2. Logika gyakorlat Függvények és a teljes indukció

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2. Logika gyakorlat Függvények és a teljes indukció"

Átírás

1 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév

2 Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák

3 Definíció 1. Definíció Az f A B relációt függvénynek nevezzük, ha bármely x A, y B esetén, ha (x, y) f és (x, z) f, akkor y = z. Ekkor a függvényt a következőképp jelöljük: f : A B.

4 Definíció 1. Definíció Az f A B relációt függvénynek nevezzük, ha bármely x A, y B esetén, ha (x, y) f és (x, z) f, akkor y = z. Ekkor a függvényt a következőképp jelöljük: f : A B. Lazábban fogalmazva az f A B relációt függvénynek nevezzük, ha bármely x A esetén egyértelműen létezik olyan y B, hogy (x, y) f.

5 Definíció 1. Definíció Az f A B relációt függvénynek nevezzük, ha bármely x A, y B esetén, ha (x, y) f és (x, z) f, akkor y = z. Ekkor a függvényt a következőképp jelöljük: f : A B. Lazábban fogalmazva az f A B relációt függvénynek nevezzük, ha bármely x A esetén egyértelműen létezik olyan y B, hogy (x, y) f. Függvények esetén azt, hogy (x, y) f úgy szokás jelölni, hogy f(x) = y.

6 Definíció 1. Definíció Az f A B relációt függvénynek nevezzük, ha bármely x A, y B esetén, ha (x, y) f és (x, z) f, akkor y = z. Ekkor a függvényt a következőképp jelöljük: f : A B. Lazábban fogalmazva az f A B relációt függvénynek nevezzük, ha bármely x A esetén egyértelműen létezik olyan y B, hogy (x, y) f. Függvények esetén azt, hogy (x, y) f úgy szokás jelölni, hogy f(x) = y. FONTOS! Amíg kérdéses, hogy az adott reláció függvény-e avagy sem, szigorúan a (x, y) f vagy az x f y jelölés használandó

7 Példafeladat 1. Példa Függvény-e az alábbi reláció? Miért? f N N, x f y x < y

8 Példafeladat 1. Példa Függvény-e az alábbi reláció? Miért? Nem függvény. f N N, x f y x < y

9 Példafeladat 1. Példa Függvény-e az alábbi reláció? Miért? f N N, x f y x < y Nem függvény. Mert bármely rögzített x N esetén végtelen sok y N van, amelyre x < y és ezáltal x f y

10 Példafeladat 1. Példa Függvény-e az alábbi reláció? Miért? f N N, x f y x < y Nem függvény. Mert bármely rögzített x N esetén végtelen sok y N van, amelyre x < y és ezáltal x f y Már az is elég a cáfolathoz, ha egyetlen rögzített x N elemmel több y N áll relációban: Nem függvény, mert 3 f 4 és 3 f 5 is teljesül.

11 Önálló feladat 1. Feladat Függvény-e az alábbi reláció? Miért? f N N, x f y x = y

12 Önálló feladat 1. Feladat Függvény-e az alábbi reláció? Miért? f N N, x f y x = y Igen, az. Mert a reláció megadása alapján ha x, y N és (x, y) f illetve (x, z) f, akkor y = x = z. Ezzel f teljesíti a függvény definíciójában megadott feltételeket.

13 Házi feladatok Feladatok Függvény-e az alábbi reláció? Miért? A = {1, 2, 4}, B = {3, 6, 12}, f A B, x f y xy = 12 f N N, x f y x y Legyen P a prímszámok halmaza és f P P, x f y x y

14 Definíció 2. Definíció Legyen X A és f : A B, ekkor f(x) = {b B van olyan a X, hogy f(a) = b}

15 Példafeladat 2. Példa Adott egy f : A B függvény. X, Y A, bizonyítsa be, hogy f(x Y) f(x) f(y)

16 Példafeladat 2. Példa Adott egy f : A B függvény. X, Y A, bizonyítsa be, hogy f(x Y) f(x) f(y) Tegyük fel, hogy b f(x Y). Az a feladatunk, hogy belássuk, hogy ekkor b (f(x) f(y)).

17 Példafeladat 2. Példa Adott egy f : A B függvény. X, Y A, bizonyítsa be, hogy f(x Y) f(x) f(y) Tegyük fel, hogy b f(x Y). Az a feladatunk, hogy belássuk, hogy ekkor b (f(x) f(y)). Mivel b f(x Y), van legalább egy a (X Y), amelyre f(a) = b.

18 Példafeladat 2. Példa Adott egy f : A B függvény. X, Y A, bizonyítsa be, hogy f(x Y) f(x) f(y) Tegyük fel, hogy b f(x Y). Az a feladatunk, hogy belássuk, hogy ekkor b (f(x) f(y)). Mivel b f(x Y), van legalább egy a (X Y), amelyre f(a) = b. Nyílván a X és a Y és ezért f(a) = b f(x) illetve f(a) = b f(y).

19 Példafeladat 2. Példa Adott egy f : A B függvény. X, Y A, bizonyítsa be, hogy f(x Y) f(x) f(y) Tegyük fel, hogy b f(x Y). Az a feladatunk, hogy belássuk, hogy ekkor b (f(x) f(y)). Mivel b f(x Y), van legalább egy a (X Y), amelyre f(a) = b. Nyílván a X és a Y és ezért f(a) = b f(x) illetve f(a) = b f(y). Tehát b (f(x) f(y)) és éppen ezt akartuk bebizonyítani.

20 Önálló feladat 2. Feladat Adott egy f : A B függvény. X, Y A, bizonyítsa be, hogy f(x)\f(y) f(x\y)

21 Önálló feladat 2. Feladat Adott egy f : A B függvény. X, Y A, bizonyítsa be, hogy f(x)\f(y) f(x\y) Tegyük fel, hogy b (f(x)\f(y)). Az a feladatunk, hogy belássuk, hogy ekkor b f(x\y).

22 Önálló feladat 2. Feladat Adott egy f : A B függvény. X, Y A, bizonyítsa be, hogy f(x)\f(y) f(x\y) Tegyük fel, hogy b (f(x)\f(y)). Az a feladatunk, hogy belássuk, hogy ekkor b f(x\y). Mivel b (f(x)\f(y)), b f(x), de b f(y).

23 Önálló feladat 2. Feladat Adott egy f : A B függvény. X, Y A, bizonyítsa be, hogy f(x)\f(y) f(x\y) Tegyük fel, hogy b (f(x)\f(y)). Az a feladatunk, hogy belássuk, hogy ekkor b f(x\y). Mivel b (f(x)\f(y)), b f(x), de b f(y). Ezért van legalább egy a X, amelyre f(a) = b, de nincs olyan c Y, amelyre f(c) = b (tehát a Y ).

24 Önálló feladat 2. Feladat Adott egy f : A B függvény. X, Y A, bizonyítsa be, hogy f(x)\f(y) f(x\y) Tegyük fel, hogy b (f(x)\f(y)). Az a feladatunk, hogy belássuk, hogy ekkor b f(x\y). Mivel b (f(x)\f(y)), b f(x), de b f(y). Ezért van legalább egy a X, amelyre f(a) = b, de nincs olyan c Y, amelyre f(c) = b (tehát a Y ). Ezek alapján nyílván a (X\Y). Tehát b f(x\y) és éppen ezt akartuk bebizonyítani.

25 Házi feladatok Feladatok Adott egy f : A B függvény. X, Y A, bizonyítsa be, hogy f(a B) f(a) f(b) f(a) f(b) f(a B) f(a B) = f(a) f(b)

26 Házi feladatok Feladatok Adott egy f : A B függvény. X, Y A, bizonyítsa be, hogy Tipp f(a B) f(a) f(b) f(a) f(b) f(a B) f(a B) = f(a) f(b) Az első két feladatból következik a harmadik. (A halmazok egyenlőségét a kölcsönös tartalmazással is definiálhatjuk)

27 A teljes indukció elve 1. Tétel Ha M N olyan, hogy 1 M továbbá m+1 M minden m M esetén, akkor M = N.

28 Példafeladat 3. Példa Bizonyítsa be teljes indukcióval, hogy minden n N-re: n = n(n+1) 2

29 Példafeladat 3. Példa Bizonyítsa be teljes indukcióval, hogy minden n N-re: n = n(n+1) 2 Legyen M azon egészek halmaza, amelyre az állítás teljesül.

30 Példafeladat 3. Példa Bizonyítsa be teljes indukcióval, hogy minden n N-re: n = n(n+1) 2 Legyen M azon egészek halmaza, amelyre az állítás teljesül. Ha n = 1, akkor n(n+1) 2 = 1, tehát 1 M.

31 Példafeladat 3. Példa Bizonyítsa be teljes indukcióval, hogy minden n N-re: n = n(n+1) 2 Legyen M azon egészek halmaza, amelyre az állítás teljesül. Ha n = 1, akkor n(n+1) 2 = 1, tehát 1 M. Tegyük fel, hogy m M, ekkor m = m(m+1) 2.

32 Példafeladat 3. Példa Bizonyítsa be teljes indukcióval, hogy minden n N-re: n = n(n+1) 2 Legyen M azon egészek halmaza, amelyre az állítás teljesül. Ha n = 1, akkor n(n+1) 2 = 1, tehát 1 M. Tegyük fel, hogy m M, ekkor m = m(m+1) 2. Nyílván m+(m+1) = m(m+1) 2 +(m+1) = 2(m+1)+m(m+1) 2.

33 Példafeladat 3. Példa Bizonyítsa be teljes indukcióval, hogy minden n N-re: n = n(n+1) 2 Legyen M azon egészek halmaza, amelyre az állítás teljesül. Ha n = 1, akkor n(n+1) 2 = 1, tehát 1 M. Tegyük fel, hogy m M, ekkor m = m(m+1) 2. Nyílván m+(m+1) = m(m+1) 2 +(m+1) = 2(m+1)+m(m+1) 2. Ha kiemelünk (m+1)-et, akkor azt kapjuk, hogy m+(m+1) = (m+2)(m+1) 2, tehát m+1 M következik.

34 Példafeladat 3. Példa Bizonyítsa be teljes indukcióval, hogy minden n N-re: n = n(n+1) 2 Legyen M azon egészek halmaza, amelyre az állítás teljesül. Ha n = 1, akkor n(n+1) 2 = 1, tehát 1 M. Tegyük fel, hogy m M, ekkor m = m(m+1) 2. Nyílván m+(m+1) = m(m+1) 2 +(m+1) = 2(m+1)+m(m+1) 2. Ha kiemelünk (m+1)-et, akkor azt kapjuk, hogy m+(m+1) = (m+2)(m+1) 2, tehát m+1 M következik. Az 1. tétel alapján M = N és ezzel az állítást bebizonyítottuk.

35 Önálló feladat 3. Feladat Bizonyítsa be teljes indukcióval, hogy minden n N-re: n 1 = 2 n 1

36 Önálló feladat 3. Feladat Bizonyítsa be teljes indukcióval, hogy minden n N-re: n 1 = 2 n 1 Legyen M azon egészek halmaza, amelyre az állítás teljesül.

37 Önálló feladat 3. Feladat Bizonyítsa be teljes indukcióval, hogy minden n N-re: n 1 = 2 n 1 Legyen M azon egészek halmaza, amelyre az állítás teljesül. Ha n = 1, akkor 2 n 1 = 1, tehát 1 M.

38 Önálló feladat 3. Feladat Bizonyítsa be teljes indukcióval, hogy minden n N-re: n 1 = 2 n 1 Legyen M azon egészek halmaza, amelyre az állítás teljesül. Ha n = 1, akkor 2 n 1 = 1, tehát 1 M. Tegyük fel, hogy m M, ekkor m 1 = 2 m 1.

39 Önálló feladat 3. Feladat Bizonyítsa be teljes indukcióval, hogy minden n N-re: n 1 = 2 n 1 Legyen M azon egészek halmaza, amelyre az állítás teljesül. Ha n = 1, akkor 2 n 1 = 1, tehát 1 M. Tegyük fel, hogy m M, ekkor m 1 = 2 m 1. Nyílván n m = 2 m 1+2 m = 2 m+1 1, tehát m+1 M következik.

40 Önálló feladat 3. Feladat Bizonyítsa be teljes indukcióval, hogy minden n N-re: n 1 = 2 n 1 Legyen M azon egészek halmaza, amelyre az állítás teljesül. Ha n = 1, akkor 2 n 1 = 1, tehát 1 M. Tegyük fel, hogy m M, ekkor m 1 = 2 m 1. Nyílván n m = 2 m 1+2 m = 2 m+1 1, tehát m+1 M következik. Az 1. tétel alapján M = N és ezzel az állítást bebizonyítottuk.

41 Házi feladatok Feladatok Bizonyítsa be teljes indukcióval, hogy minden n N-re: (2n 1) = n n(n+1) = n n 3 = n+1 ) 2 ( n(n+1) 2

42 A klasszikus nulladrendű nyelv 3. Definíció Klasszikus nulladrendű nyelv en az rendezett hármast értjük, ahol L (0) = LC, Con, Form

43 A klasszikus nulladrendű nyelv 3. Definíció Klasszikus nulladrendű nyelv en az rendezett hármast értjük, ahol L (0) = LC, Con, Form LC = {,,,,,(,)} a nyelv logikai konstansainak a halmaza

44 A klasszikus nulladrendű nyelv 3. Definíció Klasszikus nulladrendű nyelv en az rendezett hármast értjük, ahol L (0) = LC, Con, Form LC = {,,,,,(,)} a nyelv logikai konstansainak a halmaza Con a nyelv nemlogikai konstansainak a legfeljebb megszámlálhatóan végtelen halmaza

45 A klasszikus nulladrendű nyelv 3. Definíció Klasszikus nulladrendű nyelv en az rendezett hármast értjük, ahol L (0) = LC, Con, Form LC = {,,,,,(,)} a nyelv logikai konstansainak a halmaza Con a nyelv nemlogikai konstansainak a legfeljebb megszámlálhatóan végtelen halmaza LC Con =

46 A klasszikus nulladrendű nyelv 3. Definíció Klasszikus nulladrendű nyelv en az rendezett hármast értjük, ahol L (0) = LC, Con, Form LC = {,,,,,(,)} a nyelv logikai konstansainak a halmaza Con a nyelv nemlogikai konstansainak a legfeljebb megszámlálhatóan végtelen halmaza LC Con = Form a nyelv formuláinak a halmaza.

47 A formula definíciója 3. Definíció (folytatás) A nyelv formuláinak a halmazát a következő induktív definíció adja meg:

48 A formula definíciója 3. Definíció (folytatás) A nyelv formuláinak a halmazát a következő induktív definíció adja meg: Con Form (atomi formulák)

49 A formula definíciója 3. Definíció (folytatás) A nyelv formuláinak a halmazát a következő induktív definíció adja meg: Con Form (atomi formulák) Ha A Form, akkor A Form

50 A formula definíciója 3. Definíció (folytatás) A nyelv formuláinak a halmazát a következő induktív definíció adja meg: Con Form (atomi formulák) Ha A Form, akkor A Form Ha A, B Form, akkor

51 A formula definíciója 3. Definíció (folytatás) A nyelv formuláinak a halmazát a következő induktív definíció adja meg: Con Form (atomi formulák) Ha A Form, akkor A Form Ha A, B Form, akkor (A B) Form

52 A formula definíciója 3. Definíció (folytatás) A nyelv formuláinak a halmazát a következő induktív definíció adja meg: Con Form (atomi formulák) Ha A Form, akkor A Form Ha A, B Form, akkor (A B) Form (A B) Form

53 A formula definíciója 3. Definíció (folytatás) A nyelv formuláinak a halmazát a következő induktív definíció adja meg: Con Form (atomi formulák) Ha A Form, akkor A Form Ha A, B Form, akkor (A B) Form (A B) Form (A B) Form

54 A formula definíciója 3. Definíció (folytatás) A nyelv formuláinak a halmazát a következő induktív definíció adja meg: Con Form (atomi formulák) Ha A Form, akkor A Form Ha A, B Form, akkor (A B) Form (A B) Form (A B) Form (A B) Form

55 Példafeladat 4. Példa Adja meg annak a f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő nemlogikai konstansok (Con) számát!

56 Példafeladat 4. Példa Adja meg annak a f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő nemlogikai konstansok (Con) számát! f(a) = 1, ha A Con

57 Példafeladat 4. Példa Adja meg annak a f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő nemlogikai konstansok (Con) számát! f(a) = 1, ha A Con f( A) = f(a), ha A Form

58 Példafeladat 4. Példa Adja meg annak a f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő nemlogikai konstansok (Con) számát! f(a) = 1, ha A Con f( A) = f(a), ha A Form Ha A, B Form, akkor

59 Példafeladat 4. Példa Adja meg annak a f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő nemlogikai konstansok (Con) számát! f(a) = 1, ha A Con f( A) = f(a), ha A Form Ha A, B Form, akkor f((a B)) = f(a)+f(b)

60 Példafeladat 4. Példa Adja meg annak a f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő nemlogikai konstansok (Con) számát! f(a) = 1, ha A Con f( A) = f(a), ha A Form Ha A, B Form, akkor f((a B)) = f(a)+f(b) f((a B)) = f(a)+f(b)

61 Példafeladat 4. Példa Adja meg annak a f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő nemlogikai konstansok (Con) számát! f(a) = 1, ha A Con f( A) = f(a), ha A Form Ha A, B Form, akkor f((a B)) = f(a)+f(b) f((a B)) = f(a)+f(b) f((a B)) = f(a)+f(b)

62 Példafeladat 4. Példa Adja meg annak a f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő nemlogikai konstansok (Con) számát! f(a) = 1, ha A Con f( A) = f(a), ha A Form Ha A, B Form, akkor f((a B)) = f(a)+f(b) f((a B)) = f(a)+f(b) f((a B)) = f(a)+f(b) f((a B)) = f(a)+f(b)

63 Önálló feladat 4. Feladat Adja meg annak az f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő valódi logikai konstansok (LC r = LC\(,)) számát!

64 Önálló feladat 4. Feladat Adja meg annak az f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő valódi logikai konstansok (LC r = LC\(,)) számát! f(a) = 0, ha A Con

65 Önálló feladat 4. Feladat Adja meg annak az f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő valódi logikai konstansok (LC r = LC\(,)) számát! f(a) = 0, ha A Con f( A) = f(a)+1, ha A Form

66 Önálló feladat 4. Feladat Adja meg annak az f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő valódi logikai konstansok (LC r = LC\(,)) számát! f(a) = 0, ha A Con f( A) = f(a)+1, ha A Form Ha A, B Form, akkor

67 Önálló feladat 4. Feladat Adja meg annak az f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő valódi logikai konstansok (LC r = LC\(,)) számát! f(a) = 0, ha A Con f( A) = f(a)+1, ha A Form Ha A, B Form, akkor f((a B)) = f(a)+f(b)+1

68 Önálló feladat 4. Feladat Adja meg annak az f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő valódi logikai konstansok (LC r = LC\(,)) számát! f(a) = 0, ha A Con f( A) = f(a)+1, ha A Form Ha A, B Form, akkor f((a B)) = f(a)+f(b)+1 f((a B)) = f(a)+f(b)+1

69 Önálló feladat 4. Feladat Adja meg annak az f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő valódi logikai konstansok (LC r = LC\(,)) számát! f(a) = 0, ha A Con f( A) = f(a)+1, ha A Form Ha A, B Form, akkor f((a B)) = f(a)+f(b)+1 f((a B)) = f(a)+f(b)+1 f((a B)) = f(a)+f(b)+1

70 Önálló feladat 4. Feladat Adja meg annak az f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő valódi logikai konstansok (LC r = LC\(,)) számát! f(a) = 0, ha A Con f( A) = f(a)+1, ha A Form Ha A, B Form, akkor f((a B)) = f(a)+f(b)+1 f((a B)) = f(a)+f(b)+1 f((a B)) = f(a)+f(b)+1 f((a B)) = f(a)+f(b)+1

71 Házi feladatok Feladatok Adja meg annak az f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő nyitó zárójelek számát! Tipp Adja meg annak az f : Form N függvénynek az induktív definícióját, mely minden formula esetén megadja a formulában szereplő záró zárójelek számát! Bizonyítsa be, hogy a nulladrendű nyelv minden egyes formulájában a nyitó és a záró zárójelek száma megegyezik Az első két feladatból következik a harmadik.

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin

Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Dr. Jelasity Márk Mesterséges Intelligencia I Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Elsőrendű logika -Ítéletkalkulus : Az elsőrendű logika egy speciális esete, itt csak nullad

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Tartalomjegyzék. Bevezetés... 7 A) Függvényegyenletek a természetes számok halmazán... 11 C) Többváltozós függvényegyenletek megoldása

Tartalomjegyzék. Bevezetés... 7 A) Függvényegyenletek a természetes számok halmazán... 11 C) Többváltozós függvényegyenletek megoldása 5 Tartalomjegyzék Bevezetés.......................................................... 7 A) Függvényegyenletek a természetes számok halmazán........... 11 B) Egyváltozós függvényegyenletek megoldása....................

Részletesebben

1/50. Teljes indukció 1. Back Close

1/50. Teljes indukció 1. Back Close 1/50 Teljes indukció 1 A teljes indukció talán a legfontosabb bizonyítási módszer a számítástudományban. Teljes indukció elve. Legyen P (n) egy állítás. Tegyük fel, hogy (1) P (0) igaz, (2) minden n N

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Kaposi Ambrus. University of Nottingham Functional Programming Lab. Hackerspace Budapest 2015. január 6.

Kaposi Ambrus. University of Nottingham Functional Programming Lab. Hackerspace Budapest 2015. január 6. Bizonyítás és programozás Kaposi Ambrus University of Nottingham Functional Programming Lab Hackerspace Budapest 2015. január 6. Bizonyítás, érvelés Példa: sáros a csizmám ha vizes a föld, esett az eső

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

Nemzeti versenyek 11 12. évfolyam

Nemzeti versenyek 11 12. évfolyam Nemzeti versenyek 11 12. évfolyam Szerkesztette: I. N. Szergejeva 2015. február 2. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

NP-teljesség röviden

NP-teljesség röviden NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel

Részletesebben

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük.

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. Hozzárendelések A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. A B Egyértelmű a hozzárendelés, ha az A halmaz mindegyik

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar Metrikus terek, szeparábilitás, kompaktság Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 7. Vázlat 1 Szeparábilitás Definíciók A szeparábilitás ekvivalens

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

Mveletek a relációs modellben. A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére.

Mveletek a relációs modellben. A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére. Mveletek a relációs modellben A felhasználónak szinte állandó jelleggel szüksége van az adatbázisban eltárolt adatok egy részére. Megfogalmaz egy kérést, amelyben leírja, milyen adatokra van szüksége,

Részletesebben

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a A merész játékok stratégiája A következő problémával foglalkozunk: Tegyük fel, hogy feltétlenül ki kell fizetnünk 000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a még

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: A Formális nyelvek vizsga teljesítése a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon: 1. Öt kis kérdés megválaszolása egyenként 6 pontért, melyet minimum 12

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3.

DISZKRÉT MATEMATIKA RENDEZETT HALMAZOKKAL KAPCSOLATOS PÉLDÁK. Rendezett halmaz. (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Rendezett halmaz R A x A rendezési reláció A-n, ha R Másképpen: (a, b) R a R b 1. Reflexív 2. Antiszimmetrikus 3. Tranzitív arb for (a, b) R. 1. a A ara 2. a,b A (arb bra a = b 3. a,b,c A (arb brc arc

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

Gáspár Csaba. Analízis

Gáspár Csaba. Analízis Gáspár Csaba Analízis Készült a HEFOP 3.3.-P.-004-09-00/.0 pályázat támogatásával Szerzők: Lektor: Gáspár Csaba Szili László, egyetemi docens c Gáspár Csaba, 006. Tartalomjegyzék. Bevezetés 5. Alapvető

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra

Részletesebben

Sorozatok B.: Tanulmányok a számosságokról, a végtelenről, a prímekről, a rac. és irrac számokról

Sorozatok B.: Tanulmányok a számosságokról, a végtelenről, a prímekről, a rac. és irrac számokról Sorozatok B.: Tanulmányok a számosságokról, a végtelenről, a prímekről, a rac. és irrac számokról A. Sorozatok általában B. Tanulmányok a végtelenről, a prímekről a racionális és irracionális számokról.

Részletesebben

Absztrakt algebra I. Csoportelmélet

Absztrakt algebra I. Csoportelmélet Absztrakt algebra I. Csoportelmélet Dr. Tóth László egyetemi docens Pécsi Tudományegyetem 2006 Bevezetés Ez az anyag tartalmazza az Algebra és számelmélet című tárgy 4. féléves részének kötelező elméleti

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Automaták mint elfogadók (akceptorok)

Automaták mint elfogadók (akceptorok) Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e

Részletesebben

Magas szintű adatmodellek Egyed/kapcsolat modell I.

Magas szintű adatmodellek Egyed/kapcsolat modell I. Magas szintű adatmodellek Egyed/kapcsolat modell I. Ullman-Widom: Adatbázisrendszerek. Alapvetés. 4.fejezet Magas szintű adatmodellek (4.1-4.3.fej.) (köv.héten folyt.köv. 4.4-4.6.fej.) Az adatbázis modellezés

Részletesebben

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László.

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László. MATEMATIKAI A gondolkodás tudománya Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey, Tarski, Ramsey, Russel,

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Halmazok-előadás vázlat

Halmazok-előadás vázlat Halmazok-előadás vázlat Naiv halmazelmélet:. Mi a halmaz? Mit jelent, hogy valami eleme a halmaznak? Igaz-e, hogy a halmaz elemei valamilyen kapcsolatban állnak egymással? Jelölés: a A azt jelenti, hogy

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

Gazdasági informatika vizsga kérdések

Gazdasági informatika vizsga kérdések Gazdasági informatika vizsga kérdések 1. Mi az adatbázis? Adatbázisnak a valós világ egy részhalmazának leírásához használt adatok összefüggı, rendezett halmazát nevezzük. 2. Mit az adatbázis-kezelı rendszer?

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak

Részletesebben

Ismeretalapú modellezés XI. Leíró logikák

Ismeretalapú modellezés XI. Leíró logikák XI. Leíró logikák 1 eddig volt nyílt internetes rendszerekben miért van szükség ismeretalapú re ontológia készítés kérdései ontológiák jellemzői milyen ontológiák vannak most jön mai internetes ontológiák

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Logika és számításelmélet. 2011/11 11

Logika és számításelmélet. 2011/11 11 (Logika rész) Logika és számításelmélet. 2011/11 11 1. előadás 1. Bevezető rész Logika (és a matematikai logika) tárgya Logika (és a matematikai logika) tárgya az emberi gondolkodás vizsgálata. A gondolkodás

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21 Játékelmélet és hálózati alkalmazásai 4. ea Csercsik Dávid ITK PPKE Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21 1 Nash bargaining 2 Kooperatív játékok TU CFF játékok tulajdonságai

Részletesebben

24. szakkör (Csoportelméleti alapfogalmak 3.)

24. szakkör (Csoportelméleti alapfogalmak 3.) 24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,

Részletesebben

1.1 Halmazelméleti fogalmak, jelölések

1.1 Halmazelméleti fogalmak, jelölések 1.1 Halmazelméleti fogalmak, jelölések Alapfogalmak (nem definiáljuk) Halmaz x eleme az A halmaznak x nem eleme A halmaznak Jelölések A,B,C, x A x A SiUDWODQ V]iRN Halmaz megadása: Elemeinek felsorolásával:

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege?

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege? ! " # $ %& '()(* $ A táblára felírtuk a 0-tól 00-ig terjedő egész számokat (tehát összesen 004 db számot). Mekkora a táblán levő számjegyek összege? 0 0 0 0 0. 9 7. 9 9 9 + ')./ &,- $ Először a 0-tól 999-ig

Részletesebben

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára 3. Feladatsor Gyakorlatvezetõ: Hajnal Péter 2011. november 2-ától 1. Párosítások gráfokban 1.1. Alapok 1. Feladat. (i) Bizonyítsuk be, hogy

Részletesebben

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap Alap fatranszformátorok I Vágvölgyi Sándor Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap termátíró rendszerről eldönthető hogy összefolyó-e. Mindannyian

Részletesebben

Paraméteres és összetett egyenlôtlenségek

Paraméteres és összetett egyenlôtlenségek araméteres és összetett egyenlôtlenségek 79 6 a) Minden valós szám b) Nincs ilyen valós szám c) c < vagy c > ; d) d # vagy d $ 6 a) Az elsô egyenlôtlenségbôl: m < - vagy m > A második egyenlôtlenségbôl:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben