú Ü ő ű ő ő ű ő ő ő

Részletesebben

ű ű ű ö ö ö ö ú ö ö ö ú ö ö ö ö ú ö ö ö ö ú ú ú ö ö ö ú ú ú ú ö ö ö ú ű ű ű ú ú ö ö ö ö ú ú ö ű ö ö ö ö ö ö ű ú ö ú ö ö ö ö ö ö ö ö ö ö ű ú ú ö ö ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ú ö ö ú ú ú ö ú ú ú ű ú

Részletesebben

Ó Á Á ű Ü Á Á ű ű ű ű ű Á ű ű Ö ű Á Á Á Ú Ú Á Á Ú Ü Á Ö Ú Ó Ó Ő ű ű Ő ű ű ű ű ű ű ű ű ű ű Ú Ő ű ű ű Á ű ű ű Ü Ü Ü Ú Ó Ü Ü Ö ű Ü Ú Ó Ó Ó ű Ü Ü Ü Ü Á Á Á Ö Ú ű ű ű ű Ö Á ű Ö Ö Ö ű Ú Ó Ö Ö Ö ű ű ű Ú Ú Ö

Részletesebben

ő ö ú ö ű ü ő Ö ő ő ő ő ö ö ö ö Ü Ö Ö Ö Ö ő ő Ö Ú Ő ő Ü ö ő ő ő ő ö ú ö ö ö ő ö ú ö ú ő ű ú ö ú ü ű ö Ú ü ü ö ő ő Ó ÜÜ ő ő ö ö ű ö ö Ü Ó ö ö ú ö ú ű ö ú ö ú ö ö ö ű ő ö ő ö ő ö ú ő ő ő ő ő ú ő ő ő ö ú

Részletesebben

Í Í Ü Á ú Ú É ú Ú Í ű ú ú ú ú ú Í ú ú Ú ú ú ú Ú É ú ű ú ú ű ú ú Í ű ú ú ú Ú É ú ú ú ű ú Ú ű ú Í ű ú ú ú Á ú Ú É É ú ú ú ú ú Á Í ú ú Í Ú É ú ú ú Í Ü ű ú Í ú ú ű ú ú Í Í ú Í Ú É ú ű ú ú ú Í ű ú ú ú ű ű ű

Részletesebben

ü ű Ü ü Ü ü Ü ü ü Ó ü ü ü ü ü ü ü ü ű ű ü ü ü ü ü ű ű ü ü Ú ű ü Ú ű ü ü ü ü ü ü ű Ú Ú ű ü ü ü ü ü ü ü ü ü ü ü ü ü ű ű ü Ú ű ü ü ü ü ü ű ü Ó Ó Ö Ó Ó ü Ö Ó Ü Ó Ó Ó Ó Ó Ö Ó Ó Ö Ó Ó Ó Ó Ü Ü Ú Ó Ó Ö Ó Ó Ó ű

Részletesebben

Í Ú ü Á Á ü ű ü ü Ö É Ő ű ű ú ú ű É ű Í Ü É ü ü Ü úü ü ü Í ú ü Ő ű Í ű Í Ú Í Ú ü ú ű ű Ú ű É ú ú Í ü ü Ú Ú Ú Ú Á ű ü ü Í Ú Á Á ű ü ü Ú Á ű ü ú Ú ü ü Ú Ö É Ö ü ú ú ú ü ü ú Ö Ü ü Ü ú üü Á ú É Í É Í Í ű Á

Részletesebben

Ü ő Á ü ú ü Ó ú ő ú ú ő ü ü Á ú ü Í Ó ú ü ú ü ü Á Á ú ő ú ü ü ő Ö ő Í ő ü ő ü ű ü ú ú ü ü ú ő ű ú ú Á Á Á ő ő ú Ó Ö Á Ö ü ő Á ü ü ü ü ő ű üü ü ő ü ő ü ü Ú ú ü Í ú ü ü ü ő ő ő Á ő ő Ó Ó Á ő ü ü Ó ő ú ő

Részletesebben

Ü Í ú Í É Ú É É Ú Ó ú ü ü ü ú ú Ő ú ú Í ú ú ú ú ű ú ú Á ú ú ú ú ú ú ü ú ü ű É ú ú ű ü ü ú ú ú ú ü ú ü Ú ü ú ú ü ű ú ü ü ü Í ü ú ú ü ú ü ü Ú ü ü ú Ú Á ü ű ü ű ú ú ü ü Ú ü ü ü ü ü ű ű ü ú ú Í ü ú ű ú Ú ü

Részletesebben

ü ő ő Á Á Á Á ú ú ő Í Á Ö Á ü Á ü ő ű ú ü ő ö ü ü ü ú ú ő ö ö ú Á Á Á ü ő ő ű ö ü ö ő ö ű ú ű ú ő ö ú ő ö ü ő ü ü ö ö ő ü ü ű ő ü ö ü ö ő ő ő ö ü ő ü ő ü ö ú ú ü ö ö ü ö ü ő ö ű ű ü ö ü ő ő ú ő ú ő ő ö

Részletesebben

ö Ö Á ö ö ü ö É ű ö ö ú ö ö ö ö Á ö ö ö ö ö ö ü ö ö ü Ö ö ö ú ú ú ö ú ö ü ö ü ö ö ö ö ö ö ö ű ö ö ö ö ö ö ü ö ö ú ö ú ö ö Á ö ö ü ú ü ö ú ű ö ö ö ö ö ö ö É É Í ö É ü É ö ö ű ö ö ö ö ö ü ú üü ö ö ü ö ö

Részletesebben

Ö Á Ö Á ú ú ú ú ú ú ú ú ú ú Ú ú ú ű É ú ú Ó Á ú ú ú ú ú ú Ú ú ú ű ű ű ű Á ú ú ú ú É Ó ú ű ű Á ú ú ú ú Á ú ú ú ú ú ű ú ű ú ű ű ű ű ú Ú ú ű Ú ú ú ú ú Ö É Á Á Á Á ú Á Ú Ü ű Á Á Á Ö É Ú Á É Ü Ü ú Ú ú ú Ú Ú

Részletesebben

Í Á Ó É ö ő Ö ö ő ü ő ü ő ü ö ö ő Ö ú ő ő ú ü ő ő ü ő ő ő ú ö ö ő ű ö ö ü ű ő ö ú ö ú ü ü ű É É É ö ö ú ű ő ú ő ú ő ű ö ö ü ö ű ö ú ö ú ü ú ő ő ö ü ö ű É É ö ö ú ő ö ő Ö ű ú ö ő ö ö ü ő ő ő ö ű ö ő ő ö

Részletesebben

É Ö É É Ö É É Í Ü Ü É Ó ö ú í Á ö í ö Ü ú í ú ö í ö ö í ü ö í ü ü ö ö ö í ü ü ö ú í ö ö ö í ü ü ú í ú í ú ú ú ö ü ö ú í ö ú ü ú ö ö ú ö Á í ö Ü Í Ü ö ö Ü Ó ö ü É í ö í ü ö í ö í í ú í í ü ö ö í ü ö ö í

Részletesebben

É ű ű ú ű ú ű ű ű ű ú ű ú ű Ü Ú Ú ú ű ú ú ú Ú Ú ú Ü ú Ó ú ú É Ő É ú ű ú Ü Ö ú Ö Ö ú ú Ü ú ú ú Ó ú Ö Ó ú ú Ü ű ú ú Ö Ü É Ú Ú Ú Ú É ű Ú Ö ú ú ű ú ú Ú ű ú ű Ú Ü ú Ó ú Ó ú Ü Ó É Ö É ú ú ú ú É ú Ü Ü ú ú ú ú

Részletesebben

ű Ú Ü Ü Ü Ú Ű ű ű Ú Ú ű Ü Ú ű ű ű Ú Ü Ú ű Ú ű Ú Ú Ű Ú Ú Ű ű Ú Ú ű Ú Ú Ú ű Ú Ú ű Ú ű Ú Ú Ú Ú ű Ú Ú ű Ú ű ű ű Ú ű ű Ú Ó Ü Ü Ú Ú Ú ű ű ÜÜ Ú Ü Ú Ü ű Ú Ü Ü ű Ú Ú Ü Ú ű Ú Ú Ö Ü Ü Ú Ú Ú Ú Ü Ú Ö Ü Ú Ö Ü Ü ű Ú

Részletesebben

Á Á Á Á Á Á Á Ú Ő Ő Ő Á Á Ú Á Á Á Ő Ú Ú Á Ú Ú Ú Ú Ú Ú Ő Ű Ú Ő Ú Ú Ú Ú Á Á Ú Ő Ő Ő Ő Ú Á Ő Ő Ű Ő Ú Á Ú Ő Ő Á Ú Ő Ő Ú Ú Ú Ú Á Á Ű Á Á Ő Á Á Ú Á Á Á Ú Ú Ú Ő Ú Ú Ú Ú Ő Ú Ő Ő Ő Ú Ő Ő Ő Ú Ű Ő Ú Ő Á Ú Ő Ú Á Á

Részletesebben

É Ü ú ü Ü Ü ú Ü Ü ü ü Ü ú ú ú ű ü É Ü É Í Ó É ü ű Ü É ü ü É Ü Í Ó Ó Ó Ü Ó Í Ó Ó Ó Í Ü ü Ó Ö Ü ü ü Ü Ü ű Ü Ö Ü É Ü É Ü É É É É É ű Ó É Ö Ö ü ü ú ú ú Ü Ü Ü ú ú Ü ú ú ú ú ú ú Ü ú ú É Ú ü Ú Ú Í Í Ú É Ü Ü Í

Részletesebben

ú Á É ű ű Á ú ú ú Ú ű ú ű Ö ű ú ű É ú ú Ü Ú ú ú ú ú Ó Ú ú Ú Ú ú ú ú ú Ú Ú Ő É ú Á ú ú ú Á ú ú Á Á ú ú ű ú É ű ú ű ú ú ú ú ű ú É ű ú ű Ö Ü ú Ú ú ú Ú ú Ú ű ű ú ú ű É Ú ű Á ú ú ú ú Á ú ú ű ű ú ú ú ú ú ú Á

Részletesebben