Készítette: Fegyverneki Sándor

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Készítette: Fegyverneki Sándor"

Átírás

1 VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, i

2 JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y R} A B az A részhalmaza a B-nek A B az A és B halmaz közös része A B az A és B halmaz összes eleme egy halmazban A az alaphalmaz A halmazon kívüli elemei A\B A B F (a + 0) a jobboldali határérték, azaz F (a 0) a baloldali határérték, azaz exp(x) e x lim F (x) x a+0 lim F (x) x a 0 f( ) : D R az f leképezés, D az értelmezési tartomány, a pont a változót helyettesíti f(d) az f leképezés értékkészlete ii

3 A VALÓSZÍNŰSÉG FOGALMA Definíció: Egy véletlen kísérlet lehetséges eredményeinek összeségét eseménytérnek (mintatér) nevezzük. Jele: Ω. Az Ω elemeit elemi eseményeknek nevezzük. Definíció: Az Ω részhalmazainak egy F rendszerét σ-algebrának nevezzük, ha (1) Ω F, (2) A F, akkor A F, (3) A 1, A 2,... F, akkor A 1 A 2... F. Az F elemeit pedig eseményeknek nevezzük. Megjegyzés: Ha A, B F, akkor A B F. Definíció: Az Ω-t szokás biztos eseménynek, az -t pedig lehetetlen eseménynek nevezni. Továbbá, az A esemény bekövetkezik, ha a kísérlet eredménye eleme az A halmaznak. Megjegyzés: Az A B esemény bekövetkezik, ha legalább az egyik közülük bekövetkezik, míg az A B esemény akkor következik be, ha mind a kettő bekövetkezik. Definíció: A P : F R nemnegatív leképezést valószínűségnek nevezzük, ha (1) P (Ω) = 1, (2) A B =, akkor P (A B) = P (A) + P (B), (3) A 1, A 2,... egymást kölcsönösen kizáró események (azaz A i A j =, ha i < j és i, j = 1, 2,...), akkor P ( ) A i = 1 P (A i ).

4 LEMMA: (1) P ( A ) = 1 P (A). (2) P ( ) = 0. (3) P (B\A) = P (B) P (A B). (4) Ha A B, akkor P (A) P (B). (5) P (A B) = P (A) + P (B) P (A B). (6) Ha B n+1 B n és B n =, akkor lim P (B n) = 0. n Definíció: Az (Ω, F, P ) hármast valószínűségi mezőnek nevezzük. Definíció: Ha az elemi események száma véges és valószínűségük megegyezik, akkor a valószínűségi mezőt klasszikusnak nevezzük. Megjegyzés: Legyen Ω = n és jelölje az elemi eseményeket ω i (i = 1, 2,..., n). Ekkor ( n ) n 1 = P (Ω) = P {ω i } = P ({ω i }) = np ({ω i }). Tehát P ({ω i }) = 1 n (i = 1, 2,..., n). Definíció: Bernoulli kísérletsorozatnak nevezzük azt, ha adott A F és egymástól függetlenül, azonos körülmények között elvégezzük ugyanazt a kísérletet, s csak azt figyeljük, hogy az A esemény bekövetkezett-e vagy sem. Példa: 1. Visszatevéses mintavétel: Adott N darab különböző objektum, amelyek közül s darab rendelkezik egy bizonyos tulajdonsággal, például selejt. Visszatevéssel kiveszünk n darabot. Legyen a kivett selejtek száma ξ. Mennyi a valószínűsége, hogy ξ = k, ahol 0 k n. P (ξ = k) = ( n k ) s k (N s) n k N n. 2. Visszatevés nélküli mintavétel: Adott N darab különböző objektum, amelyek közül s darab rendelkezik egy bizonyos tulajdonsággal, 2

5 például selejt. Visszatevés nélkül kiveszünk n darabot. Legyen a kivett selejtek száma ξ. Mennyi a valószínűsége, hogy ξ = k, ahol 0 k min{n, s}. P (ξ = k) = ( )( ) s N s k n k ( ). N n TÉTEL: (Poincaré) Az A 1, A 2,..., A n eseményekre ( n ) n k P A i = ( 1) k 1 k=1 i 1 <i 2 < <i k P ahol az összegzést az összes lehetséges {i 1, i 2,..., i k } {1, 2,..., n} esetre tekintjük. Definíció: Az A esemény B feltétel melletti feltételes valószínűségének nevezzük a P (A B) P (A B) = P (B) mennyiséget, ha P (B) > 0. Megjegyzés: A P ( B) : F R leképezés tényleg valószínűség. n 1 LEMMA: Ha az A 1, A 2,..., A n eseményrendszerre P ( A i ) > 0, akkor P ( j=1 A ij, n A i ) = P (A 1 )P (A 2 A 1 ) P (A n A 1 A 2... A n 1 ). Definíció: Az A 1, A 2,... eseményrendszert teljes eseményrendszernek nevezzük, ha A i A j =, ha i < j és i, j = 1, 2,..., és A i = Ω. TÉTEL: (teljes valószínűség) Ha A 1, A 2,... teljes eseményrendszer és P (A i ) > 0, ha i = 1, 2,..., akkor tetszőleges B esemény esetén P (B) = P (B A i )P (A i ). 3

6 TÉTEL: (Bayes) Ha A 1, A 2,... teljes eseményrendszer és P (A i ) > 0, ha i = 1, 2,..., akkor tetszőleges pozitív valószínűségű B esemény esetén P (A k B) = P (B A k)p (A k ) P (B A i)p (A i ). Megjegyzés: A Bayes-tételhez kapcsolódóan bevezethetjük a következő elnevezéseket: P (A i ) az ún. a-priori valószínűség és P (A i A) az ún. a-posteriori valószínűség. Definíció: Az A és B eseményt sztochasztikusan függetlennek nevezzük, ha P (A B) = P (A)P (B). Az A 1, A 2,..., A n eseményeket páronként sztochasztikusan függetlennek nevezzük, ha P (A i A j ) = P (A i )P (A j ) (1 i < j n). Az A 1, A 2,..., A n eseményeket teljesen sztochasztikusan függetlennek nevezzük, ha P (A i1... A ik ) = P (A i1 ) P (A ik ), ahol 1 i 1 < < i k n, 2 k n. Példa: Ha az A és B események függetlenek, akkor A és B, A és B és A és B is függetlenek. LEMMA: Ha A 1, A 1,..., A n független események és P (A i ) < 1 (i = n 1, 2,..., n), akkor P ( A i ) < 1. Bizonyítás: ( n ) P A i = P n A i = 1 P n A i = = 1 P ( n ) n A i = 1 P ( A i ). 4

7 A VALÓSZÍNŰSÉGI VÁLTOZÓ Definíció: A ξ : Ω R leképezést valószínűségi változónak nevezzük, ha {ξ < x} = {ω ω Ω, ξ(ω) < x} F x R. Definíció: Az F (x) = P (ξ < x) formulával meghatározott valós függvényt a ξ valószínűségi változó eloszlásfüggvényének nevezzük. TÉTEL: Az F valós függvény akkor és csak akkor lehet eloszlásfüggvény, ha 1. lim F (x) = 0, x 2. lim F (x) = 1, x 3. F (x 1 ) F (x 2 ), ha (x 1 < x 2 ), azaz monoton növekvő, 4. lim x x 0 0 F (x) = F (x 0), x 0 R, azaz balról folytonos. TÉTEL: Legyen F a ξ valószínűségi változó eloszlásfüggvénye és a, b R, ekkor 1. P (a ξ < b) = F (b) F (a), 2. P (ξ = a) = F (a + 0) F (a). Definíció: A ξ valószínűségi változót diszkrétnek nevezzük, ha a lehetséges értékek ξ(ω) halmazának számossága legfeljebb megszámlálhatóan végtelen. Megjegyzés: Diszkrét valószínűségi változó esetén a lehetséges értékek felírhatók egy sorozatként. Definíció: Legyen a ξ valószínűségi változó lehetséges értekeinek sorozata x 1, x 2,.... A p i = P (ξ = x i ) (i = 1, 2,...) valószínűségek sorozatát eloszlásnak nevezzük. 5

8 TÉTEL: Ha p 1, p 2,... eloszlás, akkor p i 0 (i = 1, 2,...) és p i = 1. Definíció: Ha létezik f nemnegatív valós függvény, melyre F (x) = x f(t)dt, x R akkor f az F eloszlásfüggvényhez tartozó sűrűségfüggvény. Megjegyzés: A sűrűségfüggvény nem egyértelmű. TÉTEL: Az f valós függvény akkor és csak akkor lehet sűrűségfüggvény, ha nemnegatív és + f(t)dt = 1. Definíció: A valószínűségi változót folytonosnak nevezzük, ha létezik a sűrűségfüggvénye. TÉTEL: Legyen a ξ folytonos valószínűségi változó f sűrűségfüggvénnyel és a, b R, ekkor P (ξ = a) = 0, és P (a ξ < b) = b a f(x)dx. Definíció: 1. Ha a ξ diszkrét valószínűségi változó lehetséges értékeinek a száma véges, azaz a lehetséges értékek x 1, x 2,..., x n és p i = P (ξ = x i ) (i = 1, 2,..., n), akkor a n x i p i mennyiséget várható értéknek nevezzük. 6

9 2. Ha a ξ diszkrét valószínűségi változó lehetséges értékeinek számossága megszámlálhatóan végtelen, azaz a lehetséges értékek akkor a x 1, x 2,..., és p i = P (ξ = x i ) (i = 1, 2,...), x i p i mennyiséget várható értéknek nevezzük, ha a + x i p i < Ha ξ folytonos valószínűségi változó f sűrűségfüggvénnyel, akkor xf(x)dx mennyiséget várható értéknek nevezzük, ha + x f(x)dx < +. A ξ valószínűségi változó várható értékének a jele: E(ξ) TÉTEL: 1. E(aξ + b) = ae(ξ) + b, a, b R. 2. Ha m ξ M, akkor m E(ξ) M. Definíció: Legyen ξ valószínűségi változó és g valós függvény. Ha az η = g(ξ) függvény valószínűségi változó, akkor a ξ transzformáltjának nevezzük. Megjegyzés: A transzformált eloszlásfüggvénye F η (y) = P ({ω g(ξ(ω)) < y}). TÉTEL: Ha g differenciálható és g (x) 0, akkor ξ folytonos valószínűségi változó esetén η = g(ξ) folytonos valószínűségi változó, melynek sűrűségfüggvénye { f η (y) = f ξ (g 1 (y)) d dy g 1 (y), ha a < y < b, 0, egyébként, 7

10 ahol a = min( lim g(x), lim g(x)), x x + b = max( lim g(x), x lim g(x)). x + TÉTEL: Ha η = g(ξ) a ξ valószínűségi változó transzformáltja, akkor E(η) = g(x i )P (ξ = x i ), + g(x)f ξ (x)dx, ha ξ diszkrét, ha ξ és η folytonos. Definíció: Az E((ξ E(ξ)) 2 ) mennyiséget a ξ valószínűségi változó szórásnégyzetének nevezzük. Jele: D 2 (ξ). Definíció: A E((ξ E(ξ)) 2 ) mennyiséget a ξ valószínűségi változó szórásának nevezzük. Jele: D(ξ). Definíció: Az E(ξ k ) mennyiséget a ξ valószínűségi változó k-adik momentumának nevezzük. Definíció: Az E((ξ E(ξ)) k ) mennyiséget a ξ valószínűségi változó k-adik centrális momentumának nevezzük. TÉTEL: 1. D(aξ + b) = a D(ξ), a, b R. 2. min a R E((ξ a)2 ) = D 2 (ξ), és ekkor a = E(ξ). 3. D 2 (ξ) = E(ξ 2 ) E 2 (ξ). NÉHÁNY DISZKRÉT ELOSZLÁS ÉS JELLEMZŐI: 1. BINOMIÁLIS ELOSZLÁS Legyen n N, A F, és végezzünk el egy n hosszúságú Bernoulli kísérletsorozatot. Továbbá, legyen ξ az A esemény bekövetkezéseinek a száma. Ekkor ξ eloszlása ( ) n P (ξ = k) = p k q n k, (k = 0, 1,..., n), k 8

11 ahol P (A) = p és q = 1 p. Fegyverneki Sándor: Valószínűségszámítás E(ξ) = np, D 2 (ξ) = npq. Megjegyzés: vezet. A visszatevéses mintavétel binomiális eloszláshoz 2. POISSON-ELOSZLÁS Legyen λ > 0 és λ = np n, ekkor lim n,λ=np n ( n )p kn(1 p n ) n k λ λk = e, ahol k = 0, 1,.... k k! A ξ valószínűségi változót Poisson-eloszlásúnak nevezzük λ > 0 paraméterrel, ha eloszlása λ λk P (ξ = k) = e, ahol k = 0, 1,.... k! E(ξ) = λ, D 2 (ξ) = λ. 3. GEOMETRIAI ELOSZLÁS A binomiális eloszlás bevezetésekor használt jelölések mellett a ξ valószínűségi változó jelentse az A esemény első bekövetkezéséhez szükséges kísérletek számát. A ξ eloszlása P (ξ = k) = pq k 1, ahol k = 1, 2,.... E(ξ) = 1 p, D2 (ξ) = q p 2. Megjegyzés: A η = ξ 1 valószínűségi változót is szokás geometriai eloszlásúnak nevezni. Az η eloszlása P (η = k) = pq k, ahol k = 0, 1, 2,.... E(η) = q p, D2 (η) = q p 2. 9

12 NÉHÁNY FOLYTONOS ELOSZLÁS ÉS JELLEMZŐI: 1. EGYENLETES ELOSZLÁS Legyen a, b R és a < b. A ξ egyenletes eloszlású az (a, b) intervallumon, ha a sűrűségfüggvénye E(ξ) = a + b 2, D2 (ξ) = 1, ha a < x < b, f(x) = b a 0, egyébként. (b a)2. Az eloszlásfüggvény 12 0, ha x a, x a F (x) =, ha a < x b, b a 1, ha x > b. 2. EXPONENCIÁLIS ELOSZLÁS A ξ exponenciális eloszlású λ > 0 paraméterrel, ha a sűrűségfüggvénye { λe f(x) = λx, ha x 0, 0, egyébként. E(ξ) = 1 λ, D2 (ξ) = 1. Az eloszlásfüggvény λ2 F (x) = { 0, ha x 0, 1 e λx, ha x > 0. Örökifjú tulajdonság: P (ξ a + b ξ a) = P (ξ b), ahol a > 0, b > NORMÁLIS ELOSZLÁS Legyen m R, σ > 0. Az η normális eloszlású, ha a sűrűségfüggvénye f(x) = 1 ) ( σ 2π exp (x m)2 2σ 2, x R. 10

13 E(ξ) = m, D 2 (ξ) = σ 2. Ha m = 0 és σ = 1, akkor a valószínűségi változót standard normális eloszlásúnak nevezzük. Jelölje a sűrűségfüggvényét ϕ és az eloszlásfüggvényét Φ. Ha ξ standard normális eloszlású, akkor az η = σξ+m valószínűségi változó F eloszlásfüggvényére jellemző, hogy ( ) x m F (x) = Φ. σ Megjegyzés: 1. A ϕ függvény írja le a Gauss-görbét(harang görbét). 2. Φ(0) = 0.5 és Φ( x) = 1 Φ(x). 4. CAUCHY ELOSZLÁS Legyen c R, s > 0. Az η Cauchy eloszlású, ha a sűrűségfüggvénye f(x) = 1 [ ( ) 2 ], x R. x c πs 1 + s Nem létezik a várható érték. Az eloszlásfüggvény F (x) = π arctan ( x c s Megjegyzés: Szokás csak a c = 0, s = 1 esetet (standard) Cauchyeloszlásnak nevezni. ). A VÉLETLEN VEKTOROK Definíció: A (ξ, η) : Ω R 2 leképezést (kétdimenziós) véletlen vektornak nevezzük, ha {ξ < x, η < y} = {ω ω Ω, ξ(ω) < x, η(ω) < y} F x, y R. Definíció: Az F (x, y) = P (ξ < x, η < y) formulával meghatározott valós értékű függvényt a (ξ, η) véletlen vektor együttes eloszlásfüggvényének nevezzük. Az F ξ (x) = lim F (x, y), F η(y) = lim F (x, y) y + x + 11

14 függvényeket peremeloszlásfüggvénynek nevezzük TÉTEL: Az F függvény akkor és csak akkor lehet együttes eloszlásfüggvény, ha 1. lim F (x, y) = 0, lim x 2. x lim F (x, y) = 1, y F (x, y) = 0, y 3. F mindkét változójában balról folytonos, 4. F (b, d) F (b, c) F (a, d) + F (a, c) 0, a < b, c < d esetén, azaz teljesül az ún. téglalap tulajdonság. Megjegyzés: A téglalap tulajdonságból következik, hogy mindkét változójában monoton növekvő. Definíció: A (ξ, η) véletlen vektort diszkrétnek nevezzük, ha a lehetséges értékek számossága legfeljebb megszámlálhatóan végtelen. Definíció: Legyen a ξ, illetve η valószínűségi változó lehetséges értekeinek sorozata x 1, x 2,..., illetve y 1, y 2,.... A P (ξ = x i, η = y j ) = p ij (i, j = 1, 2,...) valószínűségek sorozatát együttes eloszlásnak nevezzük. A q i = p ij, (i = 1, 2,...), r j = j=1 p ij, (j = 1, 2,...) valószínűség sorozatokat peremeloszlásnak nevezzük. Minden r j > 0 esetén a ξ feltételes eloszlása adott η = y j mellett P (ξ = x i η = y j ) = p ij r j. Az E(ξ η = y j ) = 12 x i p ij r j

15 mennyiséget feltételes várható értéknek nevezzük. Az E(ξ η = y j ) = m 2 (y j ) függvényt a ξ-nek az η-ra vonatkozó regressziós függvényének nevezzük. TÉTEL: Ha p ij (i, j = 1, 2,...) együttes eloszlás, akkor p ij 0 (i, j = 1, 2,...) és p ij = 1. j=1 Definíció: Ha létezik f nemnegatív valós értékű függvény, melyre F (x, y) = x y f(u, v)dvdu, x, y R, akkor f az F eloszlásfüggvényhez tartozó együttes sűrűségfüggvény. Az f ξ (x) = + f(x, y)dy, f η (y) = + függvényeket peremsűrűségfüggvénynek nevezzük. f(x, y)dx TÉTEL: Az f függvény akkor és csak akkor lehet együttes sűrűségfüggvény, ha nemnegatív és + + f(x, y)dydx = 1. Definíció: A (ξ, η) véletlen vektort folytonosnak nevezzük, ha létezik az együttes sűrűségfüggvénye. Definíció: A ξ és η) valószínűségi változót függetlennek nevezzük, ha F (x, y) = F ξ (x)f η (y), x, y R. 13

16 Megjegyzés: A függetlenség megfelelői diszkrét illetve folytonos esetben: p ij = q i r j, (i, j = 1, 2,...), f(x, y) = f ξ (x)f η (y) x, y R. Definíció: Legyen (ξ, η) véletlen vektor. Az F (x y) az feltételes eloszlásfüggvénye a ξ-nek η = y esetén, ha F (x y) = P (ξ < x η = y) = lim P (ξ < x y η < y + h). h 0+0 Megjegyzés: Ha léteznek a feltételes valószínűségek. Definíció: Ha létezik f ξ η nemnegatív valós értékű függvény, melyre F (x y) = x f ξ η (u y)du, x, y R akkor f ξ η a ξ-nek az η-ra vonatkozó feltételes sűrűségfüggvénye. Megjegyzés: f ξ η (x y) = f(x, y) f η (y). Definíció: A feltételes sűrűségfüggvény segítségével meghatározott feltételes várható értéket regressziós függvénynek nevezzük, azaz az + f ξ η (x y)dx = m 2 (y) függvényt a ξ-nek az η-ra vonatkozó regressziós függvényének nevezzük. Megjegyzés: Ha (ξ, η) véletlen vektor g : R 2 R olyan függvény, hogy g(ξ, η) valószínűségi változó, akkor g(x i, y j )p ij, ha (ξ, η) diszkrét, i,j E(g(ξ, η)) = + + g(x, y)f(x, y)dydx, ha (ξ, η) folytonos. 14

17 Definíció: A cov(ξ, η) = E((ξ E(ξ))(η E(η))) mennyiséget kovarianciának nevezzük. Az r(ξ, η) = cov(ξ, η) D(ξ)D(η) mennyiséget pedig korrelációs együtthatónak nevezzük. TÉTEL: 1. E(ξ + η)) = E(ξ) + E(η). 2. D 2 (ξ + η)) = D 2 (ξ) + D 2 (η) + 2cov(ξ, η). 3. E(E(ξ η = y)) = E(ξ). 4. cov(ξ, η) D(ξ)D(η), azaz r(ξ, η) 1. NÉHÁNY FOLYTONOS ELOSZLÁS: A (ξ, η) véletlen vektor Q = (i) normális eloszlású, ha f(x, y) = 1 2πσ 1 σ 2 1 ρ 2 exp[ Q], [ 1 2(1 ρ 2 ( x m 1 ) 2 2ρ( x m 1 )( y m 2 ) + ( y m ] 2 ) 2, ) σ 1 σ 1 σ 2 σ 2 ahol σ 1 > 0, σ 2 > 0, 1 < ρ < 1. (ii) egyenletes eloszlású az A R 2 tartományon, ha { 1, f(x, y) = A ha (x, y) A, 0, egyébként. Megjegyzés: A véletlen vektor és a hozzákapcsolódó fogalmak definícióját csak kétdimenziós esetben adtuk meg, de nagyon egyszerűen 15

18 kiterjeszthetőek véges sok valószínűségi változó esetére. Például, a ξ 1, ξ 2,..., ξ n valószínűségi változókat függetlennek nevezzük, ha F (x 1, x 2,..., x n ) = F ξ1 (x 1 )F ξ2 (x 2 ) F ξn (x n ) x 1, x 2,..., x n R. TÉTEL: Az F (x 1, x 2,..., x n ) függvény akkor és csak akkor együttes eloszlásfüggvény, ha minden változójában balról folytonos, és lim F (x 1, x 2,..., x n ) = 0, x i (i = 1, 2,..., n), lim F (x 1, x 2,..., x n ) = 1, x i + (,2,...,n) K=e 1 +e e n ( 1) K F (e 1 a 1 + (1 e 1 )b 1,..., e n a n + (1 e n )b n ) 0 a i b i (i = 1, 2,..., n) és az összegzést K esetében vesszük, ahol az e 1, e 2,..., e n értéke 0 és 1 lehet. TÉTEL: Legyenek ξ 1, ξ 2,..., ξ n független valószínűségi változók, melyeknek rendre F ξ1, F ξ2,..., F ξn az eloszlásfüggvénye. Ekkor (a) az η(ω) = max{ξ 1 (ω),..., ξ n (ω)} ( ω Ω) valószínűségi változó eloszlásfüggvénye F η (y) = F ξ1 (y)f ξ2 (y) F ξn (y). (b) az η(ω) = min{ξ 1 (ω),..., ξ n (ω)} ( ω Ω) valószínűségi változó eloszlásfüggvénye F η (z) = 1 (1 F ξ1 (z))(1 F ξ2 (z)) (1 F ξn (z)). TÉTEL: (Markov-egyenlőtlenség) Legyen a ξ nemnegatív valószínűségi változó, melynek létezik a várható értéke, ekkor c > 0 esetén P (ξ c) E(ξ). c 16

19 TÉTEL: (Csebisev-egyenlőtlenség) Ha a ξ valószínűségi változónak létezik a szórásnégyzete, akkor ε > 0 esetén P ( ξ E(ξ) ε) D2 (ξ) ε 2. TÉTEL: (nagy számok gyenge törvénye) Legyen ξ 1, ξ 2,... független, azonos eloszlású valószínűségi változók sorozata. Létezik a szórásnégyzet. Ekkor tetszőleges ε > 0 esetén ( lim P ξ ) ξ n E(ξ 1 ) ε = 0. n + n Megjegyzés: Legyen A esemény és S n az A esemény gyakorisága az első n kísérletből egy Bernoulli kísérletsorozatnál. Ekkor tetszőleges ε > 0 esetén ( lim P S ) n n + n P (A) ε = 0. TÉTEL: (centrális határeloszlás-tétel) Legyen ξ 1, ξ 2,... független, azonos eloszlású valószínűségi változók sorozata és létezik az E(ξ i ) = µ és n D 2 (ξ i ) = σ 2 > 0. Ha S n = ξ k, akkor k=1 ( lim P Sn nµ n + σ n ahol Φ a standard normális eloszlásfüggvény. ) < x = Φ(x), x R, TÉTEL: (Moivre-Laplace) Legyen a ξ valószínűségi változó binomiális eloszlású n és p paraméterrel és 0 a < b n egész, akkor b ( ) n P (a ξ b) = p k q n k k k=a b np + 1 Φ 2 Φ npq a np 1 2 npq. 17

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Matematika III. Nagy Károly 2011

Matematika III. Nagy Károly 2011 Matematika III előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 20 . Kombinatorika.. Definíció. Adott n darab egymástól különböző elem. Ezeknek egy meghatározott sorrendjét az n elem

Részletesebben

MITISZK Miskolc-Térségi Integrált Szakképző Központ

MITISZK Miskolc-Térségi Integrált Szakképző Központ MITISZK Miskolc-Térségi Integrált Szakképző Központ VALÓSZÍNŰSÉG-SZÁMÍTÁS ÉS MATEMATIKAI STATISZTIKA FEGYVERNEKI SÁNDOR Miskolci Egyetem Gépészmérnöki és Informatikai Kar Készült a HEFOP-3.2.2-P.-2004-10-0011-/1.0

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

BIZTOSÍTÁSI MATEMATIKA ALAPJAI1

BIZTOSÍTÁSI MATEMATIKA ALAPJAI1 BIZTOSÍTÁSI MATEMATIKA ALAPJAI1 Készítette: FEGYVERNEKI SÁNDOR,2 March 7, 2009 1 Előadás vázlat 1.0 verzió 2 Miskolci Egyetem, Alkalmazott Matematikai Tanszék Tartalomjegyzék 1. Bevezetés 1 1.1 Követelmények...............................

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Informatikai rendszerek modellezése, analízise

Informatikai rendszerek modellezése, analízise Informatikai rendszerek modellezése, analízise Dr. Sztrik János Debreceni Egyetem, Informatikai Kar Lektorálta: Dr. Bíró József MTA doktora, egyetemi tanár 2 Jelen jegyzetet feleségemnek ajánlom, aki nélkül

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli Gyakorló feladatok valószínűségszámításból végeredményekkel a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli. Igaz-e, hogy tetszőleges A, B és C eseményekre teljesül a A B \ C =

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés

Részletesebben

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a Feladatok:. Dobjunk fel egy szabályos dobókockát egymás után egymástól függetlenül végtelen sokszor. Számítsuk ki annak a valószínűségét, hogy a harmadik hatos dobás vagy a huszadik vagy valamely későbbi

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Valószínűségszámítás

Valószínűségszámítás Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Valószínűségszámítás programtervező informatikusok részére Eger, 010. szeptember 0. Tartalomjegyzék 1. Véletlen események...............................

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

matematikai statisztika 2006. október 24.

matematikai statisztika 2006. október 24. Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................

Részletesebben

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10 Valszám-megoldások. Feladat. Legyen P (A =, 3 és P (B =, 6... Kérdés. Mennyi P (A + B, P (AB, ill. P (A B, ha A és B függetlenek?... Megoldás. Ha A és B függetlenek, akkor A és B, valamint B és A, valamint

Részletesebben

Informatikai rendszerek modellezése Dr. Sztrik, János

Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Debreceni Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Nemzeti Fejlesztési Ügynökség

Részletesebben

Gazdasági matematika 2. tantárgyi kalauz

Gazdasági matematika 2. tantárgyi kalauz Hanich József Gazdasági matematika 2. tantárgyi kalauz Szolnoki Főiskola Szolnok 2005. Gazdasági matematika 2. tantárgyi kalauz A kalauz a következő 3 kiadványhoz készült: Dr. Csernyák László: Matematika

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Tómács Tibor. Matematikai statisztika gyakorlatok

Tómács Tibor. Matematikai statisztika gyakorlatok Tómács Tibor Matematikai statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika gyakorlatok Eger, 2012 Szerző: Dr. Tómács Tibor főiskolai

Részletesebben

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2? HIPERGEO. BINOM. POISSON 4.1. Egy üzletben 100-an vásárolnak, közülük 80-an rendelkeznek bankkártyával. A pénztárnál 10-en állnak sorba, mi a valószínűsége, hogy 7-nek lesz bankkártyája? 4.2. Egy üzletben

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Valószín ségszámítás

Valószín ségszámítás Sinkovicz Péter Valószín ségszámítás IV ÉVES FIZIKUS HALLGATÓK RÉSZÉRE Sinkovicz Péter Budapest, 2012 Tartalomjegyzék Valószín ségszámítás Kombinatorika 1 1.1 Klasszikus valószín ségi összefoglaló.........................

Részletesebben

Tómács Tibor. Matematikai statisztika

Tómács Tibor. Matematikai statisztika Tómács Tibor Matematikai statisztika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika Eger, 01 Szerző: Dr. Tómács Tibor főiskolai docens Eszterházy Károly

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

feltételek esetén is definiálják, tehát olyan esetekben is, amikor a hagyományos, a

feltételek esetén is definiálják, tehát olyan esetekben is, amikor a hagyományos, a A Valószínűségszámítás II. előadássorozat hatodik témája. ELTÉTELES VALÓSZÍNŰSÉG ÉS ELTÉTELES VÁRHATÓ ÉRTÉK A feltételes valószínűség és feltételes várható érték fogalmát nulla valószínűséggel bekövetkező

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Barczy Mátyás és Pap Gyula. Sztochasztikus folyamatok. (Gauss-folyamatok, Poisson-folyamat)

Barczy Mátyás és Pap Gyula. Sztochasztikus folyamatok. (Gauss-folyamatok, Poisson-folyamat) Barczy Mátyás és Pap Gyula Sztochasztikus folyamatok Példatár és elméleti kiegészítések I. Rész (Gauss-folyamatok, Poisson-folyamat mobidiák könyvtár Barczy Mátyás és Pap Gyula Sztochasztikus folyamatok

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok.

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Láttuk, hogy a Wiener-folyamat teljesíti az úgynevezett funkcionális centrális határeloszlástételt. Ez az eredmény durván szólva azt fejezi

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

MATEMATIKA tanterv emelt szint 11-12. évfolyam

MATEMATIKA tanterv emelt szint 11-12. évfolyam MATEMATIKA tanterv emelt szint 11-12. évfolyam Batthyány Kázmér Gimnázium, 2004. 1 TARTALOM 11.osztály (222 óra)... 3 1. Gondolkodási műveletek (35 óra)... 3 2. Számelmélet, algebra (64 óra)... 3 3. Függvények,

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra

Részletesebben

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

1. Sorozatok 2014.03.12.

1. Sorozatok 2014.03.12. 1. Sorozatok Azokat a függvényeket, amelyek értelmezési tartománya a pozitív egész számok halmaza ( jelölése N ), a képhalmaz a valós számok halmaza, sorozatnak nevezzük. Az a függvény n N helyen vett

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

EuroOffice Modeller felhasználói útmutató

EuroOffice Modeller felhasználói útmutató EuroOffice Modeller felhasználói útmutató 1 Bevezetés...5 EuroOffice Modeller: ANOVA felhasználói útmutató...5 Előkészítés...5 Egyutas ANOVA...5 Kétutas ANOVA...8 EuroOffice Modeller: Egymintás Z-próba

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002. INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság

Részletesebben

Tantárgyi útmutató. Gazdasági matematika II.

Tantárgyi útmutató. Gazdasági matematika II. Módszertani Intézeti Tanszék Tantárgyi útmutató Gazdasági matematika II. Nappali Tagozat 2015/16 tanév II. félév 1/5 Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa: Gazdasági matematika

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Matematika Tanszék MOE (PE MIK) MMAM143VB 1 / 34

Matematika Tanszék MOE (PE MIK) MMAM143VB 1 / 34 Valószín½uségszámítás és matematikai statisztika Mihálykóné Orbán Éva Matematika Tanszék MOE (PE MIK) MMAM143VB 1 / 34 Valószín½uségi változók számérték½u jellemz½oi 1 várható érték 2 szórásnégyzet/szórás

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 22. lecke: A teljes valószínűség tétele és a Bayes-tétel Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Véletlen gráfok. Példák: Kávéra vizet öntünk és alul kifolyik a víz: Olaj vagy víz átszívárgása egy kőzetrétegen:

Véletlen gráfok. Példák: Kávéra vizet öntünk és alul kifolyik a víz: Olaj vagy víz átszívárgása egy kőzetrétegen: Virág Bálint Véletlen Gráfok/1 Véletlen gráfok Példák: Kávéra vizet öntünk és alul kifolyik a víz: Olaj vagy víz átszívárgása egy kőzetrétegen: Mind az olaj, mind a víz bekerül egy rendszerbe, mely makroszinten

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5 1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat

Részletesebben

24. Valószínűség-számítás

24. Valószínűség-számítás 24. Valószínűség-számítás I. Elméleti összefoglaló Események, eseménytér A valószínűség-számítás a véletlen tömegjelenségek vizsgálatával foglalkozik. Azokat a jelenségeket, amelyeket a figyelembe vett

Részletesebben

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 + . Fourier-soro. Bevezet definíció Enne a fejezetne a célja, hogy egy szerint periodius függvényt felírjun mint trigonometrius függvényeből épzett függvénysorént. Nyilván a cos x a sin x függvénye szerint

Részletesebben

n = 1,2,..., a belőlük készített részletösszegek sorozata. Tekintsük az S n A n

n = 1,2,..., a belőlük készített részletösszegek sorozata. Tekintsük az S n A n Határeloszlástételek és korlátlanul osztható eloszlások. I. rész Az alapvető problémák megfogalmazása. A valószínűségszámítás egyik alapvető feladata a következő kérdés vizsgálata: Legyen ξ 1,ξ 2,... független

Részletesebben

2007. február 6. meg fogom fogalmazni. Szeretnénk pontosabb eredményeket kapni arról, hogy mekkora ez az ingadozás.

2007. február 6. meg fogom fogalmazni. Szeretnénk pontosabb eredményeket kapni arról, hogy mekkora ez az ingadozás. A Valószínűségszámítás I. előadássorozat első előadása. 2007. február 6. Tekintsünk először néhány példát, amelyek megmutatják, hogy milyen kérdésekkel foglalkozik a valószínűségszámítás. Tapasztalatból

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar Metrikus terek, szeparábilitás, kompaktság Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 7. Vázlat 1 Szeparábilitás Definíciók A szeparábilitás ekvivalens

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Kárszámeloszlások modellezése

Kárszámeloszlások modellezése Kárszámeloszlások modellezése DIPLOMAMUNKA Írta: Talabér Dóra Edit Biztosítási és pénzügyi matematika MSc Aktuárius szakirány Témavezető: Prokaj Vilmos egyetemi docens ELTE TTK Valószínűségelméleti és

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben