Készítette: Fegyverneki Sándor

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Készítette: Fegyverneki Sándor"

Átírás

1 VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, i

2 JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y R} A B az A részhalmaza a B-nek A B az A és B halmaz közös része A B az A és B halmaz összes eleme egy halmazban A az alaphalmaz A halmazon kívüli elemei A\B A B F (a + 0) a jobboldali határérték, azaz F (a 0) a baloldali határérték, azaz exp(x) e x lim F (x) x a+0 lim F (x) x a 0 f( ) : D R az f leképezés, D az értelmezési tartomány, a pont a változót helyettesíti f(d) az f leképezés értékkészlete ii

3 A VALÓSZÍNŰSÉG FOGALMA Definíció: Egy véletlen kísérlet lehetséges eredményeinek összeségét eseménytérnek (mintatér) nevezzük. Jele: Ω. Az Ω elemeit elemi eseményeknek nevezzük. Definíció: Az Ω részhalmazainak egy F rendszerét σ-algebrának nevezzük, ha (1) Ω F, (2) A F, akkor A F, (3) A 1, A 2,... F, akkor A 1 A 2... F. Az F elemeit pedig eseményeknek nevezzük. Megjegyzés: Ha A, B F, akkor A B F. Definíció: Az Ω-t szokás biztos eseménynek, az -t pedig lehetetlen eseménynek nevezni. Továbbá, az A esemény bekövetkezik, ha a kísérlet eredménye eleme az A halmaznak. Megjegyzés: Az A B esemény bekövetkezik, ha legalább az egyik közülük bekövetkezik, míg az A B esemény akkor következik be, ha mind a kettő bekövetkezik. Definíció: A P : F R nemnegatív leképezést valószínűségnek nevezzük, ha (1) P (Ω) = 1, (2) A B =, akkor P (A B) = P (A) + P (B), (3) A 1, A 2,... egymást kölcsönösen kizáró események (azaz A i A j =, ha i < j és i, j = 1, 2,...), akkor P ( ) A i = 1 P (A i ).

4 LEMMA: (1) P ( A ) = 1 P (A). (2) P ( ) = 0. (3) P (B\A) = P (B) P (A B). (4) Ha A B, akkor P (A) P (B). (5) P (A B) = P (A) + P (B) P (A B). (6) Ha B n+1 B n és B n =, akkor lim P (B n) = 0. n Definíció: Az (Ω, F, P ) hármast valószínűségi mezőnek nevezzük. Definíció: Ha az elemi események száma véges és valószínűségük megegyezik, akkor a valószínűségi mezőt klasszikusnak nevezzük. Megjegyzés: Legyen Ω = n és jelölje az elemi eseményeket ω i (i = 1, 2,..., n). Ekkor ( n ) n 1 = P (Ω) = P {ω i } = P ({ω i }) = np ({ω i }). Tehát P ({ω i }) = 1 n (i = 1, 2,..., n). Definíció: Bernoulli kísérletsorozatnak nevezzük azt, ha adott A F és egymástól függetlenül, azonos körülmények között elvégezzük ugyanazt a kísérletet, s csak azt figyeljük, hogy az A esemény bekövetkezett-e vagy sem. Példa: 1. Visszatevéses mintavétel: Adott N darab különböző objektum, amelyek közül s darab rendelkezik egy bizonyos tulajdonsággal, például selejt. Visszatevéssel kiveszünk n darabot. Legyen a kivett selejtek száma ξ. Mennyi a valószínűsége, hogy ξ = k, ahol 0 k n. P (ξ = k) = ( n k ) s k (N s) n k N n. 2. Visszatevés nélküli mintavétel: Adott N darab különböző objektum, amelyek közül s darab rendelkezik egy bizonyos tulajdonsággal, 2

5 például selejt. Visszatevés nélkül kiveszünk n darabot. Legyen a kivett selejtek száma ξ. Mennyi a valószínűsége, hogy ξ = k, ahol 0 k min{n, s}. P (ξ = k) = ( )( ) s N s k n k ( ). N n TÉTEL: (Poincaré) Az A 1, A 2,..., A n eseményekre ( n ) n k P A i = ( 1) k 1 k=1 i 1 <i 2 < <i k P ahol az összegzést az összes lehetséges {i 1, i 2,..., i k } {1, 2,..., n} esetre tekintjük. Definíció: Az A esemény B feltétel melletti feltételes valószínűségének nevezzük a P (A B) P (A B) = P (B) mennyiséget, ha P (B) > 0. Megjegyzés: A P ( B) : F R leképezés tényleg valószínűség. n 1 LEMMA: Ha az A 1, A 2,..., A n eseményrendszerre P ( A i ) > 0, akkor P ( j=1 A ij, n A i ) = P (A 1 )P (A 2 A 1 ) P (A n A 1 A 2... A n 1 ). Definíció: Az A 1, A 2,... eseményrendszert teljes eseményrendszernek nevezzük, ha A i A j =, ha i < j és i, j = 1, 2,..., és A i = Ω. TÉTEL: (teljes valószínűség) Ha A 1, A 2,... teljes eseményrendszer és P (A i ) > 0, ha i = 1, 2,..., akkor tetszőleges B esemény esetén P (B) = P (B A i )P (A i ). 3

6 TÉTEL: (Bayes) Ha A 1, A 2,... teljes eseményrendszer és P (A i ) > 0, ha i = 1, 2,..., akkor tetszőleges pozitív valószínűségű B esemény esetén P (A k B) = P (B A k)p (A k ) P (B A i)p (A i ). Megjegyzés: A Bayes-tételhez kapcsolódóan bevezethetjük a következő elnevezéseket: P (A i ) az ún. a-priori valószínűség és P (A i A) az ún. a-posteriori valószínűség. Definíció: Az A és B eseményt sztochasztikusan függetlennek nevezzük, ha P (A B) = P (A)P (B). Az A 1, A 2,..., A n eseményeket páronként sztochasztikusan függetlennek nevezzük, ha P (A i A j ) = P (A i )P (A j ) (1 i < j n). Az A 1, A 2,..., A n eseményeket teljesen sztochasztikusan függetlennek nevezzük, ha P (A i1... A ik ) = P (A i1 ) P (A ik ), ahol 1 i 1 < < i k n, 2 k n. Példa: Ha az A és B események függetlenek, akkor A és B, A és B és A és B is függetlenek. LEMMA: Ha A 1, A 1,..., A n független események és P (A i ) < 1 (i = n 1, 2,..., n), akkor P ( A i ) < 1. Bizonyítás: ( n ) P A i = P n A i = 1 P n A i = = 1 P ( n ) n A i = 1 P ( A i ). 4

7 A VALÓSZÍNŰSÉGI VÁLTOZÓ Definíció: A ξ : Ω R leképezést valószínűségi változónak nevezzük, ha {ξ < x} = {ω ω Ω, ξ(ω) < x} F x R. Definíció: Az F (x) = P (ξ < x) formulával meghatározott valós függvényt a ξ valószínűségi változó eloszlásfüggvényének nevezzük. TÉTEL: Az F valós függvény akkor és csak akkor lehet eloszlásfüggvény, ha 1. lim F (x) = 0, x 2. lim F (x) = 1, x 3. F (x 1 ) F (x 2 ), ha (x 1 < x 2 ), azaz monoton növekvő, 4. lim x x 0 0 F (x) = F (x 0), x 0 R, azaz balról folytonos. TÉTEL: Legyen F a ξ valószínűségi változó eloszlásfüggvénye és a, b R, ekkor 1. P (a ξ < b) = F (b) F (a), 2. P (ξ = a) = F (a + 0) F (a). Definíció: A ξ valószínűségi változót diszkrétnek nevezzük, ha a lehetséges értékek ξ(ω) halmazának számossága legfeljebb megszámlálhatóan végtelen. Megjegyzés: Diszkrét valószínűségi változó esetén a lehetséges értékek felírhatók egy sorozatként. Definíció: Legyen a ξ valószínűségi változó lehetséges értekeinek sorozata x 1, x 2,.... A p i = P (ξ = x i ) (i = 1, 2,...) valószínűségek sorozatát eloszlásnak nevezzük. 5

8 TÉTEL: Ha p 1, p 2,... eloszlás, akkor p i 0 (i = 1, 2,...) és p i = 1. Definíció: Ha létezik f nemnegatív valós függvény, melyre F (x) = x f(t)dt, x R akkor f az F eloszlásfüggvényhez tartozó sűrűségfüggvény. Megjegyzés: A sűrűségfüggvény nem egyértelmű. TÉTEL: Az f valós függvény akkor és csak akkor lehet sűrűségfüggvény, ha nemnegatív és + f(t)dt = 1. Definíció: A valószínűségi változót folytonosnak nevezzük, ha létezik a sűrűségfüggvénye. TÉTEL: Legyen a ξ folytonos valószínűségi változó f sűrűségfüggvénnyel és a, b R, ekkor P (ξ = a) = 0, és P (a ξ < b) = b a f(x)dx. Definíció: 1. Ha a ξ diszkrét valószínűségi változó lehetséges értékeinek a száma véges, azaz a lehetséges értékek x 1, x 2,..., x n és p i = P (ξ = x i ) (i = 1, 2,..., n), akkor a n x i p i mennyiséget várható értéknek nevezzük. 6

9 2. Ha a ξ diszkrét valószínűségi változó lehetséges értékeinek számossága megszámlálhatóan végtelen, azaz a lehetséges értékek akkor a x 1, x 2,..., és p i = P (ξ = x i ) (i = 1, 2,...), x i p i mennyiséget várható értéknek nevezzük, ha a + x i p i < Ha ξ folytonos valószínűségi változó f sűrűségfüggvénnyel, akkor xf(x)dx mennyiséget várható értéknek nevezzük, ha + x f(x)dx < +. A ξ valószínűségi változó várható értékének a jele: E(ξ) TÉTEL: 1. E(aξ + b) = ae(ξ) + b, a, b R. 2. Ha m ξ M, akkor m E(ξ) M. Definíció: Legyen ξ valószínűségi változó és g valós függvény. Ha az η = g(ξ) függvény valószínűségi változó, akkor a ξ transzformáltjának nevezzük. Megjegyzés: A transzformált eloszlásfüggvénye F η (y) = P ({ω g(ξ(ω)) < y}). TÉTEL: Ha g differenciálható és g (x) 0, akkor ξ folytonos valószínűségi változó esetén η = g(ξ) folytonos valószínűségi változó, melynek sűrűségfüggvénye { f η (y) = f ξ (g 1 (y)) d dy g 1 (y), ha a < y < b, 0, egyébként, 7

10 ahol a = min( lim g(x), lim g(x)), x x + b = max( lim g(x), x lim g(x)). x + TÉTEL: Ha η = g(ξ) a ξ valószínűségi változó transzformáltja, akkor E(η) = g(x i )P (ξ = x i ), + g(x)f ξ (x)dx, ha ξ diszkrét, ha ξ és η folytonos. Definíció: Az E((ξ E(ξ)) 2 ) mennyiséget a ξ valószínűségi változó szórásnégyzetének nevezzük. Jele: D 2 (ξ). Definíció: A E((ξ E(ξ)) 2 ) mennyiséget a ξ valószínűségi változó szórásának nevezzük. Jele: D(ξ). Definíció: Az E(ξ k ) mennyiséget a ξ valószínűségi változó k-adik momentumának nevezzük. Definíció: Az E((ξ E(ξ)) k ) mennyiséget a ξ valószínűségi változó k-adik centrális momentumának nevezzük. TÉTEL: 1. D(aξ + b) = a D(ξ), a, b R. 2. min a R E((ξ a)2 ) = D 2 (ξ), és ekkor a = E(ξ). 3. D 2 (ξ) = E(ξ 2 ) E 2 (ξ). NÉHÁNY DISZKRÉT ELOSZLÁS ÉS JELLEMZŐI: 1. BINOMIÁLIS ELOSZLÁS Legyen n N, A F, és végezzünk el egy n hosszúságú Bernoulli kísérletsorozatot. Továbbá, legyen ξ az A esemény bekövetkezéseinek a száma. Ekkor ξ eloszlása ( ) n P (ξ = k) = p k q n k, (k = 0, 1,..., n), k 8

11 ahol P (A) = p és q = 1 p. Fegyverneki Sándor: Valószínűségszámítás E(ξ) = np, D 2 (ξ) = npq. Megjegyzés: vezet. A visszatevéses mintavétel binomiális eloszláshoz 2. POISSON-ELOSZLÁS Legyen λ > 0 és λ = np n, ekkor lim n,λ=np n ( n )p kn(1 p n ) n k λ λk = e, ahol k = 0, 1,.... k k! A ξ valószínűségi változót Poisson-eloszlásúnak nevezzük λ > 0 paraméterrel, ha eloszlása λ λk P (ξ = k) = e, ahol k = 0, 1,.... k! E(ξ) = λ, D 2 (ξ) = λ. 3. GEOMETRIAI ELOSZLÁS A binomiális eloszlás bevezetésekor használt jelölések mellett a ξ valószínűségi változó jelentse az A esemény első bekövetkezéséhez szükséges kísérletek számát. A ξ eloszlása P (ξ = k) = pq k 1, ahol k = 1, 2,.... E(ξ) = 1 p, D2 (ξ) = q p 2. Megjegyzés: A η = ξ 1 valószínűségi változót is szokás geometriai eloszlásúnak nevezni. Az η eloszlása P (η = k) = pq k, ahol k = 0, 1, 2,.... E(η) = q p, D2 (η) = q p 2. 9

12 NÉHÁNY FOLYTONOS ELOSZLÁS ÉS JELLEMZŐI: 1. EGYENLETES ELOSZLÁS Legyen a, b R és a < b. A ξ egyenletes eloszlású az (a, b) intervallumon, ha a sűrűségfüggvénye E(ξ) = a + b 2, D2 (ξ) = 1, ha a < x < b, f(x) = b a 0, egyébként. (b a)2. Az eloszlásfüggvény 12 0, ha x a, x a F (x) =, ha a < x b, b a 1, ha x > b. 2. EXPONENCIÁLIS ELOSZLÁS A ξ exponenciális eloszlású λ > 0 paraméterrel, ha a sűrűségfüggvénye { λe f(x) = λx, ha x 0, 0, egyébként. E(ξ) = 1 λ, D2 (ξ) = 1. Az eloszlásfüggvény λ2 F (x) = { 0, ha x 0, 1 e λx, ha x > 0. Örökifjú tulajdonság: P (ξ a + b ξ a) = P (ξ b), ahol a > 0, b > NORMÁLIS ELOSZLÁS Legyen m R, σ > 0. Az η normális eloszlású, ha a sűrűségfüggvénye f(x) = 1 ) ( σ 2π exp (x m)2 2σ 2, x R. 10

13 E(ξ) = m, D 2 (ξ) = σ 2. Ha m = 0 és σ = 1, akkor a valószínűségi változót standard normális eloszlásúnak nevezzük. Jelölje a sűrűségfüggvényét ϕ és az eloszlásfüggvényét Φ. Ha ξ standard normális eloszlású, akkor az η = σξ+m valószínűségi változó F eloszlásfüggvényére jellemző, hogy ( ) x m F (x) = Φ. σ Megjegyzés: 1. A ϕ függvény írja le a Gauss-görbét(harang görbét). 2. Φ(0) = 0.5 és Φ( x) = 1 Φ(x). 4. CAUCHY ELOSZLÁS Legyen c R, s > 0. Az η Cauchy eloszlású, ha a sűrűségfüggvénye f(x) = 1 [ ( ) 2 ], x R. x c πs 1 + s Nem létezik a várható érték. Az eloszlásfüggvény F (x) = π arctan ( x c s Megjegyzés: Szokás csak a c = 0, s = 1 esetet (standard) Cauchyeloszlásnak nevezni. ). A VÉLETLEN VEKTOROK Definíció: A (ξ, η) : Ω R 2 leképezést (kétdimenziós) véletlen vektornak nevezzük, ha {ξ < x, η < y} = {ω ω Ω, ξ(ω) < x, η(ω) < y} F x, y R. Definíció: Az F (x, y) = P (ξ < x, η < y) formulával meghatározott valós értékű függvényt a (ξ, η) véletlen vektor együttes eloszlásfüggvényének nevezzük. Az F ξ (x) = lim F (x, y), F η(y) = lim F (x, y) y + x + 11

14 függvényeket peremeloszlásfüggvénynek nevezzük TÉTEL: Az F függvény akkor és csak akkor lehet együttes eloszlásfüggvény, ha 1. lim F (x, y) = 0, lim x 2. x lim F (x, y) = 1, y F (x, y) = 0, y 3. F mindkét változójában balról folytonos, 4. F (b, d) F (b, c) F (a, d) + F (a, c) 0, a < b, c < d esetén, azaz teljesül az ún. téglalap tulajdonság. Megjegyzés: A téglalap tulajdonságból következik, hogy mindkét változójában monoton növekvő. Definíció: A (ξ, η) véletlen vektort diszkrétnek nevezzük, ha a lehetséges értékek számossága legfeljebb megszámlálhatóan végtelen. Definíció: Legyen a ξ, illetve η valószínűségi változó lehetséges értekeinek sorozata x 1, x 2,..., illetve y 1, y 2,.... A P (ξ = x i, η = y j ) = p ij (i, j = 1, 2,...) valószínűségek sorozatát együttes eloszlásnak nevezzük. A q i = p ij, (i = 1, 2,...), r j = j=1 p ij, (j = 1, 2,...) valószínűség sorozatokat peremeloszlásnak nevezzük. Minden r j > 0 esetén a ξ feltételes eloszlása adott η = y j mellett P (ξ = x i η = y j ) = p ij r j. Az E(ξ η = y j ) = 12 x i p ij r j

15 mennyiséget feltételes várható értéknek nevezzük. Az E(ξ η = y j ) = m 2 (y j ) függvényt a ξ-nek az η-ra vonatkozó regressziós függvényének nevezzük. TÉTEL: Ha p ij (i, j = 1, 2,...) együttes eloszlás, akkor p ij 0 (i, j = 1, 2,...) és p ij = 1. j=1 Definíció: Ha létezik f nemnegatív valós értékű függvény, melyre F (x, y) = x y f(u, v)dvdu, x, y R, akkor f az F eloszlásfüggvényhez tartozó együttes sűrűségfüggvény. Az f ξ (x) = + f(x, y)dy, f η (y) = + függvényeket peremsűrűségfüggvénynek nevezzük. f(x, y)dx TÉTEL: Az f függvény akkor és csak akkor lehet együttes sűrűségfüggvény, ha nemnegatív és + + f(x, y)dydx = 1. Definíció: A (ξ, η) véletlen vektort folytonosnak nevezzük, ha létezik az együttes sűrűségfüggvénye. Definíció: A ξ és η) valószínűségi változót függetlennek nevezzük, ha F (x, y) = F ξ (x)f η (y), x, y R. 13

16 Megjegyzés: A függetlenség megfelelői diszkrét illetve folytonos esetben: p ij = q i r j, (i, j = 1, 2,...), f(x, y) = f ξ (x)f η (y) x, y R. Definíció: Legyen (ξ, η) véletlen vektor. Az F (x y) az feltételes eloszlásfüggvénye a ξ-nek η = y esetén, ha F (x y) = P (ξ < x η = y) = lim P (ξ < x y η < y + h). h 0+0 Megjegyzés: Ha léteznek a feltételes valószínűségek. Definíció: Ha létezik f ξ η nemnegatív valós értékű függvény, melyre F (x y) = x f ξ η (u y)du, x, y R akkor f ξ η a ξ-nek az η-ra vonatkozó feltételes sűrűségfüggvénye. Megjegyzés: f ξ η (x y) = f(x, y) f η (y). Definíció: A feltételes sűrűségfüggvény segítségével meghatározott feltételes várható értéket regressziós függvénynek nevezzük, azaz az + f ξ η (x y)dx = m 2 (y) függvényt a ξ-nek az η-ra vonatkozó regressziós függvényének nevezzük. Megjegyzés: Ha (ξ, η) véletlen vektor g : R 2 R olyan függvény, hogy g(ξ, η) valószínűségi változó, akkor g(x i, y j )p ij, ha (ξ, η) diszkrét, i,j E(g(ξ, η)) = + + g(x, y)f(x, y)dydx, ha (ξ, η) folytonos. 14

17 Definíció: A cov(ξ, η) = E((ξ E(ξ))(η E(η))) mennyiséget kovarianciának nevezzük. Az r(ξ, η) = cov(ξ, η) D(ξ)D(η) mennyiséget pedig korrelációs együtthatónak nevezzük. TÉTEL: 1. E(ξ + η)) = E(ξ) + E(η). 2. D 2 (ξ + η)) = D 2 (ξ) + D 2 (η) + 2cov(ξ, η). 3. E(E(ξ η = y)) = E(ξ). 4. cov(ξ, η) D(ξ)D(η), azaz r(ξ, η) 1. NÉHÁNY FOLYTONOS ELOSZLÁS: A (ξ, η) véletlen vektor Q = (i) normális eloszlású, ha f(x, y) = 1 2πσ 1 σ 2 1 ρ 2 exp[ Q], [ 1 2(1 ρ 2 ( x m 1 ) 2 2ρ( x m 1 )( y m 2 ) + ( y m ] 2 ) 2, ) σ 1 σ 1 σ 2 σ 2 ahol σ 1 > 0, σ 2 > 0, 1 < ρ < 1. (ii) egyenletes eloszlású az A R 2 tartományon, ha { 1, f(x, y) = A ha (x, y) A, 0, egyébként. Megjegyzés: A véletlen vektor és a hozzákapcsolódó fogalmak definícióját csak kétdimenziós esetben adtuk meg, de nagyon egyszerűen 15

18 kiterjeszthetőek véges sok valószínűségi változó esetére. Például, a ξ 1, ξ 2,..., ξ n valószínűségi változókat függetlennek nevezzük, ha F (x 1, x 2,..., x n ) = F ξ1 (x 1 )F ξ2 (x 2 ) F ξn (x n ) x 1, x 2,..., x n R. TÉTEL: Az F (x 1, x 2,..., x n ) függvény akkor és csak akkor együttes eloszlásfüggvény, ha minden változójában balról folytonos, és lim F (x 1, x 2,..., x n ) = 0, x i (i = 1, 2,..., n), lim F (x 1, x 2,..., x n ) = 1, x i + (,2,...,n) K=e 1 +e e n ( 1) K F (e 1 a 1 + (1 e 1 )b 1,..., e n a n + (1 e n )b n ) 0 a i b i (i = 1, 2,..., n) és az összegzést K esetében vesszük, ahol az e 1, e 2,..., e n értéke 0 és 1 lehet. TÉTEL: Legyenek ξ 1, ξ 2,..., ξ n független valószínűségi változók, melyeknek rendre F ξ1, F ξ2,..., F ξn az eloszlásfüggvénye. Ekkor (a) az η(ω) = max{ξ 1 (ω),..., ξ n (ω)} ( ω Ω) valószínűségi változó eloszlásfüggvénye F η (y) = F ξ1 (y)f ξ2 (y) F ξn (y). (b) az η(ω) = min{ξ 1 (ω),..., ξ n (ω)} ( ω Ω) valószínűségi változó eloszlásfüggvénye F η (z) = 1 (1 F ξ1 (z))(1 F ξ2 (z)) (1 F ξn (z)). TÉTEL: (Markov-egyenlőtlenség) Legyen a ξ nemnegatív valószínűségi változó, melynek létezik a várható értéke, ekkor c > 0 esetén P (ξ c) E(ξ). c 16

19 TÉTEL: (Csebisev-egyenlőtlenség) Ha a ξ valószínűségi változónak létezik a szórásnégyzete, akkor ε > 0 esetén P ( ξ E(ξ) ε) D2 (ξ) ε 2. TÉTEL: (nagy számok gyenge törvénye) Legyen ξ 1, ξ 2,... független, azonos eloszlású valószínűségi változók sorozata. Létezik a szórásnégyzet. Ekkor tetszőleges ε > 0 esetén ( lim P ξ ) ξ n E(ξ 1 ) ε = 0. n + n Megjegyzés: Legyen A esemény és S n az A esemény gyakorisága az első n kísérletből egy Bernoulli kísérletsorozatnál. Ekkor tetszőleges ε > 0 esetén ( lim P S ) n n + n P (A) ε = 0. TÉTEL: (centrális határeloszlás-tétel) Legyen ξ 1, ξ 2,... független, azonos eloszlású valószínűségi változók sorozata és létezik az E(ξ i ) = µ és n D 2 (ξ i ) = σ 2 > 0. Ha S n = ξ k, akkor k=1 ( lim P Sn nµ n + σ n ahol Φ a standard normális eloszlásfüggvény. ) < x = Φ(x), x R, TÉTEL: (Moivre-Laplace) Legyen a ξ valószínűségi változó binomiális eloszlású n és p paraméterrel és 0 a < b n egész, akkor b ( ) n P (a ξ b) = p k q n k k k=a b np + 1 Φ 2 Φ npq a np 1 2 npq. 17

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Matematika III. Nagy Károly 2011

Matematika III. Nagy Károly 2011 Matematika III előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 20 . Kombinatorika.. Definíció. Adott n darab egymástól különböző elem. Ezeknek egy meghatározott sorrendjét az n elem

Részletesebben

MITISZK Miskolc-Térségi Integrált Szakképző Központ

MITISZK Miskolc-Térségi Integrált Szakképző Központ MITISZK Miskolc-Térségi Integrált Szakképző Központ VALÓSZÍNŰSÉG-SZÁMÍTÁS ÉS MATEMATIKAI STATISZTIKA FEGYVERNEKI SÁNDOR Miskolci Egyetem Gépészmérnöki és Informatikai Kar Készült a HEFOP-3.2.2-P.-2004-10-0011-/1.0

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

BIZTOSÍTÁSI MATEMATIKA ALAPJAI1

BIZTOSÍTÁSI MATEMATIKA ALAPJAI1 BIZTOSÍTÁSI MATEMATIKA ALAPJAI1 Készítette: FEGYVERNEKI SÁNDOR,2 March 7, 2009 1 Előadás vázlat 1.0 verzió 2 Miskolci Egyetem, Alkalmazott Matematikai Tanszék Tartalomjegyzék 1. Bevezetés 1 1.1 Követelmények...............................

Részletesebben

Valószínűségszámítás

Valószínűségszámítás European Virtual Laboratory of Mathematics Project No. 2006 - SK/06/B/F/PP - 177436 Európai Virtuális Matematikai Laboratórium Árvai- Homolya Szilvia Valószínűségszámítás EVML e-könyvek Miskolc 2008 Sorozat

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Backhausz Ágnes 1. Bevezetés A valószínűség elemi tulajdonságai... 5

Backhausz Ágnes 1. Bevezetés A valószínűség elemi tulajdonságai... 5 Valószínűségszámítás Földtudomány BSc szak, 2016/2017. őszi félév Backhausz Ágnes agnes@cs.elte.hu Tartalomjegyzék 1. Bevezetés 2 2. A Kolmogorov-féle valószínűségi mező 3 2.1. Klasszikus valószínűségi

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. : A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 4. MA3-4 modul A valószínűségi változó és jellemzői SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

Matematikai statisztika Tómács Tibor

Matematikai statisztika Tómács Tibor Matematikai statisztika Tómács Tibor Matematikai statisztika Tómács Tibor Publication date 2011 Szerzői jog 2011 Hallgatói Információs Központ Copyright 2011, Educatio Kht., Hallgatói Információs Központ

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Tartalomjegyzék Szitaformulák Példák a szitaformulára Mintavételezés Bayes-tétel... 17

Tartalomjegyzék Szitaformulák Példák a szitaformulára Mintavételezés Bayes-tétel... 17 Valószínűségszámítás Földtudomány szak, 2015/2016. tanév őszi félév Backhausz Ágnes (ELTE TTK Valószínűségelméleti és Statisztika Tanszék)1 Tartalomjegyzék 1. Valószínűségi mező 3 1.1. Példák valószínűségi

Részletesebben

Informatikai rendszerek modellezése, analízise

Informatikai rendszerek modellezése, analízise Informatikai rendszerek modellezése, analízise Dr. Sztrik János Debreceni Egyetem, Informatikai Kar Lektorálta: Dr. Bíró József MTA doktora, egyetemi tanár 2 Jelen jegyzetet feleségemnek ajánlom, aki nélkül

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév Valószínűségelmélet Pap Gyula Szegedi Tudományegyetem Szeged, 2016/2017 tanév, I. félév Pap Gyula (SZTE) Valószínűségelmélet 2016/2017 tanév, I. félév 1 / 125 Ajánlott irodalom: CSÖRGŐ SÁNDOR Fejezetek

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli Gyakorló feladatok valószínűségszámításból végeredményekkel a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli. Igaz-e, hogy tetszőleges A, B és C eseményekre teljesül a A B \ C =

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

1. Előszó. 2. Valószínűségszámítás

1. Előszó. 2. Valószínűségszámítás 1. Előszó Ez a jegyzet a BME Építőmérnök hallgatóinak számára az A3 előadáshoz készült. Ennek a tárgynak előfeltétele az A1 tárgy, ami az egy változós kalkulus, és az A2 tárgy, ami a többváltozós kalkulusból

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

3. Egy szabályos dobókockát kétszer feldobva mennyi annak a valószínűsége, hogy a dobott számok különbségének abszolutértéke nagyobb mint 4?

3. Egy szabályos dobókockát kétszer feldobva mennyi annak a valószínűsége, hogy a dobott számok különbségének abszolutértéke nagyobb mint 4? 1. Kombinatorikus valószínűség 1. Egy dobókockát kétszer feldobunk. a) Írjuk le az eseményteret! b) Mennyi annak a valószínűsége, hogy az első dobás eredménye nagyobb, mint a másodiké? 2. Mennyi a valószínűsége

Részletesebben

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

Legfontosabb bizonyítandó tételek

Legfontosabb bizonyítandó tételek Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a Feladatok:. Dobjunk fel egy szabályos dobókockát egymás után egymástól függetlenül végtelen sokszor. Számítsuk ki annak a valószínűségét, hogy a harmadik hatos dobás vagy a huszadik vagy valamely későbbi

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

Valószínűségszámítás

Valószínűségszámítás Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Valószínűségszámítás programtervező informatikusok részére Eger, 010. szeptember 0. Tartalomjegyzék 1. Véletlen események...............................

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

matematikai statisztika 2006. október 24.

matematikai statisztika 2006. október 24. Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

1. elõadás: A valószínûség fogalma, kombinatorikai alapismeretek. (emlékeztetõ)

1. elõadás: A valószínûség fogalma, kombinatorikai alapismeretek. (emlékeztetõ) Ea1. 2002. 02. 11. 1. elõadás: A valószínûség fogalma, kombinatorikai alapismeretek Véletlen jelenség: feltételek, körülmények; ismételhetõség Megfigyelés: mi érdekel minket lehetséges kimenetelek Esemény:

Részletesebben

Informatikai rendszerek modellezése Dr. Sztrik, János

Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Debreceni Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Nemzeti Fejlesztési Ügynökség

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

1. hét. 1. Teljesülnek-e az alábbi egyenl½oségek? (a) A n B = B n A. (b) A \ B \ A \ B = A \ B \ A \ B. 2. Fejezzük ki

1. hét. 1. Teljesülnek-e az alábbi egyenl½oségek? (a) A n B = B n A. (b) A \ B \ A \ B = A \ B \ A \ B. 2. Fejezzük ki . hét. Teljesülnek-e az alábbi egyenl½oségek? (a) A n B = B n A (b) A \ B \ A \ B = A \ B \. Fejezzük ki (a) A \ B -t a n és [ m½uveletével! A \ B (b) A [ B -t a \ m½uveletével és az A; B halmazra vonatkozó

Részletesebben

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10 Valszám-megoldások. Feladat. Legyen P (A =, 3 és P (B =, 6... Kérdés. Mennyi P (A + B, P (AB, ill. P (A B, ha A és B függetlenek?... Megoldás. Ha A és B függetlenek, akkor A és B, valamint B és A, valamint

Részletesebben

Környezet statisztika

Környezet statisztika Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS KIDOLGOZOTT FELADATOK

VALÓSZÍNŰSÉGSZÁMÍTÁS KIDOLGOZOTT FELADATOK VALÓSZÍNŰSÉGSZÁMÍTÁS KIDOLGOZOTT FELADATOK KOMBINATORIKA Példa: a) Hányféle módon rakható sorba egy csomag Magyar kártya 3 lapja? Nyilván 3! féle módon. Ez nagyon nagy szám, 3!,63 0 35. b) Hányféle módon

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

4. rész. Nevezetes eloszlások és generálásuk. Játék a véletlennel. Komputerstatisztika kurzus

4. rész. Nevezetes eloszlások és generálásuk. Játék a véletlennel. Komputerstatisztika kurzus Valós és generálásuk Játék a véletlennel Komputerstatisztika kurzus diszkrét folytonos Box Muller Barczy Mátyás Informatikai Kar Debreceni Egyetem Marsaglia 1 A témái Valós diszkrét 1 Valós folytonos 2

Részletesebben

Példák: tojások száma egy madárfészekben (egy adott madárfaj esetén), egy egyed testhőmérséklete (adott faj és ivar esetén), a következő buszon az uta

Példák: tojások száma egy madárfészekben (egy adott madárfaj esetén), egy egyed testhőmérséklete (adott faj és ivar esetén), a következő buszon az uta Valószínűségi változók (véletlen változók, random variables) Változó: Névvel ellátott érték. (Képzeljünk el egy fiókot. A fiók címkéje a változó neve, a fiók tartalma pedig a változó értéke.) Valószínűségi

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. : A valószínűségszámítás elemei Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof Dr Závoti József Matematika III 3 MA3-3 modul A valószínűségszámítás elemei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Gazdasági matematika 2. tantárgyi kalauz

Gazdasági matematika 2. tantárgyi kalauz Hanich József Gazdasági matematika 2. tantárgyi kalauz Szolnoki Főiskola Szolnok 2005. Gazdasági matematika 2. tantárgyi kalauz A kalauz a következő 3 kiadványhoz készült: Dr. Csernyák László: Matematika

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2

Részletesebben

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44.

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. Dr. Vincze Szilvia Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. tétel) Környezetünkben sok olyan jelenséget

Részletesebben

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak

Részletesebben

KVANTITATÍV MÓDSZEREK

KVANTITATÍV MÓDSZEREK BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Dr. Kövesi János Erdei János Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás KVANTITATÍV MÓDSZEREK

Részletesebben

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés) Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és Feladatok 2 zh-ra 205 április 3 Eseményalgebra Feladat Az A és B eseményekr l tudjuk, hogy P (A) = 0, 7, P (B) = 0, 4 és P (A B) = 0, 5 Határozza meg az A B esemény valószín ségét! P (A B) = 0, 2 2 Feladat

Részletesebben