Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI"

Átírás

1 Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI

2 Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció elemzés Idősorok és grafikus ábrázolásuk Dinamikus viszonyszámok

3 Ismérv szerinti rendezés Minőségi (hajszín, nem, születési hely) Mennyiségi (magasság, kor, jövedelem) diszkrét véges, v megszámlálhatóan végtelen értéket vehet fel. Pl szobák száma lehet 1, 1.5, 2, 2.5, stb szobás. folytonos (egy adott intervallumon belül) bármilyen értéket felvehet. Pl alapterület: egy 54 nm-es lakás lehet valójában 53,78, vagy 54,003 nm-es is, vagy bármi 53,5 és 54.5 között. (a pontosság kedvéért: minden racionális szám (a tizedestörttel feĺırhatók is ide tartoznak) megszámlálható, a gond az irracionális számokkal van, pl ha a lakás kör alapterületű.) Rangsor Mennyiségi ismérv értékeinek monoton sorozata.

4 Gyakorisági sorok Csoportosító sor A sokaság egységeinek mennyiségi ismérv szerinti osztályozása. HA az ismérvváltozatok száma kicsi, 1-1 ismérvváltozat szerint. HA nagy, több ismérvértéket magukba foglaló intervallumok, ún. osztályközök szerint. Gyakoriság (f i ) Az egy-egy csoportba/osztályközbe tartozó egységek száma. Relatív gyakoriság (g i = f i N ) Az egy csoportba/osztályközbe tartozó egységek (százalékos) részesedése. Ha az osztályok 1 ismérvértékből állnak, (gyakorisági) eloszlás, osztályközök esetén (gyakorisági) megoszlás.

5 Gyakorisági sorok általános sémája Ismérvérték GyakoriságRelatív gyakoriság X i f i g i X 1 f 1 g 1 X 2 f 2 g 2. X i. f i g i.. yí X k f k g k Összesen N1 Az osztályközök GyakoriságRelatív gyakoriság Alsó határa Felső határa f i g i X 1 X 1 f 1 g 1 X 2 X 2 f 2 g X i X i f i g i....

6 Osztályközök Az osztályközök meghatározása Minden ismérvérték pontosan 1 osztályba tartozzon Számuk a legkisebb k, melyre 2 k > N Hosszuk h = Xmax X min k Nagy X max X min különbség, egyenetlen eloszlás esetén nem egyforma osztályközök.

7 Kumulatív gyakoriság Kumulatív gyakoriság (f i ) A felső értékhatárnak megfelelő, vagy kisebb ismérvértékek előfordulásának száma. Kumulatív relatív gyakoriság (g i ) A felső értékhatárnak megfelelő, vagy kisebb ismérvértékek előfordulásának aránya. Lefelé kumulatív (relatív) gyakoriság (f i (g i )) Az alsó értékhatárnak megfelelő, vagy nagyobb ismérvértékek előfordulásának száma (aránya).

8 Értékösszegsorok Értékösszegsor A mennyiség ismérv alapján kialakított osztályokhoz az odatartozó egységek ismérvértékeinek összegét (S i ) rendeli. A sokaság teljes értékösszege S = k i=1 f i X i. Osztályközös gyakoriság esetén... a tényleges értékösszeg csak az eloszlás ismeretében határozható meg. egyébként az osztályközépsőből (X i = x i +x i 2 ) becsüljük. A relatív értékösszeg az a megoszlási viszonyszám, ami az osztályok értékösszegét (S i ) a teljes értékösszeghez (S) viszonyítja.

9 Grafikus ábrázolás: Definíciók Hisztogram Hézagmentesen illesztett téglalapokkal szemléltet. Egyenlő osztályközök esetén területük arányos a relatív gyakorisággal. Különböző osztályközhosszúságok esetén magasságuk az egységnyi osztályközhosszra jutó gyakoriság (( fi h i ), vagy ( gi h i )) sűrűséghisztogram. Gyakorisági poligon Az osztályközepeknél felmért gyakoriságok pontjait egyenes szakaszokkal összekötő vonaldiagram.

10 Gyakorisági sorok grafikus ábrázolása Osztályok: bot-ábra Osztályközök: hisztogramgyakorisági poligon

11 Helyzetmutatók: Módusz Módusz (Mo) A leggyakoribb elem a sokaságban tipikus érték Szimmetrikus a megoszlás: modális osztályköz közepe. Amúgy Mo = mo + k 1 k 1 + k 2 h mo: a mod. osztályköz alsó határa k 1 (k 2 ): a mod. és megelőző (követő) osztályköz gyakorisága különbsége h: a modális osztályköz hossza.

12 Medián Medián (Me) Ugyanannyi kisebb és nagyobb érték. A = Me minimalizálja a N i=1 X i A -t Ha az elemszám páratlan a medián -edik ismérvérték. Ha páros, az N 2 és N edik ismérvértékek átlaga az N+1 2 Osztályközös gyakoriság esetén az i-edik osztályköz tartalmazza, ha f i 1 N 2 f i

13 Átlag Átlag (X ) Az ismérvértékek összegének és a sokaság elemszámának hányadosa; az ismérvértékek számtani átlaga. X = N i=1 X i N Gyakorisági sor esetén súlyozott átlag X = N i=1 f i X i N i=1 f i Megoszlásból becsült érték, súlyozott harmonikus átlag: X = N i=1 S i N S i i=1 X i (X i az osztályközép, S i az i-edik értékösszeg.)

14 Kvantilisek q-ad rendű, vagy q-adik kvantilis (Q q ) Az ismérvértékek rangsorát q : (1 q) arányban osztó ismérvérték Q q = X i, ha f i 1 N q f i Gyakori kvantilisek: Tercilisek: Q 1 = T 1 (alsó tercilis), Q Kvartilisek: Q 1 4 = T 2 (felső kvartilis) Kvintilisek: Q i = K i 5 Decilisek: Q i = D i 10 Percentilisek: Q i = P i 100 Q 3 4 = Q 1 (alsó kvartilis), Q 2 4 = T 2 (felső tercilis) = Me (medián), Q j k meghatározása, mint a mediáné: Rangsorból [ kiindulva ] m = j k (N + 1)

15 Szóródás Szóródás Azonos fajta számszerű adatok különbözősége. Léteznek abszolút és relatív mutatói. Gyakran használt mérőszámok: a szóródás terjedelme az átlagos eltérés szórás átlagos különbség relatív szórás

16 A szóródás terjedelme Szóródás terjedelme (R) Az előforduló legnagyobb és legkisebb ismérvérték különbsége: R = X max X min. Interkvantilis terjedelemmutatók A két szélső kvantilis különbsége. Pl. D 9 D 1.

17 Átlagos eltérés Átlagos eltérés (δ) Az értékek számtani átlagtól vett abszolút eltérésének átlaga. Ha d i = X i X, illetve δ = N i=1 X i X = N k i=1 δ = f i X i X k i=1 f = i N i=1 d i, N k i=1 f i d i k i=1 f. i

18 Szórás Szórás (σ) Az értékek számtani átlagtól vett eltérésének négyzetes átlaga. Ha d i = X i X, σ = σ = N i=1(x i X) 2 N i=1 N = d2 i N k i=1 f i(x i X) 2 k = i=1 f i, illetve k i=1 f i di 2 k. i=1 f i A szórásnégyzet (σ 2 ) más néven variancia. Eltérés-négyzetösszeg: SS = N ( i=1 Xi X ) 2, illetve SS = N i=1 f ( i Xi X ) 2. Relatív szórás V = σ X

19 Szórás tulajdonságai δ σ. σ Xi +A = σ Xi σ B Xi = B σ B Xi 2 2 σ = X q X

20 Átlagos különbség Átlagos különbség vagy Gini-féle szóródási mérőszám (G) Az ismérvértékek egymástól számított abszolút különbségeinek számtani átlaga. G = N N i=1 j=1 X i X j k k i=1 j=1 N 2 illetve G = f if j X i X j N 2

21 Pearson-féle mutató A számtani átlag és a módusz viszonyán alapul: Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés Az aszimmetria és mérőszámai bal oldali szimmetrikus jobb oldali aszimmetria eloszlás aszimmetria Mo < Me < X Mo = Me = X Mo > Me > X Q 3 Me > Me Q 1 Q 3 Me = Me Q 1 Q 3 Me < Me Q 1 A > 0 A = 0 A < 0 F > 0 F = 0 F < 0

22 Koncentráció Koncentráció A sokasághoz tartozó teljes értékösszeg jelentős része kevés egységre összpontosul. (Általában: tömörülés, összpontosulás) A relatív gyakoriságok (g i ) és relatív értékösszegek (Z i ) összehasonĺıtásával mutatható ki. Lorenz-görbe kumulált relatív értékösszeg a kum. gyakoriságok függvényében. Koncentrációs együttható (K) koncentrációs terület aránya az átló alatti területhez. K = G 2X.

23 Idősorok Idősor (Y 1, Y 2,..., Y t,..., Y n ) Társadalmi/gazdasági jelenség egyenlő időközönként mért értékei. állapotidősor, v. : álló sokaságok időbeli változását mutatja; állapotfelvételek eredménye. tartamidősor: mozgó sokaságok időbeli változását mutatja; időtartam folyamán bekövetkezett események. Dinamikus viszonyszámok Bázisviszonyszám b t = Yt Y b b t = l b+1 l b+2... l t = t i=b+1 l i Láncviszonyszám l t = Yt l t = Y t 1 bt b t 1

24 Idősorok grafikus ábrázolása Vonaldiagrammal, a vízszintes tengelyen az időszakok, a függőleges tengelyen az idősor adatai.

25 Idősorok elemzése: Átlagos értékek Tartamidősorok Az adatok összegezhetők. n t=1 Y = Y t n A jelenség egy időszakra jutó átlagos értéke. (Pl. egy weboldal átlagos látogatottsága) Állapotidősorok Az összegzésnek nincs értelme: kronologikus átlag Y k = Y k = Y 1 +Y Y n 1+Y n 2 n 1 Y n 1 t=2 Y t + Yn 2 n 1 Egyfajta súlyozott átlag.

26 Idősorok elemzése: Átlagos változás vizsgálata Fejlődés átlagos mértéke A bekövetkezett átlagos abszolút nominális változás d = (Y 2 Y 1 ) + (Y 3 Y 2 ) + + (Y n Y n 1 ) n 1 = Y n Y 1 n 1 Fejlődés átlagos üteme A bekövetkezett átlagos relatív változás l = n 1 l 2 l 3 l n = n 1 n t=2 l t = n 1 Yn Y 1

Statisztikai. Statisztika Üzleti szakügyintéző felsőfokú szakképzés I. évfolyam VS 210-4 (NFG ÜS302G4) 2010-2011-es tanév I. félév

Statisztikai. Statisztika Üzleti szakügyintéző felsőfokú szakképzés I. évfolyam VS 210-4 (NFG ÜS302G4) 2010-2011-es tanév I. félév Statisztika Üzleti szakügyintéző felsőfokú szakképzés I évfolyam VS 210-4 (NFG ÜS302G4) 2010-2011-es tanév I félév Statisztikai alapfogalmak Oktató: Dr Csáfor Hajnalka főiskolai docens Vállalkozás-gazdaságtan

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak i alapfogalmak statisztikai sokaság: a megfigyelés tárgyát képező egyedek összessége 2 csoportja van: álló sokaság: mindig vmiféle állapotot, állományt fejez ki, adatai egy adott időpontban értelmezhetők

Részletesebben

Sta t ti t s i zt z i t k i a 3. előadás

Sta t ti t s i zt z i t k i a 3. előadás Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk

Részletesebben

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 2. előadás Előadó: Dr. Ertsey Imre Statisztikai sorok Meghatározott szempontok szerint kiválasztott két vagy több logikailag összetartozó statisztikai adat, statisztikai sort képez. általában

Részletesebben

2010-es új öregségi és öregségi jellegű nyugdíjasok vizsgálata

2010-es új öregségi és öregségi jellegű nyugdíjasok vizsgálata Országos Nyugdíjbiztosítási Főigazgatóság Közgazdasági Elemzések Főosztál ya 2010-es új öregségi és öregségi jellegű nyugdíjasok vizsgálata 2012. július Készítette: Hollósné dr. Marosi Judit Dr. Császár

Részletesebben

Jövedelemegyenlõtlenségek tényleg növekszenek, vagy csak úgy látjuk?

Jövedelemegyenlõtlenségek tényleg növekszenek, vagy csak úgy látjuk? Közgazdasági Szemle, L. évf., 2003. március (209 234. o.) TÓTH ISTVÁN GYÖRGY Jövedelemegyenlõtlenségek tényleg növekszenek, vagy csak úgy látjuk? A cikk a jövedelemeloszlás magyarországi trendjeit tekinti

Részletesebben

Országos kompetenciamérés 2013. Országos jelentés

Országos kompetenciamérés 2013. Országos jelentés Országos kompetenciamérés 2013 Országos jelentés Szerzők Balázsi Ildikó, Lak Ágnes Rozina, Szabó Vilmos, Szabó Lívia Dóra, Vadász Csaba Tördelő Szabó Ágnes Balázsi Ildikó, Lak Ágnes Rozina, Szabó Vilmos,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Berzsenyi Dániel Gimnázium. Matematika helyi tanterv Fizika tagozat 9-12. évfolyam

Berzsenyi Dániel Gimnázium. Matematika helyi tanterv Fizika tagozat 9-12. évfolyam Általános szerkezet Berzsenyi Dániel Gimnázium Matematika helyi tanterv Fizika tagozat 9-12. évfolyam Cél: az emelt szintű érettségi követelményekben szereplő tananyag megtanítása, néhány részen kiegészítve

Részletesebben

Befektetések kockázatának mérése*

Befektetések kockázatának mérése* Befektetések kockázatának mérése* Bugár Gyöngyi PhD, a Pécsi Tudományegyetem egyetemi docense E-mail: bugar@ktk.pte.hu Uzsoki Máté, a Budapesti Műszaki Egyetem hallgatója E-mail: uzsoki.mate@gmail.com

Részletesebben

Jelek és rendszerek - 1-2.előadás

Jelek és rendszerek - 1-2.előadás Jelek és rendszerek - 1-2.előadás Bevezetés, rendszeranaĺızis az időtartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

Kezdők és Haladók (I., II. és III. kategória)

Kezdők és Haladók (I., II. és III. kategória) ARANY DÁNIEL MATEMATIKAI TANULÓVERSENY 013/014-ES TANÉV Kezdők és Haladók (I., II. és III. kategória) Feladatok és megoldások A verseny az NTP-TV-13-0068 azonosító számú pályázat alapján a Nemzeti Tehetség

Részletesebben

24. Valószínűség-számítás

24. Valószínűség-számítás 24. Valószínűség-számítás I. Elméleti összefoglaló Események, eseménytér A valószínűség-számítás a véletlen tömegjelenségek vizsgálatával foglalkozik. Azokat a jelenségeket, amelyeket a figyelembe vett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 5. előadás Érték-, ár-, és volumenindexek http://uni-obuda.hu/users/koczyl/gazdasagstatisztika.htm Kóczy Á. László KGK-VMI Az indexszám fogalma Gazdasági elemzésben fontos

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. október 15. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2013. október 15. EMELT SZINT MATEMATIKA ÉRETTSÉGI 0. október 5. EMELT SZINT ) Oldja meg a valós számok halmazán a következő egyenleteket! a) b) ( )( ) I. ( pont) (7 pont) a) A négyzetgyök függvény értelmezési tartománya és értékkészlete

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Huzsvai László - Balogh Péter LINEÁRIS MODELLEK AZ R-BEN

Huzsvai László - Balogh Péter LINEÁRIS MODELLEK AZ R-BEN Huzsvai László - Balogh Péter LINEÁRIS MODELLEK AZ R-BEN Seneca Books DEBRECEN 2015 Minden jog fenntartva. Jelen könyvet vagy annak részleteit a Kiadó engedélye nélkül bármilyen formában vagy eszközzel

Részletesebben

LOGISZTIKUS REGRESSZIÓS EREDMÉNYEK ÉRTELMEZÉSE*

LOGISZTIKUS REGRESSZIÓS EREDMÉNYEK ÉRTELMEZÉSE* A LOGISZTIKUS REGRESSZIÓS EREDMÉNYEK ÉRTELMEZÉSE* BARTUS TAMÁS A tanulmány azt vizsgálja, hogy logisztikus regressziós modellek értelmezésére jobban alkalmasak-e a marginális hatások (feltételes valószínűségek

Részletesebben

MATEMATIKA TANTERV. 5-8. évfolyam

MATEMATIKA TANTERV. 5-8. évfolyam MATEMATIKA TANTERV 5-8. évfolyam Célok és feladatok: A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival,

Részletesebben

Matematika Gyakorló feladatok vizsgára 12. évf. emelt szint

Matematika Gyakorló feladatok vizsgára 12. évf. emelt szint Matematika Gyakorló feladatok vizsgára. évf. emelt szint Egyenletek, egyenlőtlenségek, paraméteres egyenletek. Oldd meg az alábbi egyenleteket! 4 c) d) e) 4. Oldd meg az alábbi egyenleteket! = c) =8 d)

Részletesebben

A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában

A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában Készítette: Szegény Zsigmond Mezőgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Műszaki-technológiai

Részletesebben

PAKS ÉS 30 KM SUGARÚ KÖRNYEZETÉNEK ÉGHAJLATI JELLEMZÉSE. File név: PAKSII_KHT_10_Eghajlatjell 1/105

PAKS ÉS 30 KM SUGARÚ KÖRNYEZETÉNEK ÉGHAJLATI JELLEMZÉSE. File név: PAKSII_KHT_10_Eghajlatjell 1/105 PAKS ÉS 30 KM SUGARÚ KÖRNYEZETÉNEK ÉGHAJLATI JELLEMZÉSE File név: PAKSII_KHT_10_Eghajlatjell 1/105 File név: PAKSII_KHT_10_Eghajlatjell 2/105 TARTALOMJEGYZÉK 10 PAKS 30 KM SUGARÚ KÖRNYEZETÉNEK ÉGHAJLATI

Részletesebben

Szakdolgozat. Készítette: Csuka Anita. Témavezető: Besenyei Ádám, adjunktus

Szakdolgozat. Készítette: Csuka Anita. Témavezető: Besenyei Ádám, adjunktus Az szám Szakdolgozat Készítette: Csuka Anita Matematika Bsc, matematikai elemző szakirány Témavezető: Besenyei Ádám, adjunktus ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék Eötvös Loránd

Részletesebben

Skatulya-elv. Sava Grozdev

Skatulya-elv. Sava Grozdev Skatulya-elv Sava Grozdev Egy alapvető szabály, azaz elv azt állítja, hogy: ha m testet szétosztunk n csoportba és m > n, akkor legalább két test azonos csoportba fog kerülni. Ezt az elvet különböző országokban

Részletesebben

1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták.

1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták. 1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták. a) Hozzon létre osztályközös gyakoriságot az alábbi osztályközökkel: - 100.000 100.000-150.000 150.000-200.000 200.000-250.000

Részletesebben

A defaultráta, a nemteljesítési valószínűség és a szabályozás egyéb követelményei

A defaultráta, a nemteljesítési valószínűség és a szabályozás egyéb követelményei 2008. HETEDIK ÉVFOLYAM 1. SZÁM 1 MADAR LÁSZLÓ A defaultráta, a nemteljesítési valószínűség és a szabályozás egyéb követelményei Bár a defaultráta, illetve a nemteljesítési valószínűség fogalmai egy ideje

Részletesebben

Elôzetes adatok A NÉPESSÉG ÉS A LAKÁSÁLLOMÁNY JELLEMZÔI

Elôzetes adatok A NÉPESSÉG ÉS A LAKÁSÁLLOMÁNY JELLEMZÔI 2. Elôzetes adatok A NÉPESSÉG ÉS A LAKÁSÁLLOMÁNY JELLEMZÔI 2011. ÉVI NÉPSZÁMLÁLÁS 2. Előzetes adatok A népesség és a lakásállomány jellemzői Központi Statisztikai Hivatal 2011. ÉVI NÉPSZÁMLÁLÁS 2. Előzetes

Részletesebben

A könyvvizsgálati mintavétel elméleti alapjai

A könyvvizsgálati mintavétel elméleti alapjai A könyvvizsgálati mintavétel elméleti alapjai 1 9/11/2012 A könyvvizsgálói munkatér A vizsgálandó gazdálkodó szervezet megismerésének folyamata Célkijelölés elemzése Elemek vizsgálata 2 9/11/2012 Kapcsolatok

Részletesebben

Kockázati modellek (VaR és cvar)

Kockázati modellek (VaR és cvar) Kockázati modellek (VaR és cvar) BSc Szakdolgozat Írta: Kutas Éva Matematika BSc Alkalmazott matematikus szakirány Témavezet Mádi-Nagy Gergely egyetemi adjunktus Operációkutatási Tanszék Eötvös Loránd

Részletesebben