Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1."

Átírás

1 Statisztika I. 4. előadás Mintavétel Kóczy Á. László KGK-VMI

2 Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság, melyből az alapsokaságra következtetni szeretnénk. A következtetés sosem tökéletes! Akkor miért? Költséghatékonyság Az alapsokaság nem létező elemeire is akarunk következtetni. Az alapsokaság lehet akár végtelen elemszámú is.

3 Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság, melyből az alapsokaságra következtetni szeretnénk. A következtetés sosem tökéletes! Akkor miért? Költséghatékonyság Az alapsokaság nem létező elemeire is akarunk következtetni. Az alapsokaság lehet akár végtelen elemszámú is.

4 A sokaságok fajtái áttekintés Véletlen egyed: ξ, eloszlásfüggvénye F(X) = P(ξ < X). Sokaság eloszlásfüggvény várható érték szórásnégyzet fajtája (F(X)) (M(ξ)) (D 2 (ξ)) véges X-nél kisebb egyedek N X i (X i X) 2 /N diszkrét folytonos

5 A sokaságok fajtái áttekintés Véletlen egyed: ξ, eloszlásfüggvénye F(X) = P(ξ < X). Sokaság eloszlásfüggvény várható érték szórásnégyzet fajtája (F(X)) (M(ξ)) (D 2 (ξ)) véges diszkrét X-nél kisebb egyedek N lépcsős X i P(ξ = X i)x i i (X i X) 2 /N M(ξ 2 ) M 2 (ξ) folytonos

6 A sokaságok fajtái áttekintés Véletlen egyed: ξ, eloszlásfüggvénye F(X) = P(ξ < X). Sokaság eloszlásfüggvény várható érték szórásnégyzet fajtája (F(X)) (M(ξ)) (D 2 (ξ)) véges X-nél kisebb egyedek N X i (X i X) 2 /N diszkrét lépcsős i P(ξ = X i)x i M(ξ 2 ) M 2 (ξ) folytonos (ha létezik) Xf (X)dX M(ξ2 ) M 2 (ξ)

7 A sokaságok fajtái áttekintés Véletlen egyed: ξ, eloszlásfüggvénye F(X) = P(ξ < X). Sokaság eloszlásfüggvény várható érték szórásnégyzet fajtája (F(X)) (M(ξ)) (D 2 (ξ)) véges X-nél kisebb egyedek N X i (X i X) 2 /N diszkrét lépcsős i P(ξ = X i)x i M(ξ 2 ) M 2 (ξ) folytonos (ha létezik) Xf (X)dX M(ξ2 ) M 2 (ξ)

8 Minta és konkrét minta Különbséget teszünk a minta (tulajdonképpen a mintavételi eljárás, ill. annak elméleti eredménye) és egy konkrét minta (a mintavételi eljárás egyszeri alkalmazása) között. Pl: Magyar állampolgárok vagyoni helyzetét próbáljuk felmérni két véletlenszerűen kiválasztott egyén alapján. A véletlenszerűen kiválasztott minta kb. jellemző az alapsokaságra. Egy konkrét minta bármi lehet (pl. Csányi Sándor és Kóka János) itt ebből kell majd az alapsokaságra következtetnünk. Nagy, vagy sok minta segít a becslés pontosságában (erről a 2. előadáson)

9 Minta és konkrét minta Különbséget teszünk a minta (tulajdonképpen a mintavételi eljárás, ill. annak elméleti eredménye) és egy konkrét minta (a mintavételi eljárás egyszeri alkalmazása) között. Pl: Magyar állampolgárok vagyoni helyzetét próbáljuk felmérni két véletlenszerűen kiválasztott egyén alapján. A véletlenszerűen kiválasztott minta kb. jellemző az alapsokaságra. Egy konkrét minta bármi lehet (pl. Csányi Sándor és Kóka János) itt ebből kell majd az alapsokaságra következtetnünk. Nagy, vagy sok minta segít a becslés pontosságában (erről a 2. előadáson)

10 Minta és konkrét minta Különbséget teszünk a minta (tulajdonképpen a mintavételi eljárás, ill. annak elméleti eredménye) és egy konkrét minta (a mintavételi eljárás egyszeri alkalmazása) között. Pl: Magyar állampolgárok vagyoni helyzetét próbáljuk felmérni két véletlenszerűen kiválasztott egyén alapján. A véletlenszerűen kiválasztott minta kb. jellemző az alapsokaságra. Egy konkrét minta bármi lehet (pl. Csányi Sándor és Kóka János) itt ebből kell majd az alapsokaságra következtetnünk. Nagy, vagy sok minta segít a becslés pontosságában (erről a 2. előadáson)

11 Minta és konkrét minta Különbséget teszünk a minta (tulajdonképpen a mintavételi eljárás, ill. annak elméleti eredménye) és egy konkrét minta (a mintavételi eljárás egyszeri alkalmazása) között. Pl: Magyar állampolgárok vagyoni helyzetét próbáljuk felmérni két véletlenszerűen kiválasztott egyén alapján. A véletlenszerűen kiválasztott minta kb. jellemző az alapsokaságra. Egy konkrét minta bármi lehet (pl. Csányi Sándor és Kóka János) itt ebből kell majd az alapsokaságra következtetnünk. Nagy, vagy sok minta segít a becslés pontosságában (erről a 2. előadáson)

12 Fogalmak/jellemzők Minta elemszáma (n) Az alapsokaság lehet véges, megszámlálhatóan végtelen (diszkrét), megszámlálhatatlanul végtelen (folytonos). A minta elemszáma mindig véges! Minta elemei Valószínűségi változók: ξ 1,..., ξ i,..., ξ n Mintavételi keret Az alapsokaság elemeit pontosan egyszer tartalmazza. Problémák: végtelen/változó alapsokaság Kiválasztási arány A minta és a sokaság elemeinek hányadosa: n N A minta mérete Kis vagy nagy minta. 100 felett nagy.

13 Fogalmak/jellemzők Minta elemszáma (n) Az alapsokaság lehet véges, megszámlálhatóan végtelen (diszkrét), megszámlálhatatlanul végtelen (folytonos). A minta elemszáma mindig véges! Minta elemei Valószínűségi változók: ξ 1,..., ξ i,..., ξ n Mintavételi keret Az alapsokaság elemeit pontosan egyszer tartalmazza. Problémák: végtelen/változó alapsokaság Kiválasztási arány A minta és a sokaság elemeinek hányadosa: n N A minta mérete Kis vagy nagy minta. 100 felett nagy.

14 Fogalmak/jellemzők Minta elemszáma (n) Az alapsokaság lehet véges, megszámlálhatóan végtelen (diszkrét), megszámlálhatatlanul végtelen (folytonos). A minta elemszáma mindig véges! Minta elemei Valószínűségi változók: ξ 1,..., ξ i,..., ξ n Mintavételi keret Az alapsokaság elemeit pontosan egyszer tartalmazza. Problémák: végtelen/változó alapsokaság Kiválasztási arány A minta és a sokaság elemeinek hányadosa: n N A minta mérete Kis vagy nagy minta. 100 felett nagy.

15 Fogalmak/jellemzők Minta elemszáma (n) Az alapsokaság lehet véges, megszámlálhatóan végtelen (diszkrét), megszámlálhatatlanul végtelen (folytonos). A minta elemszáma mindig véges! Minta elemei Valószínűségi változók: ξ 1,..., ξ i,..., ξ n Mintavételi keret Az alapsokaság elemeit pontosan egyszer tartalmazza. Problémák: végtelen/változó alapsokaság Kiválasztási arány A minta és a sokaság elemeinek hányadosa: n N A minta mérete Kis vagy nagy minta. 100 felett nagy.

16 Fogalmak/jellemzők Minta elemszáma (n) Az alapsokaság lehet véges, megszámlálhatóan végtelen (diszkrét), megszámlálhatatlanul végtelen (folytonos). A minta elemszáma mindig véges! Minta elemei Valószínűségi változók: ξ 1,..., ξ i,..., ξ n Mintavételi keret Az alapsokaság elemeit pontosan egyszer tartalmazza. Problémák: végtelen/változó alapsokaság Kiválasztási arány A minta és a sokaság elemeinek hányadosa: n N A minta mérete Kis vagy nagy minta. 100 felett nagy.

17 A mintavétel módja Visszatevéses v. visszatevés nélküli mintavétel A mintavétel módja- visszatevéses visszatevés nélküli A sokaság elemszáma A mintaelemek kapcsolata... Végtelen függetlenek függetlenek Véges függetlenek nem függetlenek

18 A mintavételi eljárások 1/2. Véletlen mintavételi eljárások Független, azonos eloszlású minta: Ld fent. Egyszerű véletlen mintavétel: homogén, véges sokaságból, mintavételi keretből visszatevés nélkül. Rétegzett mintavétel: csoportokba osztott sokaságból mennyit az egyes csoportokból? Egyenletes: minden rétegből n j = n M. Neyman-féle optimális: Nagyobb szórású rétegből nagyobb rétegminta.

19 A mintavételi eljárások 1/2. Véletlen mintavételi eljárások Független, azonos eloszlású minta: Ld fent. Egyszerű véletlen mintavétel: homogén, véges sokaságból, mintavételi keretből visszatevés nélkül. Rétegzett mintavétel: csoportokba osztott sokaságból mennyit az egyes csoportokból? Egyenletes: minden rétegből n j = n M. Neyman-féle optimális: Nagyobb szórású rétegből nagyobb rétegminta.

20 A mintavételi eljárások 1/2. Véletlen mintavételi eljárások Független, azonos eloszlású minta: Ld fent. Egyszerű véletlen mintavétel: homogén, véges sokaságból, mintavételi keretből visszatevés nélkül. Rétegzett mintavétel: csoportokba osztott sokaságból mennyit az egyes csoportokból? Egyenletes: minden rétegből n j = n M. Neyman-féle optimális: Nagyobb szórású rétegből nagyobb rétegminta.

21 A mintavételi eljárások 1/2. Véletlen mintavételi eljárások Független, azonos eloszlású minta: Ld fent. Egyszerű véletlen mintavétel: homogén, véges sokaságból, mintavételi keretből visszatevés nélkül. Rétegzett mintavétel: csoportokba osztott sokaságból mennyit az egyes csoportokból? Egyenletes: minden rétegből n j = n M. Neyman-féle optimális: Nagyobb szórású rétegből nagyobb rétegminta.

22 A mintavételi eljárások 2/2. Csoportos: a sokaság egy v. több csoportját teljes egészében kiválasztjuk Többlépcsős: A csoporton belül is választunk. Kombinált. Pl: Ismétlődő időbeli változást vizsgál; több mintavétel uarról a sokaságról több időpontban. Panelfelvétel ugyanaz a mintafelvétel több időpontban (pl ugyanazok az egyedek) Nem véletlen mintavételi eljárások Szisztematikus mintavétel: sorbarendezett keretből minden [ N n ] -edik elem. Kvóta szerinti Önkényes

23 A mintavételi eljárások 2/2. Csoportos: a sokaság egy v. több csoportját teljes egészében kiválasztjuk Többlépcsős: A csoporton belül is választunk. Kombinált. Pl: Ismétlődő időbeli változást vizsgál; több mintavétel uarról a sokaságról több időpontban. Panelfelvétel ugyanaz a mintafelvétel több időpontban (pl ugyanazok az egyedek) Nem véletlen mintavételi eljárások Szisztematikus mintavétel: sorbarendezett keretből minden [ N n ] -edik elem. Kvóta szerinti Önkényes

24 A mintavételi eljárások 2/2. Csoportos: a sokaság egy v. több csoportját teljes egészében kiválasztjuk Többlépcsős: A csoporton belül is választunk. Kombinált. Pl: Ismétlődő időbeli változást vizsgál; több mintavétel uarról a sokaságról több időpontban. Panelfelvétel ugyanaz a mintafelvétel több időpontban (pl ugyanazok az egyedek) Nem véletlen mintavételi eljárások Szisztematikus mintavétel: sorbarendezett keretből minden [ N n ] -edik elem. Kvóta szerinti Önkényes ma már nem igazán elfogadott.

25 A mintavételi eljárások 2/2. Csoportos: a sokaság egy v. több csoportját teljes egészében kiválasztjuk Többlépcsős: A csoporton belül is választunk. Kombinált. Pl: Ismétlődő időbeli változást vizsgál; több mintavétel uarról a sokaságról több időpontban. Panelfelvétel ugyanaz a mintafelvétel több időpontban (pl ugyanazok az egyedek) Nem véletlen mintavételi eljárások Szisztematikus mintavétel: sorbarendezett keretből minden [ N n ] -edik elem. Kvóta szerinti Önkényes ma már nem igazán elfogadott.

26 A mintajellemzők tulajdonságai jellemző sokaság minta konkrét minta ismérvértékek x 1, x 2,... ξ 1, ξ 2,..., ξ n x 1, x 2,..., x n átlag µ ˆµ x A mintaátlag tulajdonságai: várható értéke: M(ˆµ) = µ. szórása: D(ˆµ) = σˆµ = σ n (nagyobb minta, kisebb szórás!) szórása (ha nem függetlenek pl egyszerű mintavételnél): D(ˆµ) = σˆµ = σ n 1 n N (ez a korrekciós tényező) eloszlása: Normális eloszlású sokaság esetén normális. Nagy minta esetén közel normális. Egyébként nem tudjuk.

27 A mintajellemzők tulajdonságai jellemző sokaság minta konkrét minta ismérvértékek x 1, x 2,... ξ 1, ξ 2,..., ξ n x 1, x 2,..., x n átlag µ ˆµ x A mintaátlag tulajdonságai: várható értéke: M(ˆµ) = µ. szórása: D(ˆµ) = σˆµ = σ n (nagyobb minta, kisebb szórás!) szórása (ha nem függetlenek pl egyszerű mintavételnél): D(ˆµ) = σˆµ = σ n 1 n N (ez a korrekciós tényező) eloszlása: Normális eloszlású sokaság esetén normális. Nagy minta esetén közel normális. Egyébként nem tudjuk.

28 A mintajellemzők tulajdonságai jellemző sokaság minta konkrét minta ismérvértékek x 1, x 2,... ξ 1, ξ 2,..., ξ n x 1, x 2,..., x n átlag µ ˆµ x A mintaátlag tulajdonságai: várható értéke: M(ˆµ) = µ. szórása: D(ˆµ) = σˆµ = σ n (nagyobb minta, kisebb szórás!) szórása (ha nem függetlenek pl egyszerű mintavételnél): D(ˆµ) = σˆµ = σ n 1 n N (ez a korrekciós tényező) eloszlása: Normális eloszlású sokaság esetén normális. Nagy minta esetén közel normális. Egyébként nem tudjuk.

29 A mintajellemzők tulajdonságai jellemző sokaság minta konkrét minta ismérvértékek x 1, x 2,... ξ 1, ξ 2,..., ξ n x 1, x 2,..., x n átlag µ ˆµ x A mintaátlag tulajdonságai: várható értéke: M(ˆµ) = µ. szórása: D(ˆµ) = σˆµ = σ n (nagyobb minta, kisebb szórás!) szórása (ha nem függetlenek pl egyszerű mintavételnél): D(ˆµ) = σˆµ = σ n 1 n N (ez a korrekciós tényező) eloszlása: Normális eloszlású sokaság esetén normális. Nagy minta esetén közel normális. Egyébként nem tudjuk.

30 A mintajellemzők tulajdonságai jellemző sokaság minta konkrét minta ismérvértékek x 1, x 2,... ξ 1, ξ 2,..., ξ n x 1, x 2,..., x n átlag µ ˆµ x A mintaátlag tulajdonságai: várható értéke: M(ˆµ) = µ. szórása: D(ˆµ) = σˆµ = σ n (nagyobb minta, kisebb szórás!) szórása (ha nem függetlenek pl egyszerű mintavételnél): D(ˆµ) = σˆµ = σ n 1 n N (ez a korrekciós tényező) eloszlása: Normális eloszlású sokaság esetén normális. Nagy minta esetén közel normális. Egyébként nem tudjuk.

31 Példa: A budapesti kétszobás lakások bérleti díja 1/3. Alapsokaság:

32 Példa: A budapesti kétszobás lakások bérleti díja 1/3. Alapsokaság: 30 elemű minta

33 Példa: A budapesti kétszobás lakások bérleti díja 2/3. Az alapsokaságban µ = , σ = (Ez általában ismeretlen)

34 Példa: A budapesti kétszobás lakások bérleti díja 2/3. Az alapsokaságban µ = , σ = (Ez általában ismeretlen) A mintaátlag eloszlása:

35 Példa: A budapesti kétszobás lakások bérleti díja 2/3. Az alapsokaságban µ = , σ = (Ez általában ismeretlen) A mintaátlagra x = , σ x = σ 100 = A mintaátlag eloszlása:

36 6.4. gyakorló feladat Feltételezzük, hogy egy sokaság 10 elemből áll. Egy tetszőleges mennyiségi ismérv értékei a sokasági egységeknél: Sokasági ismérv egység értéke a) Határozzuk meg a A 1 4 sokaság átlagát és szórását! A 2 8 b) Határozzuk meg a A 3 10 kételemű minták átlagát! A 4 10 c) Rendezzük osztályközös A 5 12 gyakorisági sorba, A 6 12 készítsünk gyakorisági A 7 16 poligont A 8 18 d) Vizsgáljuk meg az átlag A 9 20 körüli szóródásukat! A 1 30

37 6.4. gyakorló feladat a) Határozzuk meg a sokaság átlagát és szórását! X = i=1 N(X i X) 2 = 14 σ = = = = N (4 14) (30 14) = 48, 8 = 6, 985 =

38 6.4. gyakorló feladat b) Határozzuk meg a kételemű minták átlagát! Az ismétlés nélküli kételemű minták a következők: (4, 8), (4, 10), (4, 10), (4, 12), (4, 12), (4, 16),... (20, 30). Az átlagok a következők: 6, 7, 7, 8, 8, 10, 11, 12, 17, 9, 9, 10, 10, 12, 13, 14, 19, 10, 11, 11, 13, 14, 15, 20, 11, 11, 13, 14, 15, 20, 12, 14, 15, 16, 21, 14, 15, 16, 21, 17, 18, 23, 19, 24, 25.

39 6.4. gyakorló feladat b) Határozzuk meg a kételemű minták átlagát! Az ismétlés nélküli kételemű minták a következők: (4, 8), (4, 10), (4, 10), (4, 12), (4, 12), (4, 16),... (20, 30). Az átlagok a következők: 6, 7, 7, 8, 8, 10, 11, 12, 17, 9, 9, 10, 10, 12, 13, 14, 19, 10, 11, 11, 13, 14, 15, 20, 11, 11, 13, 14, 15, 20, 12, 14, 15, 16, 21, 14, 15, 16, 21, 17, 18, 23, 19, 24, 25.

40 6.4. gyakorló feladat c) Rendezzük osztályközös gyakorisági sorba, készítsünk gyakorisági poligont 45 pár, 2 5 < 45 < 2 6, tehát 6 csoport 6 és 25 között: Kategória f i összesen 45

41 6.4. gyakorló feladat d) Vizsgáljuk meg az átlag körüli szóródásukat! σˆµ = = = σ = nσˆµ i=1 m(ˆµ i µ) 2 = m (6 14) (19 14) = 21, 7 = 4, 66 =

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Mintavétel. Kovács István BME Menedzsment és Vállalatgazdaságtan. Tanszék

Mintavétel. Kovács István BME Menedzsment és Vállalatgazdaságtan. Tanszék Mintavétel Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék Alapfogalmaink Sokaság azon elemek összessége, amelyek valamilyen közös jellemzővel bírnak, és megfelelnek a marketingkutatási probléma

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

Bevezető Mi a statisztika? Mérés Csoportosítás

Bevezető Mi a statisztika? Mérés Csoportosítás Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. : A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 4. MA3-4 modul A valószínűségi változó és jellemzői SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

Matematika III. Nagy Károly 2011

Matematika III. Nagy Károly 2011 Matematika III előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 20 . Kombinatorika.. Definíció. Adott n darab egymástól különböző elem. Ezeknek egy meghatározott sorrendjét az n elem

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő

Részletesebben

Variancia-analízis (VA)

Variancia-analízis (VA) Variancia-analízis (VA) 5. elıadás (9-10. lecke) VA lényege, alkalmazásának feltételei, adat-transzformációk 9. lecke Variancia-analízis lényege Szórások egyezésének ellenırzése A Variancia-Analízis (VA)

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

MINTAVÉTELEZÉS. Alaptípusai: sampling. véletlen érvényesítésére v. mellőzzük azt. = preferenciális mintav. = véletlen mintav.

MINTAVÉTELEZÉS. Alaptípusai: sampling. véletlen érvényesítésére v. mellőzzük azt. = preferenciális mintav. = véletlen mintav. A teljes alapsokaságot nem ismerhetjük meg. MINTAVÉTELEZÉS Fontossága: minden későbbi értékelés ezen alapszik. Alaptípusai: Szubjektív folyamat Objektív folyamat (non-probabilistic) (probabilistic) sampling

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Mintavétel: terv és eljárások

Mintavétel: terv és eljárások Mintavétel: terv és eljárások Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék Az előadás felépítése Mi is az a mintavétel A mintavétel folyamata Mintavételi technikák A minta nagyságának meghatározása

Részletesebben

GVMST22GNC Statisztika II.

GVMST22GNC Statisztika II. GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben

A TÁRKI ADATFELVÉTELEINEK DOKUMENTUMAI. Omnibusz 2003/08. A kutatás dokumentációja. Teljes kötet

A TÁRKI ADATFELVÉTELEINEK DOKUMENTUMAI. Omnibusz 2003/08. A kutatás dokumentációja. Teljes kötet A TÁRKI ADATFELVÉTELEINEK DOKUMENTUMAI Omnibusz 2003/08 A kutatás dokumentációja Teljes kötet 2003 Tartalom BEVEZETÉS... 4 A MINTA... 6 AZ ADATFELVÉTEL FŐBB ADATAI... 8 TÁBLÁK A SÚLYVÁLTOZÓ KÉSZÍTÉSÉHEZ...

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

Matematikai statisztikai elemzések 3.

Matematikai statisztikai elemzések 3. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzek 3. MSTE3 modul Becslelmélet: alapfogalmak, nevezetes statisztikák, intervallum-becsl SZÉKESFEHÉRVÁR

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

Matematikai statisztika Tómács Tibor

Matematikai statisztika Tómács Tibor Matematikai statisztika Tómács Tibor Matematikai statisztika Tómács Tibor Publication date 2011 Szerzői jog 2011 Hallgatói Információs Központ Copyright 2011, Educatio Kht., Hallgatói Információs Központ

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos: A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,

Részletesebben

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és Feladatok 2 zh-ra 205 április 3 Eseményalgebra Feladat Az A és B eseményekr l tudjuk, hogy P (A) = 0, 7, P (B) = 0, 4 és P (A B) = 0, 5 Határozza meg az A B esemény valószín ségét! P (A B) = 0, 2 2 Feladat

Részletesebben

Tartalomjegyzék Szitaformulák Példák a szitaformulára Mintavételezés Bayes-tétel... 17

Tartalomjegyzék Szitaformulák Példák a szitaformulára Mintavételezés Bayes-tétel... 17 Valószínűségszámítás Földtudomány szak, 2015/2016. tanév őszi félév Backhausz Ágnes (ELTE TTK Valószínűségelméleti és Statisztika Tanszék)1 Tartalomjegyzék 1. Valószínűségi mező 3 1.1. Példák valószínűségi

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős

Részletesebben

Valószínűségszámítás

Valószínűségszámítás European Virtual Laboratory of Mathematics Project No. 2006 - SK/06/B/F/PP - 177436 Európai Virtuális Matematikai Laboratórium Árvai- Homolya Szilvia Valószínűségszámítás EVML e-könyvek Miskolc 2008 Sorozat

Részletesebben

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I. Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:

Részletesebben

Diszkrét idejű felújítási paradoxon

Diszkrét idejű felújítási paradoxon Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Mintavételezés

Mintavételezés . 3. 3. Mintavételezés Informatikai Tudományok Doktori Iskola. 3. 3. Statisztikai sokaság, populáció A halmaz egészének kevés adattal történı tömör jellemzése, és a populáció egyedeinek leírására bevezetett

Részletesebben

Kísérlettervezési alapfogalmak

Kísérlettervezési alapfogalmak Kísérlettervezési alapfogalmak Tényező, faktor factor független változó, ható tényező (kezelés, gyógyszer, hőmérséklet, stb.) aminek hatását a kísérletben vizsgálni vagy összehasonlítani kívánjuk. Megfigyelési

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

A konfidencia intervallum képlete: x± t( α /2, df )

A konfidencia intervallum képlete: x± t( α /2, df ) 1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Példák: tojások száma egy madárfészekben (egy adott madárfaj esetén), egy egyed testhőmérséklete (adott faj és ivar esetén), a következő buszon az uta

Példák: tojások száma egy madárfészekben (egy adott madárfaj esetén), egy egyed testhőmérséklete (adott faj és ivar esetén), a következő buszon az uta Valószínűségi változók (véletlen változók, random variables) Változó: Névvel ellátott érték. (Képzeljünk el egy fiókot. A fiók címkéje a változó neve, a fiók tartalma pedig a változó értéke.) Valószínűségi

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József

Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József Matematika III. 9. : Statisztikai hipotézisek Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Statisztika II. tantárgyi kalauz

Statisztika II. tantárgyi kalauz Balog Margit - Monoriné Szabó Edit Statisztika II. tantárgyi kalauz Szolnoki Főiskola Szolnok 006. Statisztika II. Tantárgyi kalauz Ez a kalauz az alábbi tankönyvekhez készült: Általános statisztika II.

Részletesebben