Készítette: Fegyverneki Sándor

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Készítette: Fegyverneki Sándor"

Átírás

1 VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, i

2 JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y R} A B az A részhalmaza a B-nek A B az A és B halmaz közös része A B az A és B halmaz összes eleme egy halmazban A az alaphalmaz A halmazon kívüli elemei A\B A B F (a + 0) a jobboldali határérték, azaz F (a 0) a baloldali határérték, azaz exp(x) e x lim F (x) x a+0 lim F (x) x a 0 f( ) : D R az f leképezés, D az értelmezési tartomány, a pont a változót helyettesíti f(d) az f leképezés értékkészlete ii

3 A VALÓSZÍNŰSÉG FOGALMA Definíció: Egy véletlen kísérlet lehetséges eredményeinek összeségét eseménytérnek (mintatér) nevezzük. Jele: Ω. Az Ω elemeit elemi eseményeknek nevezzük. Definíció: Az Ω részhalmazainak egy F rendszerét σ-algebrának nevezzük, ha (1) Ω F, (2) A F, akkor A F, (3) A 1, A 2,... F, akkor A 1 A 2... F. Az F elemeit pedig eseményeknek nevezzük. Megjegyzés: Ha A, B F, akkor A B F. Definíció: Az Ω-t szokás biztos eseménynek, az -t pedig lehetetlen eseménynek nevezni. Továbbá, az A esemény bekövetkezik, ha a kísérlet eredménye eleme az A halmaznak. Megjegyzés: Az A B esemény bekövetkezik, ha legalább az egyik közülük bekövetkezik, míg az A B esemény akkor következik be, ha mind a kettő bekövetkezik. Definíció: A P : F R nemnegatív leképezést valószínűségnek nevezzük, ha (1) P (Ω) = 1, (2) A B =, akkor P (A B) = P (A) + P (B), (3) A 1, A 2,... egymást kölcsönösen kizáró események (azaz A i A j =, ha i < j és i, j = 1, 2,...), akkor P ( ) A i = 1 P (A i ).

4 LEMMA: (1) P ( A ) = 1 P (A). (2) P ( ) = 0. (3) P (B\A) = P (B) P (A B). (4) Ha A B, akkor P (A) P (B). (5) P (A B) = P (A) + P (B) P (A B). (6) Ha B n+1 B n és B n =, akkor lim P (B n) = 0. n Definíció: Az (Ω, F, P ) hármast valószínűségi mezőnek nevezzük. Definíció: Ha az elemi események száma véges és valószínűségük megegyezik, akkor a valószínűségi mezőt klasszikusnak nevezzük. Megjegyzés: Legyen Ω = n és jelölje az elemi eseményeket ω i (i = 1, 2,..., n). Ekkor ( n ) n 1 = P (Ω) = P {ω i } = P ({ω i }) = np ({ω i }). Tehát P ({ω i }) = 1 n (i = 1, 2,..., n). Definíció: Bernoulli kísérletsorozatnak nevezzük azt, ha adott A F és egymástól függetlenül, azonos körülmények között elvégezzük ugyanazt a kísérletet, s csak azt figyeljük, hogy az A esemény bekövetkezett-e vagy sem. Példa: 1. Visszatevéses mintavétel: Adott N darab különböző objektum, amelyek közül s darab rendelkezik egy bizonyos tulajdonsággal, például selejt. Visszatevéssel kiveszünk n darabot. Legyen a kivett selejtek száma ξ. Mennyi a valószínűsége, hogy ξ = k, ahol 0 k n. P (ξ = k) = ( n k ) s k (N s) n k N n. 2. Visszatevés nélküli mintavétel: Adott N darab különböző objektum, amelyek közül s darab rendelkezik egy bizonyos tulajdonsággal, 2

5 például selejt. Visszatevés nélkül kiveszünk n darabot. Legyen a kivett selejtek száma ξ. Mennyi a valószínűsége, hogy ξ = k, ahol 0 k min{n, s}. P (ξ = k) = ( )( ) s N s k n k ( ). N n TÉTEL: (Poincaré) Az A 1, A 2,..., A n eseményekre ( n ) n k P A i = ( 1) k 1 k=1 i 1 <i 2 < <i k P ahol az összegzést az összes lehetséges {i 1, i 2,..., i k } {1, 2,..., n} esetre tekintjük. Definíció: Az A esemény B feltétel melletti feltételes valószínűségének nevezzük a P (A B) P (A B) = P (B) mennyiséget, ha P (B) > 0. Megjegyzés: A P ( B) : F R leképezés tényleg valószínűség. n 1 LEMMA: Ha az A 1, A 2,..., A n eseményrendszerre P ( A i ) > 0, akkor P ( j=1 A ij, n A i ) = P (A 1 )P (A 2 A 1 ) P (A n A 1 A 2... A n 1 ). Definíció: Az A 1, A 2,... eseményrendszert teljes eseményrendszernek nevezzük, ha A i A j =, ha i < j és i, j = 1, 2,..., és A i = Ω. TÉTEL: (teljes valószínűség) Ha A 1, A 2,... teljes eseményrendszer és P (A i ) > 0, ha i = 1, 2,..., akkor tetszőleges B esemény esetén P (B) = P (B A i )P (A i ). 3

6 TÉTEL: (Bayes) Ha A 1, A 2,... teljes eseményrendszer és P (A i ) > 0, ha i = 1, 2,..., akkor tetszőleges pozitív valószínűségű B esemény esetén P (A k B) = P (B A k)p (A k ) P (B A i)p (A i ). Megjegyzés: A Bayes-tételhez kapcsolódóan bevezethetjük a következő elnevezéseket: P (A i ) az ún. a-priori valószínűség és P (A i A) az ún. a-posteriori valószínűség. Definíció: Az A és B eseményt sztochasztikusan függetlennek nevezzük, ha P (A B) = P (A)P (B). Az A 1, A 2,..., A n eseményeket páronként sztochasztikusan függetlennek nevezzük, ha P (A i A j ) = P (A i )P (A j ) (1 i < j n). Az A 1, A 2,..., A n eseményeket teljesen sztochasztikusan függetlennek nevezzük, ha P (A i1... A ik ) = P (A i1 ) P (A ik ), ahol 1 i 1 < < i k n, 2 k n. Példa: Ha az A és B események függetlenek, akkor A és B, A és B és A és B is függetlenek. LEMMA: Ha A 1, A 1,..., A n független események és P (A i ) < 1 (i = n 1, 2,..., n), akkor P ( A i ) < 1. Bizonyítás: ( n ) P A i = P n A i = 1 P n A i = = 1 P ( n ) n A i = 1 P ( A i ). 4

7 A VALÓSZÍNŰSÉGI VÁLTOZÓ Definíció: A ξ : Ω R leképezést valószínűségi változónak nevezzük, ha {ξ < x} = {ω ω Ω, ξ(ω) < x} F x R. Definíció: Az F (x) = P (ξ < x) formulával meghatározott valós függvényt a ξ valószínűségi változó eloszlásfüggvényének nevezzük. TÉTEL: Az F valós függvény akkor és csak akkor lehet eloszlásfüggvény, ha 1. lim F (x) = 0, x 2. lim F (x) = 1, x 3. F (x 1 ) F (x 2 ), ha (x 1 < x 2 ), azaz monoton növekvő, 4. lim x x 0 0 F (x) = F (x 0), x 0 R, azaz balról folytonos. TÉTEL: Legyen F a ξ valószínűségi változó eloszlásfüggvénye és a, b R, ekkor 1. P (a ξ < b) = F (b) F (a), 2. P (ξ = a) = F (a + 0) F (a). Definíció: A ξ valószínűségi változót diszkrétnek nevezzük, ha a lehetséges értékek ξ(ω) halmazának számossága legfeljebb megszámlálhatóan végtelen. Megjegyzés: Diszkrét valószínűségi változó esetén a lehetséges értékek felírhatók egy sorozatként. Definíció: Legyen a ξ valószínűségi változó lehetséges értekeinek sorozata x 1, x 2,.... A p i = P (ξ = x i ) (i = 1, 2,...) valószínűségek sorozatát eloszlásnak nevezzük. 5

8 TÉTEL: Ha p 1, p 2,... eloszlás, akkor p i 0 (i = 1, 2,...) és p i = 1. Definíció: Ha létezik f nemnegatív valós függvény, melyre F (x) = x f(t)dt, x R akkor f az F eloszlásfüggvényhez tartozó sűrűségfüggvény. Megjegyzés: A sűrűségfüggvény nem egyértelmű. TÉTEL: Az f valós függvény akkor és csak akkor lehet sűrűségfüggvény, ha nemnegatív és + f(t)dt = 1. Definíció: A valószínűségi változót folytonosnak nevezzük, ha létezik a sűrűségfüggvénye. TÉTEL: Legyen a ξ folytonos valószínűségi változó f sűrűségfüggvénnyel és a, b R, ekkor P (ξ = a) = 0, és P (a ξ < b) = b a f(x)dx. Definíció: 1. Ha a ξ diszkrét valószínűségi változó lehetséges értékeinek a száma véges, azaz a lehetséges értékek x 1, x 2,..., x n és p i = P (ξ = x i ) (i = 1, 2,..., n), akkor a n x i p i mennyiséget várható értéknek nevezzük. 6

9 2. Ha a ξ diszkrét valószínűségi változó lehetséges értékeinek számossága megszámlálhatóan végtelen, azaz a lehetséges értékek akkor a x 1, x 2,..., és p i = P (ξ = x i ) (i = 1, 2,...), x i p i mennyiséget várható értéknek nevezzük, ha a + x i p i < Ha ξ folytonos valószínűségi változó f sűrűségfüggvénnyel, akkor xf(x)dx mennyiséget várható értéknek nevezzük, ha + x f(x)dx < +. A ξ valószínűségi változó várható értékének a jele: E(ξ) TÉTEL: 1. E(aξ + b) = ae(ξ) + b, a, b R. 2. Ha m ξ M, akkor m E(ξ) M. Definíció: Legyen ξ valószínűségi változó és g valós függvény. Ha az η = g(ξ) függvény valószínűségi változó, akkor a ξ transzformáltjának nevezzük. Megjegyzés: A transzformált eloszlásfüggvénye F η (y) = P ({ω g(ξ(ω)) < y}). TÉTEL: Ha g differenciálható és g (x) 0, akkor ξ folytonos valószínűségi változó esetén η = g(ξ) folytonos valószínűségi változó, melynek sűrűségfüggvénye { f η (y) = f ξ (g 1 (y)) d dy g 1 (y), ha a < y < b, 0, egyébként, 7

10 ahol a = min( lim g(x), lim g(x)), x x + b = max( lim g(x), x lim g(x)). x + TÉTEL: Ha η = g(ξ) a ξ valószínűségi változó transzformáltja, akkor E(η) = g(x i )P (ξ = x i ), + g(x)f ξ (x)dx, ha ξ diszkrét, ha ξ és η folytonos. Definíció: Az E((ξ E(ξ)) 2 ) mennyiséget a ξ valószínűségi változó szórásnégyzetének nevezzük. Jele: D 2 (ξ). Definíció: A E((ξ E(ξ)) 2 ) mennyiséget a ξ valószínűségi változó szórásának nevezzük. Jele: D(ξ). Definíció: Az E(ξ k ) mennyiséget a ξ valószínűségi változó k-adik momentumának nevezzük. Definíció: Az E((ξ E(ξ)) k ) mennyiséget a ξ valószínűségi változó k-adik centrális momentumának nevezzük. TÉTEL: 1. D(aξ + b) = a D(ξ), a, b R. 2. min a R E((ξ a)2 ) = D 2 (ξ), és ekkor a = E(ξ). 3. D 2 (ξ) = E(ξ 2 ) E 2 (ξ). NÉHÁNY DISZKRÉT ELOSZLÁS ÉS JELLEMZŐI: 1. BINOMIÁLIS ELOSZLÁS Legyen n N, A F, és végezzünk el egy n hosszúságú Bernoulli kísérletsorozatot. Továbbá, legyen ξ az A esemény bekövetkezéseinek a száma. Ekkor ξ eloszlása ( ) n P (ξ = k) = p k q n k, (k = 0, 1,..., n), k 8

11 ahol P (A) = p és q = 1 p. Fegyverneki Sándor: Valószínűségszámítás E(ξ) = np, D 2 (ξ) = npq. Megjegyzés: vezet. A visszatevéses mintavétel binomiális eloszláshoz 2. POISSON-ELOSZLÁS Legyen λ > 0 és λ = np n, ekkor lim n,λ=np n ( n )p kn(1 p n ) n k λ λk = e, ahol k = 0, 1,.... k k! A ξ valószínűségi változót Poisson-eloszlásúnak nevezzük λ > 0 paraméterrel, ha eloszlása λ λk P (ξ = k) = e, ahol k = 0, 1,.... k! E(ξ) = λ, D 2 (ξ) = λ. 3. GEOMETRIAI ELOSZLÁS A binomiális eloszlás bevezetésekor használt jelölések mellett a ξ valószínűségi változó jelentse az A esemény első bekövetkezéséhez szükséges kísérletek számát. A ξ eloszlása P (ξ = k) = pq k 1, ahol k = 1, 2,.... E(ξ) = 1 p, D2 (ξ) = q p 2. Megjegyzés: A η = ξ 1 valószínűségi változót is szokás geometriai eloszlásúnak nevezni. Az η eloszlása P (η = k) = pq k, ahol k = 0, 1, 2,.... E(η) = q p, D2 (η) = q p 2. 9

12 NÉHÁNY FOLYTONOS ELOSZLÁS ÉS JELLEMZŐI: 1. EGYENLETES ELOSZLÁS Legyen a, b R és a < b. A ξ egyenletes eloszlású az (a, b) intervallumon, ha a sűrűségfüggvénye E(ξ) = a + b 2, D2 (ξ) = 1, ha a < x < b, f(x) = b a 0, egyébként. (b a)2. Az eloszlásfüggvény 12 0, ha x a, x a F (x) =, ha a < x b, b a 1, ha x > b. 2. EXPONENCIÁLIS ELOSZLÁS A ξ exponenciális eloszlású λ > 0 paraméterrel, ha a sűrűségfüggvénye { λe f(x) = λx, ha x 0, 0, egyébként. E(ξ) = 1 λ, D2 (ξ) = 1. Az eloszlásfüggvény λ2 F (x) = { 0, ha x 0, 1 e λx, ha x > 0. Örökifjú tulajdonság: P (ξ a + b ξ a) = P (ξ b), ahol a > 0, b > NORMÁLIS ELOSZLÁS Legyen m R, σ > 0. Az η normális eloszlású, ha a sűrűségfüggvénye f(x) = 1 ) ( σ 2π exp (x m)2 2σ 2, x R. 10

13 E(ξ) = m, D 2 (ξ) = σ 2. Ha m = 0 és σ = 1, akkor a valószínűségi változót standard normális eloszlásúnak nevezzük. Jelölje a sűrűségfüggvényét ϕ és az eloszlásfüggvényét Φ. Ha ξ standard normális eloszlású, akkor az η = σξ+m valószínűségi változó F eloszlásfüggvényére jellemző, hogy ( ) x m F (x) = Φ. σ Megjegyzés: 1. A ϕ függvény írja le a Gauss-görbét(harang görbét). 2. Φ(0) = 0.5 és Φ( x) = 1 Φ(x). 4. CAUCHY ELOSZLÁS Legyen c R, s > 0. Az η Cauchy eloszlású, ha a sűrűségfüggvénye f(x) = 1 [ ( ) 2 ], x R. x c πs 1 + s Nem létezik a várható érték. Az eloszlásfüggvény F (x) = π arctan ( x c s Megjegyzés: Szokás csak a c = 0, s = 1 esetet (standard) Cauchyeloszlásnak nevezni. ). A VÉLETLEN VEKTOROK Definíció: A (ξ, η) : Ω R 2 leképezést (kétdimenziós) véletlen vektornak nevezzük, ha {ξ < x, η < y} = {ω ω Ω, ξ(ω) < x, η(ω) < y} F x, y R. Definíció: Az F (x, y) = P (ξ < x, η < y) formulával meghatározott valós értékű függvényt a (ξ, η) véletlen vektor együttes eloszlásfüggvényének nevezzük. Az F ξ (x) = lim F (x, y), F η(y) = lim F (x, y) y + x + 11

14 függvényeket peremeloszlásfüggvénynek nevezzük TÉTEL: Az F függvény akkor és csak akkor lehet együttes eloszlásfüggvény, ha 1. lim F (x, y) = 0, lim x 2. x lim F (x, y) = 1, y F (x, y) = 0, y 3. F mindkét változójában balról folytonos, 4. F (b, d) F (b, c) F (a, d) + F (a, c) 0, a < b, c < d esetén, azaz teljesül az ún. téglalap tulajdonság. Megjegyzés: A téglalap tulajdonságból következik, hogy mindkét változójában monoton növekvő. Definíció: A (ξ, η) véletlen vektort diszkrétnek nevezzük, ha a lehetséges értékek számossága legfeljebb megszámlálhatóan végtelen. Definíció: Legyen a ξ, illetve η valószínűségi változó lehetséges értekeinek sorozata x 1, x 2,..., illetve y 1, y 2,.... A P (ξ = x i, η = y j ) = p ij (i, j = 1, 2,...) valószínűségek sorozatát együttes eloszlásnak nevezzük. A q i = p ij, (i = 1, 2,...), r j = j=1 p ij, (j = 1, 2,...) valószínűség sorozatokat peremeloszlásnak nevezzük. Minden r j > 0 esetén a ξ feltételes eloszlása adott η = y j mellett P (ξ = x i η = y j ) = p ij r j. Az E(ξ η = y j ) = 12 x i p ij r j

15 mennyiséget feltételes várható értéknek nevezzük. Az E(ξ η = y j ) = m 2 (y j ) függvényt a ξ-nek az η-ra vonatkozó regressziós függvényének nevezzük. TÉTEL: Ha p ij (i, j = 1, 2,...) együttes eloszlás, akkor p ij 0 (i, j = 1, 2,...) és p ij = 1. j=1 Definíció: Ha létezik f nemnegatív valós értékű függvény, melyre F (x, y) = x y f(u, v)dvdu, x, y R, akkor f az F eloszlásfüggvényhez tartozó együttes sűrűségfüggvény. Az f ξ (x) = + f(x, y)dy, f η (y) = + függvényeket peremsűrűségfüggvénynek nevezzük. f(x, y)dx TÉTEL: Az f függvény akkor és csak akkor lehet együttes sűrűségfüggvény, ha nemnegatív és + + f(x, y)dydx = 1. Definíció: A (ξ, η) véletlen vektort folytonosnak nevezzük, ha létezik az együttes sűrűségfüggvénye. Definíció: A ξ és η) valószínűségi változót függetlennek nevezzük, ha F (x, y) = F ξ (x)f η (y), x, y R. 13

16 Megjegyzés: A függetlenség megfelelői diszkrét illetve folytonos esetben: p ij = q i r j, (i, j = 1, 2,...), f(x, y) = f ξ (x)f η (y) x, y R. Definíció: Legyen (ξ, η) véletlen vektor. Az F (x y) az feltételes eloszlásfüggvénye a ξ-nek η = y esetén, ha F (x y) = P (ξ < x η = y) = lim P (ξ < x y η < y + h). h 0+0 Megjegyzés: Ha léteznek a feltételes valószínűségek. Definíció: Ha létezik f ξ η nemnegatív valós értékű függvény, melyre F (x y) = x f ξ η (u y)du, x, y R akkor f ξ η a ξ-nek az η-ra vonatkozó feltételes sűrűségfüggvénye. Megjegyzés: f ξ η (x y) = f(x, y) f η (y). Definíció: A feltételes sűrűségfüggvény segítségével meghatározott feltételes várható értéket regressziós függvénynek nevezzük, azaz az + f ξ η (x y)dx = m 2 (y) függvényt a ξ-nek az η-ra vonatkozó regressziós függvényének nevezzük. Megjegyzés: Ha (ξ, η) véletlen vektor g : R 2 R olyan függvény, hogy g(ξ, η) valószínűségi változó, akkor g(x i, y j )p ij, ha (ξ, η) diszkrét, i,j E(g(ξ, η)) = + + g(x, y)f(x, y)dydx, ha (ξ, η) folytonos. 14

17 Definíció: A cov(ξ, η) = E((ξ E(ξ))(η E(η))) mennyiséget kovarianciának nevezzük. Az r(ξ, η) = cov(ξ, η) D(ξ)D(η) mennyiséget pedig korrelációs együtthatónak nevezzük. TÉTEL: 1. E(ξ + η)) = E(ξ) + E(η). 2. D 2 (ξ + η)) = D 2 (ξ) + D 2 (η) + 2cov(ξ, η). 3. E(E(ξ η = y)) = E(ξ). 4. cov(ξ, η) D(ξ)D(η), azaz r(ξ, η) 1. NÉHÁNY FOLYTONOS ELOSZLÁS: A (ξ, η) véletlen vektor Q = (i) normális eloszlású, ha f(x, y) = 1 2πσ 1 σ 2 1 ρ 2 exp[ Q], [ 1 2(1 ρ 2 ( x m 1 ) 2 2ρ( x m 1 )( y m 2 ) + ( y m ] 2 ) 2, ) σ 1 σ 1 σ 2 σ 2 ahol σ 1 > 0, σ 2 > 0, 1 < ρ < 1. (ii) egyenletes eloszlású az A R 2 tartományon, ha { 1, f(x, y) = A ha (x, y) A, 0, egyébként. Megjegyzés: A véletlen vektor és a hozzákapcsolódó fogalmak definícióját csak kétdimenziós esetben adtuk meg, de nagyon egyszerűen 15

18 kiterjeszthetőek véges sok valószínűségi változó esetére. Például, a ξ 1, ξ 2,..., ξ n valószínűségi változókat függetlennek nevezzük, ha F (x 1, x 2,..., x n ) = F ξ1 (x 1 )F ξ2 (x 2 ) F ξn (x n ) x 1, x 2,..., x n R. TÉTEL: Az F (x 1, x 2,..., x n ) függvény akkor és csak akkor együttes eloszlásfüggvény, ha minden változójában balról folytonos, és lim F (x 1, x 2,..., x n ) = 0, x i (i = 1, 2,..., n), lim F (x 1, x 2,..., x n ) = 1, x i + (,2,...,n) K=e 1 +e e n ( 1) K F (e 1 a 1 + (1 e 1 )b 1,..., e n a n + (1 e n )b n ) 0 a i b i (i = 1, 2,..., n) és az összegzést K esetében vesszük, ahol az e 1, e 2,..., e n értéke 0 és 1 lehet. TÉTEL: Legyenek ξ 1, ξ 2,..., ξ n független valószínűségi változók, melyeknek rendre F ξ1, F ξ2,..., F ξn az eloszlásfüggvénye. Ekkor (a) az η(ω) = max{ξ 1 (ω),..., ξ n (ω)} ( ω Ω) valószínűségi változó eloszlásfüggvénye F η (y) = F ξ1 (y)f ξ2 (y) F ξn (y). (b) az η(ω) = min{ξ 1 (ω),..., ξ n (ω)} ( ω Ω) valószínűségi változó eloszlásfüggvénye F η (z) = 1 (1 F ξ1 (z))(1 F ξ2 (z)) (1 F ξn (z)). TÉTEL: (Markov-egyenlőtlenség) Legyen a ξ nemnegatív valószínűségi változó, melynek létezik a várható értéke, ekkor c > 0 esetén P (ξ c) E(ξ). c 16

19 TÉTEL: (Csebisev-egyenlőtlenség) Ha a ξ valószínűségi változónak létezik a szórásnégyzete, akkor ε > 0 esetén P ( ξ E(ξ) ε) D2 (ξ) ε 2. TÉTEL: (nagy számok gyenge törvénye) Legyen ξ 1, ξ 2,... független, azonos eloszlású valószínűségi változók sorozata. Létezik a szórásnégyzet. Ekkor tetszőleges ε > 0 esetén ( lim P ξ ) ξ n E(ξ 1 ) ε = 0. n + n Megjegyzés: Legyen A esemény és S n az A esemény gyakorisága az első n kísérletből egy Bernoulli kísérletsorozatnál. Ekkor tetszőleges ε > 0 esetén ( lim P S ) n n + n P (A) ε = 0. TÉTEL: (centrális határeloszlás-tétel) Legyen ξ 1, ξ 2,... független, azonos eloszlású valószínűségi változók sorozata és létezik az E(ξ i ) = µ és n D 2 (ξ i ) = σ 2 > 0. Ha S n = ξ k, akkor k=1 ( lim P Sn nµ n + σ n ahol Φ a standard normális eloszlásfüggvény. ) < x = Φ(x), x R, TÉTEL: (Moivre-Laplace) Legyen a ξ valószínűségi változó binomiális eloszlású n és p paraméterrel és 0 a < b n egész, akkor b ( ) n P (a ξ b) = p k q n k k k=a b np + 1 Φ 2 Φ npq a np 1 2 npq. 17

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Informatikai rendszerek modellezése, analízise

Informatikai rendszerek modellezése, analízise Informatikai rendszerek modellezése, analízise Dr. Sztrik János Debreceni Egyetem, Informatikai Kar Lektorálta: Dr. Bíró József MTA doktora, egyetemi tanár 2 Jelen jegyzetet feleségemnek ajánlom, aki nélkül

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a Feladatok:. Dobjunk fel egy szabályos dobókockát egymás után egymástól függetlenül végtelen sokszor. Számítsuk ki annak a valószínűségét, hogy a harmadik hatos dobás vagy a huszadik vagy valamely későbbi

Részletesebben

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10 Valszám-megoldások. Feladat. Legyen P (A =, 3 és P (B =, 6... Kérdés. Mennyi P (A + B, P (AB, ill. P (A B, ha A és B függetlenek?... Megoldás. Ha A és B függetlenek, akkor A és B, valamint B és A, valamint

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Informatikai rendszerek modellezése Dr. Sztrik, János

Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Debreceni Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Nemzeti Fejlesztési Ügynökség

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

Gazdasági matematika 2. tantárgyi kalauz

Gazdasági matematika 2. tantárgyi kalauz Hanich József Gazdasági matematika 2. tantárgyi kalauz Szolnoki Főiskola Szolnok 2005. Gazdasági matematika 2. tantárgyi kalauz A kalauz a következő 3 kiadványhoz készült: Dr. Csernyák László: Matematika

Részletesebben

Tómács Tibor. Matematikai statisztika gyakorlatok

Tómács Tibor. Matematikai statisztika gyakorlatok Tómács Tibor Matematikai statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika gyakorlatok Eger, 2012 Szerző: Dr. Tómács Tibor főiskolai

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

Barczy Mátyás és Pap Gyula. Sztochasztikus folyamatok. (Gauss-folyamatok, Poisson-folyamat)

Barczy Mátyás és Pap Gyula. Sztochasztikus folyamatok. (Gauss-folyamatok, Poisson-folyamat) Barczy Mátyás és Pap Gyula Sztochasztikus folyamatok Példatár és elméleti kiegészítések I. Rész (Gauss-folyamatok, Poisson-folyamat mobidiák könyvtár Barczy Mátyás és Pap Gyula Sztochasztikus folyamatok

Részletesebben

feltételek esetén is definiálják, tehát olyan esetekben is, amikor a hagyományos, a

feltételek esetén is definiálják, tehát olyan esetekben is, amikor a hagyományos, a A Valószínűségszámítás II. előadássorozat hatodik témája. ELTÉTELES VALÓSZÍNŰSÉG ÉS ELTÉTELES VÁRHATÓ ÉRTÉK A feltételes valószínűség és feltételes várható érték fogalmát nulla valószínűséggel bekövetkező

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok.

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Láttuk, hogy a Wiener-folyamat teljesíti az úgynevezett funkcionális centrális határeloszlástételt. Ez az eredmény durván szólva azt fejezi

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

EuroOffice Modeller felhasználói útmutató

EuroOffice Modeller felhasználói útmutató EuroOffice Modeller felhasználói útmutató 1 Bevezetés...5 EuroOffice Modeller: ANOVA felhasználói útmutató...5 Előkészítés...5 Egyutas ANOVA...5 Kétutas ANOVA...8 EuroOffice Modeller: Egymintás Z-próba

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

24. Valószínűség-számítás

24. Valószínűség-számítás 24. Valószínűség-számítás I. Elméleti összefoglaló Események, eseménytér A valószínűség-számítás a véletlen tömegjelenségek vizsgálatával foglalkozik. Azokat a jelenségeket, amelyeket a figyelembe vett

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 22. lecke: A teljes valószínűség tétele és a Bayes-tétel Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Kárszámeloszlások modellezése

Kárszámeloszlások modellezése Kárszámeloszlások modellezése DIPLOMAMUNKA Írta: Talabér Dóra Edit Biztosítási és pénzügyi matematika MSc Aktuárius szakirány Témavezető: Prokaj Vilmos egyetemi docens ELTE TTK Valószínűségelméleti és

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

VAL OSZ IN } US EGSZ AM IT AS es MATEMATIKAI STATISZTIKA feladatgy}ujtemeny Programozo matematikus, szamtastechnika levelez}o es tanarszakos hallgatok reszere Kesztette: Nagy Marta, Sztrik Janos es Tar

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem 13. előadás Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Statisztikai alapfogalmak Populáció, hisztogram, átlag, medián, szórás,

Részletesebben

Közgazdaságtani, módszertani és üzleti alapozó modul Gazdasági matematika 2. Valószínűségszámítás

Közgazdaságtani, módszertani és üzleti alapozó modul Gazdasági matematika 2. Valószínűségszámítás Gazdasági matematika 2: Valószínűségszámítás Tantárgyi útmutató 1. A tantárgy helye a szaki hálóban Gazdálkodási és menedzsment szakirány áttekintő tanterv Nagyításhoz kattintson a képre! Turizmus - vendéglátás

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

n = 1,2,..., a belőlük készített részletösszegek sorozata. Tekintsük az S n A n

n = 1,2,..., a belőlük készített részletösszegek sorozata. Tekintsük az S n A n Határeloszlástételek és korlátlanul osztható eloszlások. I. rész Az alapvető problémák megfogalmazása. A valószínűségszámítás egyik alapvető feladata a következő kérdés vizsgálata: Legyen ξ 1,ξ 2,... független

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

A pénzügyi kockázat mérése és kezelése

A pénzügyi kockázat mérése és kezelése A pénzügyi kockázat mérése és kezelése Varga-Haszonits István Gazdasági Fizika Téli Iskola, 2009. január 31. Áttekintés 1 Bevezetés 2 A portfólióválasztási probléma 3 Kockázati mértékek 4 A hatékony portfóliók

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

Félévi időbeosztás [házi feladat beadási határidőkkel] Valószínűségszámítás matematikusoknak és fizikusoknak, 2013 ősz

Félévi időbeosztás [házi feladat beadási határidőkkel] Valószínűségszámítás matematikusoknak és fizikusoknak, 2013 ősz Félévi időbeosztás [házi feladat beadási határidőkkel] Valószínűségszámítás matematikusoknak és fizikusoknak, 2013 ősz (zárójelben: tervezett tanóraszám; egy tanóra = 45 perc) A félév folyamán a táblázat

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

Sztochasztikus folyamatok

Sztochasztikus folyamatok Sztochasztikus folyamatok Pap Gyula, Sz cs Gábor Szegedi Tudományegyetem Bolyai Intézet, Sztochasztika Tanszék Utolsó frissítés: 2014. február 8. Tartalomjegyzék Tartalomjegyzék 2 1. Sztochasztikus folyamatok

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz Villamosmérnök A4 4. gyakorlat (0. 0. 0.-0.) Várható érték, szórás, módusz. A k 0, (k,,, 4) diszkrét eloszlásnak (itt P(X k)) mennyi a (a) várható értéke, (b) módusza, (c) második momentuma, (d) szórása?

Részletesebben

Kockázati folyamatok (jegyzet TEMPUS AC-JEP-13358-98) Michaletzky György Eötvös Loránd Tudományegyetem, Budapest

Kockázati folyamatok (jegyzet TEMPUS AC-JEP-13358-98) Michaletzky György Eötvös Loránd Tudományegyetem, Budapest Kockázati folyamatok (jegyzet TEMPUS AC-JEP-13358-98) Michaletzky György Eötvös Loránd Tudományegyetem, Budapest Valószínűségelméleti és Statisztika Tanszék Tartalom 1. Bevezetés 3 2. Kockázati modellek

Részletesebben

OPERÁCIÓKUTATÁS. No. 1. Nagy Tamás - Klafszky Emil SZTOCHASZTIKUS JELENSÉGEK

OPERÁCIÓKUTATÁS. No. 1. Nagy Tamás - Klafszky Emil SZTOCHASZTIKUS JELENSÉGEK OPERÁCIÓKUTATÁS No. 1. Nagy Tamás - Klafszky Emil SZTOCHASZTIKUS JELENSÉGEK Budapest 2002 Nagy Tamás - Klafszky Emil: SZTOCHASZTIKUS JELENSÉGEK OPERÁCIÓKUTATÁS No.1 Szerkeszti: Komáromi Éva Megjelenik

Részletesebben

véletlen vektorokból álló sorozatok, amelyeknek a kovariancia mátrixai

véletlen vektorokból álló sorozatok, amelyeknek a kovariancia mátrixai 1. A probléma megfogalmazása. KÁLMÁN-FÉLE SZŰRŐK E jegyzet témája az úgynevezett Kálmán-féle szűrők vizsgálata. A feladat a következő. Adott egy x(0),x(1),..., több változós (együttesen) normális, más

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

C programozási nyelv Pointerek, tömbök, pointer aritmetika

C programozási nyelv Pointerek, tömbök, pointer aritmetika C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek

Részletesebben

tudjuk biztosítani a majdnem biztos nyerést, de nem érdemes akkor, ha ehhez 100000

tudjuk biztosítani a majdnem biztos nyerést, de nem érdemes akkor, ha ehhez 100000 Az információszámítás néhány fontos fogalma és eredménye. 1. Az entrópia és feltételes entrópia fogalma és tulajdonságai. Annak érdekében, hogy megértsük az entrópia fogalmát és azt, hogy milyen problémák

Részletesebben

Pénzügyi matematika. Sz cs Gábor. Szeged, 2011. szi félév. Szegedi Tudományegyetem, Bolyai Intézet

Pénzügyi matematika. Sz cs Gábor. Szeged, 2011. szi félév. Szegedi Tudományegyetem, Bolyai Intézet Pénzügyi matematika Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet Szeged, 2011. szi félév Sz cs Gábor (SZTE, Bolyai Intézet) Pénzügyi matematika 2011. szi félév 1 / 79 Értékpapírpiacok Bevezetés

Részletesebben

Kombinatorika jegyzet és feladatgyűjtemény

Kombinatorika jegyzet és feladatgyűjtemény Kombinatorika jegyzet és feladatgyűjtemény Király Balázs, Tóth László Pécsi Tudományegyetem 2011 2 Lektor: Kátai Imre egyetemi tanár, az MTA rendes tagja Tartalomjegyzék Előszó 5 I. Jegyzet 7 I.1. Permutációk,

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

3. rész. Két változó kapcsolatának vizsgálata. Minden összefügg mindennel!? Komputerstatisztika kurzus

3. rész. Két változó kapcsolatának vizsgálata. Minden összefügg mindennel!? Komputerstatisztika kurzus Két kapcsolatának vizsgálata Minden összefügg mindennel!? Komputerstatisztika kurzus Barczy Mátyás Informatikai Kar Debreceni Egyetem 1 A témái 1 2 3 4 5 6 2 A kapcsolat természete A statisztikai k (adatbázisok

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA

MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA Czenky Márta MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA ABSZTRAKT Saját oktatói gyakorlatunkban a Moodle rendszer használata az évek során kiszorította az elméleti ismeretek számonkérésében a papír

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Sztochasztikus modellek feladatok

Sztochasztikus modellek feladatok Sztochasztikus modellek feladatok 1. Valószínűségi változók és vektorváltozók; feltételes eloszlás és feltételes várható érték Diszkrét és folytonos valószínűségi változók, feltételes eloszlás 1. Feldobunk

Részletesebben

A LOLP valószínűségi mérték értelmezésével kapcsolatos néhány kérdés Dr. Fazekas András István

A LOLP valószínűségi mérték értelmezésével kapcsolatos néhány kérdés Dr. Fazekas András István A villamosenergia-termelés rendszerszintű megbízhatóságának jellemzésére széleskörűen alkalmazzák a Loss-of-Load Probability (LOLP) értéket. A mutató fontos szerepet játszik a rendszerszintű teljesítőképesség-tervezési

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük

Részletesebben

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként.

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként. A szta formula és alalmazása. Gyaran találozun az alább érdéssel, soszor egy összetett feladat részfeladataént. Tentsün bzonyos A 1,...,A n eseményeet, és számítsu anna a valószínűségét, hogy legalább

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

TTK dékáni szünet Gy4 [3. HF]

TTK dékáni szünet Gy4 [3. HF] Félévi időbeosztás [házi feladat beadási határidőkkel] Figyelem! Ez a file az év során változhat, pld a HF beadási határidőket a gyakvezérek esetleg módosíthatják! Valószínűségszámítás matematikusoknak

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben