Diszkrét matematika 1. középszint

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Diszkrét matematika 1. középszint"

Átírás

1 Diszkrét matematika 1. középszint sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék sz

2 Diszkrét matematika 1. középszint sz 2. A logikai m veletek tulajdonságai, ítéletlogikai tételek Állítás 1 (A (B C)) ((A B) C), (A (B C)) ((A B) C) (asszociativitás); 2 (A B) (B A), (A B) (B A) (kommutativitás); 3 (A (B C)) ((A B) (A C)), (A (B C)) ((A B) (A C)) (disztributivitás); 4 ( (A B)) ( A B), ( (A B)) ( A B) (De Morgan); 5 ((A B) A) B; 6 ((A B) (B C)) (A C) (szillogizmus); 7 ((A B) (B A)) (A B). 8 (A B) ( B A) (a kontrapozíció tétele);

3 Diszkrét matematika 1. középszint sz 3. A logikai m veletek tulajdonságai, ítéletlogikai tételek Bizonyítás (példa) 1 A (B C) (A B) C (a logikai vagy asszociativitása) A B C B C A (B C) A B (A B) C (A (B C)) ((A B) C) i i i i i i i i i i h i i i i i i h i i i i i i h i i i i i i i h h i i i h i i h i h i i i i i i h h h i i i i h h h h h h h i

4 Diszkrét matematika 1. középszint sz 4. Kvantorok Kvantorok egzisztenciális kvantor: létezik, van olyan. univerzális kvantor: bármely, minden. Példa V (x): x veréb. M(x): x madár. Minden veréb madár. Van olyan madár, ami veréb. Minden veréb madár, de nem minden madár veréb. ( x(v (x) M(x))) ( x(m(x) V (x))). x(v (x) M(x)). x(m(x) V (x)).

5 Diszkrét matematika 1. középszint sz 5. Formulák A formulák predikátumokból és logikai jelekb l alkotott mondatok. (Formulák) A predikátumok a legegyszer bb, ún. elemi formulák. Ha A, B két formula, akkor A, (A B), (A B), (A B), (A B) is formulák. Ha A egy formula és x egy változó, akkor ( xa) és ( xa) is formulák. Példa Minden veréb madár, de nem minden madár veréb. ( x(v (x) M(x))) ( x(m(x) V (x))). Ez egy formula. Ha nem okoz félreértést, a zárójelek elhagyhatóak.

6 Diszkrét matematika 1. középszint sz 6. Zárt/nyitott formulák Ha A egy formula és x egy változó, akkor ( xa) és ( xa) formulákban az x változó minden el fordulása az A formulában a kvantor hatáskörében van. Ha egy formulában a változó adott el fordulása egy kvantor hatáskörében van, akkor az el fordulás kötött, egyébként szabad. Ha egy formulában a változónak van szabad el fordulása, akkor a változó szabad változó, egyébként kötött változó. Ha egy formulának van szabad változója, akkor nyitott formula, egyébként zárt formula. Példa Gy(x, y): x gyereke y -nak. y Gy(x, y): x-nek létezik szül je.

7 Diszkrét matematika 1. középszint sz 7. Zárt/nyitott formulák Példa E(x): x egy egyenes. P(x): x egy pont. I (x, y): x illeszkedik y -ra. E(x), P(x), I (x, y) (elemi) nyitott formulák. A(x, y) legyen E(x) P(y) I (x, y). Az x egyenes illeszkedik az y pontra. B(x, y) legyen P(x) P(y) (x = y). Az x és y pontok különböz ek. C(x) legyen y (E(x) P(y) I (x, y)). Van olyan y pont, ami illeszkedik az x egyenesre. Itt x szabad, y kötött változó. D() legyen x (E(x) y (E(x) P(y) I (x, y))). Minden x egyenes esetén van olyan y pont, ami illeszkedik az x egyenesre. Itt x, y kötött változó.

8 Diszkrét matematika 1. középszint sz 8. Halmazok Halmazelméletben az alapvet fogalmak predikátumok, nem deniáljuk ket: A halmaz (rendszer, osztály, összesség,...) elemeinek gondolati burka. x A, ha az x eleme az A halmaznak. A halmazok alapvet tulajdonságai axiómák, nem bizonyítjuk ket. Példa: Meghatározottsági axióma Egy halmazt az elemei egyértelm en meghatároznak. Két halmaz pontosan akkor egyenl, ha ugyanazok az elemeik. Egy halmaznak egy elem csak egyszer lehet eleme.

9 Diszkrét matematika 1. középszint sz 9. Halmazok Részhalmazok Az A halmaz részhalmaza a B halmaznak: A B, ha x(x A x B). Ha A B-nek, de A B, akkor A valódi részhalmaza B-nek: A B. A részhalmazok tulajdonságai: Állítás (Biz. HF) 1 A A A (reexivitás). 2 A, B, C (A B B C) A C (tranzitivitás). 3 A, B (A B B A) A = B (antiszimmetria). Halmazok egyenl sége egy további tulajdonságot is teljesít: 3'. A, B A = B B = A (szimmetria).

10 Diszkrét matematika 1. középszint sz 10. Halmazok A halmaz és F(x) formula esetén {x A : F(x)} = {x A F(x)} halmaz elemei pontosan azon elemei A-nak, melyre F(x) igaz. Példa {z C : Im(z) = 0}: valós számok halmaza. {z C n Z + : z n = 1}: komplex egységgyökök halmaza.

11 Diszkrét matematika 1. középszint sz 11. Halmazok Speciális halmazok Üres halmaz Annak a halmaznak, melynek nincs eleme a jele:. A meghatározottsági axióma alapján ez egyértelm. A A halmaz A Halmaz megadása elemei felsorolásával. Annak a halmaznak, melynek csak az a elem az eleme a jelölése: {a}. Annak a halmaznak, melynek pontosan az a és b az elemei a jelölése: {a, b},... Speciálisan = {}, illetve, ha a = b, akkor {a} = {a, b} = {b}.

12 Diszkrét matematika 1. középszint sz 12. M veletek halmazokkal Az A és B halmazok uniója: A B az a halmaz, mely pontosan az A és a B elemeit tartalmazza. Általában: Legyen A egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor A = {A : A A} = A AA az a halmaz, mely az A összes elemének elemét tartalmazza: A = {x A A : x A}. Speciálisan: A B = {A, B}. Példa {a, b, c} {b, c, d} = {a, b, c, d} {z C : 0 < arg(z) π } 2 {z C : π 2 = {z C : Im(z) > 0} < arg(z) < π} =

13 Diszkrét matematika 1. középszint sz 13. M veletek halmazokkal(az unió tulajdonságai) Állítás 1 A = A 2 A (B C) = (A B) C (asszociativitás) 3 A B = B A (kommutativitás) 4 A A = A (idempotencia) 5 A B A B = B Bizonyítás 1. x A (x A) (x ) x A. 2. x (A (B C)) (x A) (x (B C)) (x A) ((x B) (x C)) ((x A) (x B)) (x C) (x (A B)) (x C) x ((A B) C) 3-as, 4-es hasonló. 5. : A B A B B, de B A B mindig teljesül, így A B = B. : Ha A B = B, akkor A minden eleme eleme B-nek.

14 Diszkrét matematika 1. középszint sz 14. M veletek halmazokkal Az A és B halmazok metszete: A B az a halmaz, mely pontosan az A és a B közös elemeit tartalmazza: A B = {x A : x B}. Általában: Legyen A egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor A = {A : A A} = A AA a következ halmaz: A = {x A A : x A}. Speciálisan: A B = {A, B}. Példa {a, b, c} {b, c, d} = {b, c}. Ha E n = {z C : z n = 1} az n-edik egységgyökök halmaza, akkor E 2 E 4 = E 2 E 6 E 8 = E 2 E n E m = E (n,m) n=1e n = E 1 = {1}

15 Diszkrét matematika 1. középszint sz 15. M veletek halmazokkal Ha A B =, akkor A és B diszjunktak. Ha A egy halmazrendszer, és A =, akkor A diszjunkt, illetve A elemei diszjunktak. Ha A egy halmazrendszer, és A bármely két eleme diszjunkt, akkor A elemei páronként diszjunktak. Példa Az {1, 2} és {3, 4} halmazok diszjunktak. Az {1, 2}, {2, 3} és {1, 3} halmazok diszjunktak, de nem páronként diszjunktak. Az {1, 2}, {3, 4} és {5, 6} halmazok páronként diszjunktak.

16 Diszkrét matematika 1. középszint sz 16. M veletek halmazokkal A metszet tulajdonságai Állítás (Biz. HF) 1 A = 2 A (B C) = (A B) C (asszociativitás) 3 A B = B A (kommutativitás) 4 A A = A (idempotencia) 5 A B A B = A

17 Diszkrét matematika 1. középszint sz 17. M veletek halmazokkal Az unió és metszet disztributivitási tulajdonságai: Állítás 1 A (B C) = (A B) (A C) 2 A (B C) = (A B) (A C) Bizonyítás 1 x A (B C) x A x B C x A (x B x C) (x A x B) (x A x C) (x A B) (x A C) x (A B) (A C) 2 HF. hasonló

18 Diszkrét matematika 1. középszint sz 18. Különbség, komplementer Az A és B halmazok különbsége az A \ B = {x A : x B}. Egy rögzített X alaphalmaz és A X részhalmaz esetén az A halmaz komplementere az A = A = X \ A. Állítás A \ B = A B Bizonyítás x A \ B x A x B x A x B x A B

19 Diszkrét matematika 1. középszint sz 19. Komplementer tulajdonságai Állítás (Biz. HF) Legyen X az alaphalmaz. 1 A = A; 2 = X ; 3 X = ; 4 A A = ; 5 A A = X ; 6 A B B A; 7 A B = A B; 8 A B = A B. A 7. és 8. összefüggések az ún. de Morgan szabályok.

20 Diszkrét matematika 1. középszint sz 20. Komplementer tulajdonságai Bizonyítás(Példa).. x A B (x A B) (x A x B) (x A) (x B) (x A) (x B) x A B

21 Diszkrét matematika 1. középszint sz 21. Szimmetrikus dierencia Az A és B halmazok szimmetrikus dierenciája az A B = (A \ B) (B \ A). Állítás(Biz. HF) A B = (A B) \ (A B)

22 Diszkrét matematika 1. középszint sz 22. Hatványhalmaz Ha A egy halmaz, akkor azt a halmazrendszert, melynek elemei pontosan az A halmaz részhalmazai az A hatványhalmazának mondjuk, és 2 A -val jelöljük. A =, 2 = { } A = {a}, 2 {a} = {, {a}} A = {a, b}, 2 {a,b} = {, {a}, {b}, {a, b}} Állítás (Biz. kés bb) 2 A = 2 A

23 Relációk Diszkrét matematika 1. középszint sz 23. Relációk A relációk a függvényfogalom általánosításai; hagyományos függvények pontos deniálása; többérték függvények kapcsolatot ír le =, <,, oszthatóság,...

24 Relációk Diszkrét matematika 1. középszint sz 24. Rendezett pár Adott x y és (x, y) rendezett pár esetén számít a sorrend: {x, y} = {y, x} (x, y) (y, x). Az (x, y) rendezett párt a {{x}, {x, y}} halmazzal deniáljuk. Az (x, y) rendezett pár esetén a x az els, az y a második koordináta. Az X, Y halmazok Descartes-szorzatán (direkt szorzatán) az X Y = {(x, y) : x X, y Y } rendezett párokból álló halmazt értjük.

25 Relációk Diszkrét matematika 1. középszint sz 25. Binér relációk Adott X, Y halmazok esetén az R X Y halmazokat binér (kétváltozós) relációknak nevezzük. Ha R binér reláció, akkor gyakran (x, y) R helyett xry -t írunk. Példa 1. I X = {(x, x) X X : x X } az egyenl ség reláció. 2. {(x, y) Z Z : x y} az osztója reláció. 3. F halmazrendszer esetén az {(X, Y ) F F : X Y } a tartalmazás reláció. 4. Adott f : R R függvény esetén a függvény grakonja {(x, f (x)) R R : x R}. Ha valamely X, Y halmazokra R X Y, akkor azt mondjuk, hogy R reláció X és Y között. Ha X = Y, akkor azt mondjuk, hogy R X -beli reláció (homogén binér reláció).

26 Relációk Diszkrét matematika 1. középszint sz 26. Relációk értelmezési tartománya, értékkészlete Ha R reláció X és Y között (R X Y ) és X X, Y Y, akkor R reláció X és Y között is! Az R X Y reláció értelmezési tartománya a értékkészlete Példa dmn(r) = {x X y Y : (x, y) R}, rng(r) = {y Y x X : (x, y) R}. 1. Ha R = {(x, 1/x 2 ) : x R}, akkor dmn(r) = {x R : x 0}, rng(r) = {x R : x > 0}. 2. Ha R = {(1/x 2, x) : x R}, akkor dmn(r) = {x R : x > 0}, rng(r) = {x R : x 0}.

27 Relációk Diszkrét matematika 1. középszint sz 27. Relációk kitejesztése, lesz kítése, inverze Egy R binér relációt az S binér reláció kiterjesztésének, illetve S-et az R lesz kítésének (megszorításának) nevezzük, ha S R. Ha A egy halmaz, akkor az R reláció A-ra való lesz kítése (az A-ra való megszorítása) az Példa R A = {(x, y) R : x A}. Legyen R = {(x, x 2 ) R R : x R}, S = {( x, x) R R : x R}. Ekkor R az S kiterjesztése, S az R lesz kítése, S = R R + 0 (ahol R + 0 a nemnegatív valós számok halmaza).

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 9. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Halmazok Diszkrét

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 017. ősz 1. Diszkrét matematika 1. középszint. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy 1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

Halmazelméleti alapfogalmak

Halmazelméleti alapfogalmak Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,

Részletesebben

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében? Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Matematikai logika és halmazelmélet

Matematikai logika és halmazelmélet Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete

Részletesebben

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:

Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk: 1. Halmazok, relációk, függvények 1.A. Halmazok A halmaz bizonyos jól meghatározott dolgok (tárgyak, fogalmak), a halmaz elemeinek az összessége. Azt, hogy az a elem hozzátartozik az A halmazhoz így jelöljük:

Részletesebben

A matematika nyelvér l bevezetés

A matematika nyelvér l bevezetés A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

1.1 Halmazelméleti fogalmak, jelölések

1.1 Halmazelméleti fogalmak, jelölések 1.1 Halmazelméleti fogalmak, jelölések Alapfogalmak (nem definiáljuk) Halmaz x eleme az A halmaznak x nem eleme A halmaznak Jelölések A,B,C, x A x A SiUDWODQ V]iRN Halmaz megadása: Elemeinek felsorolásával:

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

D(x, y) - x osztója y-nak

D(x, y) - x osztója y-nak 1. Mondjon legalább három példát predikátumra! P (x) - x prím M(x, y) - x merőleges y-ra E(x) - x egyenes D(x, y) - x osztója y-nak 2. Sorolja fel a logikai jeleket! - és (konjunkció) - vagy (diszjunkció)

Részletesebben

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1 3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom?

Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom? Definíciók, tételkimondások Mondjon legalább három példát predikátumra. Sorolja fel a logikai jeleket. Milyen kvantorokat ismer? Mi a jelük? Hogyan kapjuk a logikai formulákat? Mikor van egy változó egy

Részletesebben

DiMat II Végtelen halmazok

DiMat II Végtelen halmazok DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. 1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,

Részletesebben

Diszkrét matematika HALMAZALGEBRA. Halmazalgebra

Diszkrét matematika HALMAZALGEBRA. Halmazalgebra Halmazalgebra Ebben a fejezetben összefoglaljuk a halmazokról tanult középiskolai ismeretanyagot, és néhány érdekességgel, módszerrel ki is egészítjük. A halmaz alapfogalom. Mondhatjuk, hogy tárgyak, fogalmak,

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. EÖTVÖS LORÁND TUDOMÁNYEGYETEM - INFORMATIKAI KAR Diszkrét matematika I. Vizsgaanyag Cserép Máté 2009.01.20. A dokumentum a programtervező informatikus szak Diszkrét matematika I. kurzusának vizsgaanyagát

Részletesebben

A relációelmélet alapjai

A relációelmélet alapjai A relációelmélet alapjai A reláció latin eredet szó, jelentése kapcsolat. A reláció, két vagy több nem feltétlenül különböz halmaz elemei közötti viszonyt, kapcsolatot fejez ki. A reláció értelmezése gráffal

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Halmazelmélet. 2. fejezet 2-1

Halmazelmélet. 2. fejezet 2-1 2. fejezet Halmazelmélet D 2.1 Két halmazt akkor és csak akkor tekintünk egyenl nek, ha elemeik ugyanazok. A halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele:. D 2.2 Az A halmazt a B halmaz

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Diszkrét matematika I. gyakorlat 1. gyakorlat Gyakorlatvezet : Dr. Kátai-Urbán Kamilla Helyettesít: Bogya Norbert 2011. szeptember 8. Tartalom Információk 1 Információk Honlapcímek Számonkérések, követelmények

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Számítási intelligencia

Számítási intelligencia Botzheim János Számítási intelligencia Budapesti Műszaki és Gazdaságtudományi Egyetem, Mechatronika, Optika és Gépészeti Informatika Tanszék Graduate School of System Design, Tokyo Metropolitan University

Részletesebben

SZÁMÍTÁSTUDOMÁNY ALAPJAI

SZÁMÍTÁSTUDOMÁNY ALAPJAI SZÁMÍTÁSTUDOMÁNY ALAPJAI INBGM0101-17 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 2. gyakorlat Az alábbi összefüggések közül melyek érvényesek minden A, B halmaz

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz

Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz Halmazok 1. Feladat. Adott négy halmaz: az alaphalmaz, melynek részhalmazai az A, a B és a C halmaz: U {1, 2,,..., 20}, az A elemei a páros számok, a B elemei a hárommal oszthatók, a C halmaz elemei pedig

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Dr. Vincze Szilvia;

Dr. Vincze Szilvia; 2014. szeptember 17. és 19. Dr. Vincze Szilvia; vincze@agr.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia/oktatas/oktatott_targyak/index/index.html 2010/2011-es tanév I. féléves tematika

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

DISZKRÉT MATEMATIKA I. TÉTELEK

DISZKRÉT MATEMATIKA I. TÉTELEK DISZKRÉT MATEMATIKA I. TÉTELEK Szerkesztette: Bókay Csongor 2011 őszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. január 16. Ez a Mű a Creative Commons

Részletesebben

Bevezetés a matematikába 1. Definíciók, vizsgakérdések

Bevezetés a matematikába 1. Definíciók, vizsgakérdések Bevezet a matematikába 1 Definíciók, vizsgakérdek Tételek15 Mi lehet predikátumok értéke? Hogyan jelöljük?15 Mondjon legalább három példát predikátumra15 Sorolja fel a logikai jeleket15 Milyen kvantortokat

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika 1/36

Logika es sz am ıt aselm elet I. r esz Logika 1/36 1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika

Részletesebben

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a

Részletesebben

Halmazok. Halmazelméleti alapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai.

Halmazok. Halmazelméleti alapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. Halmazok Halmazelméleti alapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. 1. lapfogalmak halmaz és az eleme fogalmakat alapfogalmaknak tekintjük, nem deniáljuk ket. Jelölés: x

Részletesebben

1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a

1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a 1. 1. hét 1.1. Alapfogalmak Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a (2, 3) Egyenes normál vektora egy pontban: egy olyan vektor

Részletesebben

2011. szeptember 14. Dr. Vincze Szilvia;

2011. szeptember 14. Dr. Vincze Szilvia; 2011. szeptember 14. Dr. Vincze Szilvia; vincze@fin.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia Első pillantásra hihetetlennek tűnik, hogy egy olyan tiszta és érzelmektől mentes tudomány,

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

2014. szeptember 24. és 26. Dr. Vincze Szilvia

2014. szeptember 24. és 26. Dr. Vincze Szilvia 2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai

Részletesebben

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport Diszkrét matematika gyakorlat 1. ZH 2016. október 10. α csoport 1. Feladat. (5 pont) Adja meg az α 1 β szorzatrelációt, amennyiben ahol A {1, 2, 3, 4}. α {(1, 2), (1, 3), (2, 1), (3, 1), (3, 4), (4, 4)}

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

LÁNG CSABÁNÉ TELJES INDUKCIÓ, LOGIKA, HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK. Példák és feladatok

LÁNG CSABÁNÉ TELJES INDUKCIÓ, LOGIKA, HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK. Példák és feladatok LÁNG CSABÁNÉ TELJES INDUKCIÓ, LOGIKA, HALMAZOK, RELÁCIÓK, FÜGGVÉNYEK Példák és feladatok Lektorálta: Czirbusz Sándor c Láng Csabáné, 2010 ELTE IK Budapest 20101020 1. kiadás Tartalomjegyzék 1. Bevezetés...............................

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Elsőrendű logika szintaktikája és szemantikája Logika és számításelmélet, 3. gyakorlat 2009/10 II. félév Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Az elsőrendű logika Elemek egy

Részletesebben

Az informatika logikai alapjai

Az informatika logikai alapjai Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. Formulahalmaz kielégíthetősége Ezen az előadáson Γ-val egy elsőrendű logikai nyelv

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes 1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz

Részletesebben

SE EKK EIFTI Matematikai analízis

SE EKK EIFTI Matematikai analízis SE EKK EIFTI Matematikai analízis 1. Blokk A matematika minden ága foglalkozik halmazokkal, ezért fontos a halmazok általános tulajdonságainak vizsgálata. A halmazok általános tulajdonságaival a matematikának

Részletesebben

R c AxB R = {(x,y ~x E A 1\Y EB 1\x+ y < 7}vagy rövidenxry. A={O,2, 5} ésb = {l, 3, 6,

R c AxB R = {(x,y ~x E A 1\Y EB 1\x+ y < 7}vagy rövidenxry. A={O,2, 5} ésb = {l, 3, 6, ~2- CJl- ",lot&v~ o.. ~qfo5 Binér (kételemu) reláció A szorzatha1mazfogalmának felhasználásával megadhatjuk a reláció matematikai fogalmát. A relác két vagy több halmaz Descartes-féle szorzatának valamilven

Részletesebben

1. Halmazok, halmazműveletek. Nevezetes ponthalmazok a síkban és a térben. (x eleme az A halmaznak, x az A halmazhoz tartozik),

1. Halmazok, halmazműveletek. Nevezetes ponthalmazok a síkban és a térben. (x eleme az A halmaznak, x az A halmazhoz tartozik), 1. Halmazok, halmazműveletek. Nevezetes ponthalmazok a síkban és a térben Halmazok A halmaz a matematikában nem definiált fogalom. A halmazt alapfogalomnak tekintjük, nem tudjuk egyszerűbb fogalmakkal

Részletesebben

Kaposi Ambrus. University of Nottingham Functional Programming Lab. Hackerspace Budapest 2015. január 6.

Kaposi Ambrus. University of Nottingham Functional Programming Lab. Hackerspace Budapest 2015. január 6. Bizonyítás és programozás Kaposi Ambrus University of Nottingham Functional Programming Lab Hackerspace Budapest 2015. január 6. Bizonyítás, érvelés Példa: sáros a csizmám ha vizes a föld, esett az eső

Részletesebben

Relációk. 1. Descartes-szorzat

Relációk. 1. Descartes-szorzat Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram.. Descartes-szorzat A kurzuson már megtanultuk mik a halmazok

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.

HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van. HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x

Részletesebben

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. - Vizsga anyag 1 EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Diszkrét matematika I. Vizsgaanyag Készítette: Nyilas Árpád Diszkrét matematika I. - Vizsga anyag 2 Bizonyítások 1)

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1 Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 2 4. Oktatási módszer 2 5. Követelmények, pótlások 2 6. Tematika 2 6.1. Alapfogalmak, matematikai

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2009 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben