A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában"

Átírás

1 A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában Készítette: Szegény Zsigmond Mezőgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Műszaki-technológiai Laboratórium

2 Általános elvek A mérés eredménye a legjobb esetben is csupán közelítésea mérendő mennyiség valódi értékének. A mérési eredmény csak akkor teljes, ha a mért érték mellett a mérés bizonytalanságát is megadjuk.

3 Átlag, szórás, normális eloszlás és bizonytalanság (1) Többször megismétlünk egy mérést és ezekből kiszámolható a mérések átlaga ( ) és korrigált szórása (s (q) ) Ha az ismétlések száma nagyon nagy ( pl.>100 db [kontrol kártya]), akkor igaz: Gyakoriság Ha semmit nem változtatunk és +1 ismétlést végzünk, akkor annak az eredménye 95%-os valószínűséggel az átlag (várható értékbecslése) ± 2*s intervallumba fog esni. (pontosabban ± 1.96*s) A görbe alatti összes terület 95%-a az A ± 2*s tartományban van A= : a várható érték becslése

4 Átlag, szórás, normális eloszlás és bizonytalanság (2) Az átlag bizonytalansága: = ( ) = 1 ( 1) ( ) Tehát ha nagyon sok mérési eredményünk van, akkor a várható, vagy valódi érték 95 %-os valószínűséggel az átlag (sok eredmény) ±2 ( ) tartományba esik. A gond az, hogy a nagyszámú mérés várható értékét és szórását, a haranggörbe természetét nem ismerjük(sokba kerül). Ezért leggyakrabban csak kis számú mérésre (<20) számolt átlag, szórás és a t-eloszlás segítségével végezzük a becslést: átlag (k mérés átlaga) ± ( ) ahol = ( ( ) ) (95 %-os szignifikanciaszinten a t értéke k=3 esetén 4,3 ; k=5 esetén 2,776; ha k= akkor 1,96)

5 Precizitás és helyesség Precizitás (szórással összefügg) Helyesség vagy pontosság (a valódi értéktől való távolság) Precizitás: - Helyesség: - Valódi érték Átlag eredmény Precizitás: + Helyesség: - Precizitás: - Helyesség: + Precizitás: + Helyesség: +

6 A mérési eredmény, a hiba és a bizonytalanság (1) A mérési hibája a mérés bizonytalansága Egy laboratórium akkor határozza meg jól a bizonytalanságát, ha az legalább akkora, mint a mérés hibája ( Ideális esetben a bizonytalanság = a hiba )

7 A mérési eredmények, a hibák és a bizonytalanság (2) Végtelen sok mérés sűrűségfüggvénye Gyakoriság Végtelen sok mérés átlaga Néhány mérés átlaga Néhány mérés hisztogramja Valódi érték Egyetlen mérés (y) Y Néhány mérés hibája Helyesség vagy módszeres hiba Egyetlen mérés hibája Átlagok hibájának különbsége y - U y + U Bizonytalansági tartomány : a valódi érték nagy (pl.95%) valószínűséggel beleesik

8 Mérési bizonytalanság A mérések természetes velejárója Mérési folyamat során a végzett műveletek mindegyikének elemi bizonytalansága van. Ezek egymásra rakódása következtében alakul ki a mérés teljes bizonytalansága A mérési bizonytalanság a mért érték körüli tartomány.a mérendő paraméter valódi értéke azon belül nagy valószínűséggel megtalálható

9 A mérési bizonytalanság forrásai Mintavétel (mennyire reprezentatív) Tárolási körülmények (stabilitás) Minta előkészítés (homogenitás) Készülékek állapota Reagensek tisztasága A mérés környezeti körülményei Minta effektusok (zavaró hatások) Számítástechnikai effektusok (pl. integráció) Operátortól függő hatások Véletlenszerű effektusok

10 Miért kell a mérési bizonytalanságot használni? (1) 1. A méréseink megbízhatóságát tudjuk igazolni. (Pl. CRM minta mérése) C LAB ±U LAB : a labor eredménye (C LAB ) a bizonytalansággal (U LAB ) C CRM ±U CRM : a CRM minta tanúsított értéke (C CRM ) a bizonytalansággal (U CRM ) Ha akkor a laboratórium jól mér, mert az eredmények különbsége kisebb mint az un. kombinált bizonytalanság. 2. Lehetővé teszi a különböző laboratóriumokból származó, eredmények összehasonlítását: Követelmény: C LAB1 C (Kérdés, hogy legalább az egyik labor eredménye mennyire van a valódi érték közelében? Ezt valamilyen módon igazolni kell. [CRM mérés vagy körvizsgálat])

11 Miért kell a mérési bizonytalanságot használni? (2) 3. Megalapozott döntéseket lehet hozni, hogy az illető paraméter koncentrációja biztosan túllépi-e a megadott határértéket, vagy egy adott intervallumon biztosan belül van-e 4. A mérési bizonytalanság összetevőinek átfogó értékelése rámutat a vizsgálati módszer esetleges kritikus pontjaira, amelyekre nagyobb figyelmet kell fordítani. 5. Meghatározását az ISO/IEC nemzetközi szabvány előírja minden akkreditált laboratóriumnál: A vizsgálólaboratóriumoknak legyenek olyan eljárásaik, amelyek alkalmasak a mérési bizonytalanság becslésére, és ezeket az eljárásokat alkalmazniuk kell.

12 A mérési bizonytalanság becslésének módszerei I. Szigorú matematikai módszer: számba vesszük a részbizonytalanságokat és becsüljük az eredő bizonytalanságot (halszálka diagram) Mintavétel Térfogat mérés Analitikai jelképzés és jelértelmezés Bizonytalanság Előkészítés Tömeg mérés II. Meglévő minőségbiztosítási adatok (gyűjtött, ill. a kombinált bizonytalanságok) alapján történő meghatározás ( fekete doboz elve ) Bizonytalanság III. Kombinált módszer (a fenti két módszer együttes alkalmazása)

13 I. Szigorú matematikai módszer (1) START Mérendő paraméter, a módszer és a végeredmény számolás definiálása Független bizonytalanságforrások azonosítása (A- vagy B-típusú bizonytalanság) Az elemi standard bizonytalanságok kiszámítása Az eredő, kombinált standard bizonytalanság kiszámítása A kiterjesztett bizonytalanság meghatározása (95%-os szignifikancia szint mellett) és DOKUMENTÁLÁSA STOP

14 I. Szigorú matematikai módszer (2) ISO iránymutatás a mérési bizonytalanság kifejezésére (ISO Guide to the Expression of Uncertainty Measurement)(GUM) alapján A bizonytalanság értékelés típusai: A-típusúbizonytalanság értékelés: a mért értékek bizonytalanságának statisztikai módszerekkel történő becslése El kell végezni minden korrekciót azért, hogy torzítás ne legyen: q i = korrigált mérési eredmény (a módszeres hibát kiiktatjuk) Átlag: Korrigált szórás: A standard bizonytalanság (középérték szórása, a számtani közép bizonytalansága):

15 I. Szigorú matematikai módszer (3) B-típusúbizonytalanság értékelés: egyedileg mért vagy becsült értékek bizonytalanságának nem-statisztikaimódszerekkel végzett értékelése (hozott anyag)» a kalibrálási bizonyítványból vett adatok;» a gyártói specifikációk;» a kézikönyvekből vett referenciaadatok bizonytalanságai;» korábbi mérések adatai;» eszközök viselkedésére és tulajdonságaira vonatkozó tapasztalatok és általános ismeretek (digitális mérleg, büretta) Lehetőségek: 1. A rendelkezésre álló adatot és tartományt 95%-os szignifikanciaszinthez tartozó konfidencia intervallumként adták meg (pl. a certifikáltérték 50.0 ±aμg/l), ekkor az adat feltehetőleg normális eloszlású: Ekkor a megadott bizonytalanság fele tekinthető standard bizonytalanságnak(mert az un. kiterjesztett bizonytalanságot adták meg): =

16 I. Szigorú matematikai módszer (4) 2. Ha a változó egyenletes eloszlású, akkor az egyenletes eloszlás standard bizonytalansága a félszélesség osztva 3-mal. (digitális mérleg). Amikor az eloszlást nem ismerjük, gyakran folytonosnak tekintjük azt. Ebben az esetben a standard bizonytalanság: 3. Háromszög (Simpson) eloszlás esetében (amikor a szélső értékek valószínűsége nagyon kicsi) az osztó értéke 6. (Pl. mérőlombik jelzésig való feltöltése) A standard bizonytalanság:

17 I. Szigorú matematikai módszer (5) A mérés egyenlete (a mérés matematikai modellje): Y= G(X 1, X 2.., X M ) Bemeneti mennyiségek : X 1, X 2.., X M ; eloszlásaik (valószínűségi sűrűségfüggvények): pdf 1, pdf 2,.. pdf M Y a mérendő mennyiség eloszlása: F Y vagy pdf(y) Kiterjesztett (eredő) bizonytalanság: U, az Y eloszlásból. A legvalószínűbb érték körüli tartomány, ahol a görbe alatti terület 95%-a a teljes görbe alatti területnek. *Ha nem tekinthetők függetlennek X 1, X 2,, X M -ek, akkor együttes eloszlás-/ sűrűségfüggvényt kell alkalmazni.

18 I. Szigorú matematikai módszer (6) A kombinált bizonytalanság meghatározása: Ha a mérési egyenletcsak összeadásokat és kivonásokat tartalmaz (y=x 1 +x 2 +x 3 -x 4.), akkor a kombinált bizonytalanság a bizonytalanságok négyzetösszegének a négyzetgyöke (pl. büretta leolvasás titráláskor): Ha a mérési egyenlet szorzásokat és osztásokat tartalmaz (y=x 1 x 2 x 3 /x 4.), akkor a kombinált bizonytalanság a relatív bizonytalanságoknégyzet összegének a négyzetgyöke (a legtöbb mérési eredményünk így számolódik):

19 I. Szigorú matematikai módszer (7) A kiterjesztett bizonytalanság meghatározása: Az eredmény megadásának helyes módja: Y = y±u U= k u comb (y) Ahol y: a mérési eredmények átlaga U : a kiterjesztett bizonytalanság k : a kiterjesztési tényező k= 2, akkor 95 %-os szignifikancia szint (ez a leggyakoribb) k= 3, akkor 99 %-os szignifikancia szint Programozható,ezért lehet programokat venni, vagy a laboratórium maga is készíthet számolótáblát a bizonytalanság becslésére. Példa: a Mg eredmény formája a kiterjesztetett bizonytalanság megadásával a következő módon történik (u comb (y) =0,75): c Mg = 23,5 ±1,5 mg/l (k=2 ; 95%) => a valódi érték 95 %-os valószínűséggel 22 és 25 mg/l közé esik.

20 II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (1) 1. Szabványokban leírt bizonytalansági adatok (bizonytalanság, reprodukálhatósági adatok, körvizsgálati eredmények) Ha a labor bizonyítja, hogy alkalmas a szabvány végrehajtására, használhatja ezeket a bizonytalansági értékeket, vagy ezekből az adatokból számolt bizonytalanságokat

21 II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (2) 2.Sok ismétlésből számolt eredmények, a laboratórium saját módszereinek validálásasorán keletkező adatok (ismételhetőség, [reprodukálhatóság]) használhatók a bizonytalansági intervallum megállapításához : Ahol c: a koncentráció c ±k*rsd R * c RSD R : a reprodukálhatóság relatív korrigált szórása k: kiterjesztési tényező

22 II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (3) 3. Körvizsgálati eredmények : A jártassági körvizsgálatok (JV) szervezői vagy számolják, vagy előírásokból veszik a maximálisan megengedhető hibát. A labor jól szerepel a körvizsgálatban, ha lx lab Āl 2*s (3*s). ahol x lab : labor eredménye, Ā: a hozzárendelt érték, s: a JV célszórása Ha egy megengedett eltérést (Δ ) írnak elő, akkor a jó szereplés feltétele lx i Āl Δ. A laboratórium bizonytalanságának értékelése : Sok résztvevő esetén az eredmények átlagának (hozzárendelt érték) standard bizonytalansága : u (x) = ahol n: a résztvevők száma : az illető komponens eredményinek szórása Az átlag (hozzárendelt érték) kiterjesztett bizonytalansága: U (x) =2* u (x) A labor x lab eredményének kiterjesztett bizonytalanságára U lab otadott meg Kiszámoljuk az E n számot, amely fontos teljesítményjellemző : Elvárás a labor felé: E n 1 HA EZ IGAZ, AKKOR A LABORATÓRIUM JÓL BECSÜLI A KITERJESZTETT BIZONYTALANSÁGÁT Ha a labor nem tudja x lab eredményéhez tartozó kiterjesztett bizonytalanságot (U lab ), akkor E n = 1 esetre a labor kiszámolhatja, hogy mekkora az U lab minimális értéke az adott körvizsgálatban. mg/kg 35,0 30,0 25,0 20,0 15,0 10,0 5,0 0, Laborkód / Lab. code = ( )

23 II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (4) 4. Szakértői becslések: A Horwitz-egyenletekből becsülhetjük a mérések szórását (s), standard bizonytalanságát. Ha ezt 2-vel szorozzuk a kiterjesztett bizonytalanságot kapjuk. Ez jellemző az adott koncentrációra (szilárd minták előkészítése, majd mérése). A koncentrációtól függően a std. bizonytalanságra (becsült szórásra) három egyenlet: Ha Ā <120 ppb, akkor s= 0,22(Ā*ta) /ta= 0,22Ā (ebben a tartományban RSD=22,0 R% ) Ha 120 ppb<= Ā <=13,8%, akkor s= 0,02 (Ā*ta) 0,8495 /ta (RSD=22,0.2,7 R%) Ha Ā >13,8%, akkor s= 0,01 (Ā*ta) 0,5 /ta (ha 90 %-ig vizsgálunk, akkorrsd=2,7 1,0 R%) (ta: dimenzió nélküli tömegarány, pl. ha a mértékegység ppmakkor 10-6, ha % akkor10-2 )

24 II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (5) 5. Kontrol kártya adatok: > 20 db mérés estén az ismételhetőség kiterjesztett bizonytalansága az adott koncentrációnál: U= 2*s 53 Klorid (névleges konc. 50 mg/liter) mg/liter

25 II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (6) 6. Hiteles anyagminta használatával: a mérés visszavezethetősége és a bizonytalanság becslése is megoldható és az esetleges módszeres hiba is benne van a becslési intervallumban C LAB ±U LAB C CRM ±U CRM C C akkor + Tehát a labor által mért középérték kiterjesztett bizonytalansága legalább U LAB

26 III. A bizonytalanság becslése kombinált Példa: módszerrel Szulfát meghatározás ionkromatográfiásan Kontrol kártyánkon a szulfát mérés relatív bizonytalansága (szórása) u kk =3,8 % (átlag= 5,0 mg/l) A mintában 100,0 mg/l szulfátot mértünk Mivel a kontrol minta koncentrációja távol esik a mérendő koncentrációtól, ezért hígítás szükséges. A hígítás relatív bizonytalansága u hig = 1% u comb = (u kk2 + u hig2 ) = (3, )= 3,9 %, tehát u comb = 3,9 mg/l a 100 mg/l szulfátra U kiterjesztett = k u comb = 2 3,9 mg/l = 7,8 mg/l Tehát a szulfát tartalom: 100,0 ±7,8 mg/l (k=2; 95%)

27 Mikrobiológiai vizsgálatok bizonytalansága (1) (G108---A2LA (American Association for Laboratory Accreditation)) Az értékelésnél a telepszámok (CFU) logaritmusát kell venni, mert ez normális eloszlású 1. Becslés a reprodukálhatósági vizsgálatokból: A reprodukálhatóság relatív standard deviációja: = (lg ) 2 /2 lg a i és lg b i : az az i-edik mérési adatpár telepszám eredményeinek logaritmusa M: lg a i és lg b i eredmények nagy átlaga n: az adatpárok száma c telepszámnál a kiterjesztett mérési bizonytalanság intervalluma: lg c ±k*rsd R *lg c ahol k: a kiterjesztési tényező (k=2) Telepszámra átszámolva: 10 (lg c -k*rsdr*lg c) 10 (lg c +k*rsdr*lg c) CFU amely a c telepszámot tekintve aszimmetrikus.

28 Mikrobiológiai vizsgálatok bizonytalansága (2) Mikrobiológiai vizsgálatok bizonytalanságának meghatározása reprodukálhatósági vizsgálatokból A reprodukálhatóság relatív standard deviációja: = (lg 2 /2 Labor Minta sorszám 1.ismétlés (ai) CFU/g 2.ismétlés (bi) CFU/g lg ai lg bi Különbség (lg ai-lg bi) Különbség 2 (lg ai-lg bi) 2 A ,1173 2,1523-0,0350 0,00123 B ,8388 1,9542-0,1154 0,01332 A ,6532 1,8808-0,2276 0,05180 B ,6021 1,7404-0,1383 0,01913 A ,4914 1,3010 0,1903 0,03623 B ,5185 1,6021-0,0835 0,00698 A ,4914 1,7924-0,3010 0,09062 B ,5682 1,6990-0,1308 0,01710 A ,2695 2,2227 0,0468 0,00219 B ,3385 2,4116-0,0732 0,00535 A ,3010 2,3856-0,0846 0,00715 B ,5911 1,7324-0,1413 0,01997 A ,3365 2,2553 0,0812 0,00659 B ,0755 2,1239-0,0483 0,00233 A ,4472 1,6628-0,2156 0,04648 B ,0253 2,0492-0,0239 0,00057 A ,0294 1,9494 0,0800 0,00640 B ,6532 1,7924-0,1392 0,01937 A ,9912 2,1072-0,1160 0,01345 B ,3802 2,3424 0,0378 0,00143 Nagy átlag (M): 1,9219 Mérések száma (2*n): 40 s 2 =szum(különbség 2 )/2n: 0,00919 gyök(s 2 ) 0,0959 RSD (s/m): 0,0499 2*RSD 0,0998 Kiterjesztett mérési bizonytalanság intervalluma: MU=lg c ± k*rsd R *lg c c= 150 CFU/g k= 2 lg c = 2,1761 k*rsdr*lg c = 0,2171 lg c - k*rsdr*lg c = 1,9590 Amely megfelel 10 (lg c - k*rsdr*lg c ) = lg c + k*rsdr*lg c = 2,3932 Amely megfelel 10 (lg c + k*rsdr*lg c ) = 90,986 CFU/g 247,290 CFU/g Tehát a 150 CFU/g kiterjesztett mérési bizonytalanság intervalluma: CFU/g CFU/g CFU/g Bizonytalansági intervallum Bizonytalansá 300,000 gi intervallum 250, , , ,000 50, ,000 0, ,000 50, Sorozat ok1 Mikrobiológiai mérés 0, Mikrobiológiai mérés

29 Mikrobiológiai vizsgálatok bizonytalansága (3) 2. Becslés a visszanyerési vizsgálatokból (nagyobb koncentráció tartomány): a) % rec=(lg b i / lg a i )*100 ahol: lg b i : visszanyert CFU (mátrixban) lg a i : beoltott CFU (mátrix nélkül) b) Kiszámoljuk a % rec nekastandard deviációját (%recsd) c) c telepszámnál a kiterjesztett mérési bizonytalanság intervalluma: lg c ±k*[(% recsd)/100]*lg c ahol: a [(% recsd)/100] a visszanyerési arány SD-je; k: kiterjesztési tényező d) Tízes hatványra emelve a bizonytalansági intervallum: 10 (lg c -k*[(% recsd)/100]*lg c)...10 (lg c + k*[(% recsd)/100]*lg c)

30 Mikrobiológiai vizsgálatok bizonytalansága (4) Mikrobiológiai vizsgálatok bizonytalanságának meghatározása visszanyerési vizsgálatokból Visszanyerési %= (lg b i / lg a i )*100 Minta sorszám Nagy koncentráció tartományban vizsgáljuk a visszanyerést Beoltott (mátrix nélkül) (ai) CFU/g Visszanyert (mátrixban) (bi) CFU/g lg ai lg bi A lg értékek %-os visszanyerése (lg bi / lg ai)*100 Visszanyerési arány ,4771 4, ,1 0, ,2304 4, ,4 0, ,5563 4, ,9 1, ,1761 1, ,8 0, ,3802 3, ,1 0, ,6335 4, ,2 0, ,0000 1, ,6 0, ,6232 4, ,1 0, ,2788 4, ,3 0, ,0000 2, ,0 1, ,7634 5, ,4 0, ,3979 3, ,1 0, ,0414 2, ,6 0, ,2553 4, ,9 0, ,3010 3, ,3 0, ,2304 3, ,8 1, ,3222 3, ,2 0, ,1761 2, ,9 0, ,3010 3, ,1 0, ,1761 2, ,8 0, Visszanyerési arány lg értékek %-os visszanyerésének átlaga (M): 97,0 % 0,970 A %-os visszanyerés SD (% rec SD): 3,6 % 0,0361 %-os visszanerés kiterjesztett bizonytalanság (k=2) 2*(% rec SD): 7,2 % 0,072 Visszanyerési arány kit. bizonytalansága (k=2) 2*(% rec SD)/100): 0,072 Kiterjesztett mérési bizonytalanság intervalluma: MU=lg c ± k*[(% rec SD)/100]*lg c c= 150 CFU/g k= 2 lg c = 2,1761 k*[(% rec SD)/100] * lg c = 0,1570 lg c - k*[(% rec SD)/100]*lg c= 2,0191 Amely megfelel 10 (lg c - k*[(% rec SD)/100]*lg c) = 104,5 CFU/g lg c + k*[(% rec SD)/100]*lg c= 2,3331 Amely megfelel 10 (lg c + k*[(% rec SD)/100]*lg c) = 215,3 CFU/g Tehát a 150 CFU/g kiterjesztett mérési bizonytalanság intervalluma: CFU/g CFU/g Bizonytalansági intarvallum 250, , , ,000 50,000 0, Mikrobiológiai mérés

31 Összefoglalás (1) A laboratóriumi gyakorlatban - különösen ha az akkreditált - nagyon sok adat létezik, amelyek segítségével különösebb erőfeszítés nélkül becsülhetjük a vizsgálataink bizonytalanságait (kombinált bizonytalanságok): Szabványokban szereplő bizonytalanságok Validálásiadataink (ha vannak házi módszereink, akkor reprodukálhatósági és visszanyerési eredmények születtek) Körvizsgálati adatok Kontrol kártyáink adatai Szakértői becslések (Horwitz) CRM minta mérési eredménye Ha szükség van a bizonytalanságok saját becslésére, akkor fel kell mérnünk a független bizonytalanság forrásokat és meg kell határoznunk azt, hogy statisztikai módszerekkel leírható A- típusú bizonytalanságokkal, vagy statisztikai módszerekkel nem számolható B- típusú bizonytalanságokkal van-e dolgunk. Ezek figyelembevételével ki kell számolnunk az elemi standard bizonytalanságokat.

32 Összefoglalás (2) Az elemi standard bizonytalanságokból a kombinált bizonytalanságot határozzuk meg, amelynek számolása attól függ, hogy a mérés végeredményét hogyan számoljuk (összeadással és kivonással, vagy szorzással és osztással). A kombinált bizonytalanság ismeretében az un. kiterjesztési tényezővel való szorzás után kapjuk az un. kiterjesztett bizonytalanságot.a kiterjesztési tényező értéke leggyakrabban 2, amely azt mutatja, hogy a valódi érték 95 %-os valószínűséggel megtalálható a mérési eredményünk ±kiterjesztett bizonytalanság tartományában A mérési bizonytalanság koncentráció függő Néhány Minőségirányítási Kézikönyvben csak egy ±értéket adnak meg, ami nem helyes, mert koncentráció tartományokra kellene szerepeltetni a kiterjesztett bizonytalanság értékeket.

33 Fontos a józan ész! Gyakran több módszer alkalmazásával célszerű a becsléstvégezni és ha nincs nagy eltérés az eredmények között, akkor feltehetően jól határoztuk meg a mérésünk bizonytalanságát

34 Köszönöm a megtisztelő figyelmet! Kérdések?????

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése Szegény Zsigmond WESSLING Közhasznú Nonprofit Kft., Jártassági Vizsgálati Osztály szegeny.zsigmond@qualcoduna.hu 2014.01.21. 2013.

Részletesebben

Kontrol kártyák használata a laboratóriumi gyakorlatban

Kontrol kártyák használata a laboratóriumi gyakorlatban Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Laboratóriumi jártassági vizsgálatok jelentősége, szervezése. Készítette:Szegény Zsigmond Jártassági Vizsgálati Osztály, osztályvezető 2013.10.01.

Laboratóriumi jártassági vizsgálatok jelentősége, szervezése. Készítette:Szegény Zsigmond Jártassági Vizsgálati Osztály, osztályvezető 2013.10.01. Laboratóriumi jártassági vizsgálatok jelentősége, szervezése Készítette:Szegény Zsigmond Jártassági Vizsgálati Osztály, osztályvezető 2013.10.01. A körvizsgálatok típusai Módszertani körvizsgálat (egy-egy

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész 2011.

Gyártástechnológia alapjai Méréstechnika rész 2011. Gyártástechnológia alapjai Méréstechnika rész 2011. 1 Kalibrálás 2 Kalibrálás A visszavezethetőség alapvető eszköze. Azoknak a műveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Autovalidálási folyamatok Lókiné Farkas Katalin Az autovalidálás elméleti alapjai Az előző eredménnyel való összehasonlítás

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Mérések hibája pontosság, reprodukálhatóság és torzítás

Mérések hibája pontosság, reprodukálhatóság és torzítás Mérések hibája pontosság, reprodukálhatóság és torzítás A kémiai mérések és számítások során számos adat felhasználásával jutunk a végeredményhez. Gyakori eset, hogy egyszerű mérési eredményekből a köztük

Részletesebben

Vizsgálati jegyzőkönyvek általános felépítése

Vizsgálati jegyzőkönyvek általános felépítése Vizsgálati jegyzőkönyvek általános felépítése 1. Intézményi és személyi adatok 1. Megbízó intézmény neve és címe 2. Megbízó képviselőjének neve és beosztása 3. A vizsgáló intézmény illetve laboratórium

Részletesebben

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:

Részletesebben

3. Az országos mérés-értékelés eredményei, évenként feltüntetve

3. Az országos mérés-értékelés eredményei, évenként feltüntetve 3. Az országos mérés-értékelés eredményei, évenként feltüntetve 4. évfolyam-okév 2005/2006. tanév: Ebben a tanévben első alkalommal mértek a 4. évfolyamon különböző készségeket és ezek gyakorlottságát.

Részletesebben

STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69)

STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) 1. AZ ISO SZABVÁNYOK TÉRKÉPE 2. A SZABVÁNYOK BEMUTATÁSA 3. HASZNÁLATI TANÁCSOK 4. A STATISZTIKAI SZABVÁNYOK ÉS AZ ISO 9001 5. JAVASLATOK

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

A mérési bizonytalanság

A mérési bizonytalanság NEMZETI AKKREDITÁLÓ TESTÜLET Nemzeti Akkreditálási Rendszer A mérési bizonytalanság meghatározása kalibrálásnál NAR-EA-4/0 1. kiadás 003. január EA Európai Akkreditálási Együttmûködés EA-4-0 Referencia

Részletesebben

Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság

Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Mőszaki-technológiai Laboratórium 095 Budapest, Mester u. 8. ; 44 Budapest, Remény u. 42. (+6)--8-90, (+6)--468-757;

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

etalon etalon (folytatás) Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói

etalon etalon (folytatás) Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói Etalonok, kalibrálás, rekalibrálás, visszavezethetőség, referencia eljárások Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói etalon Mérték, mérőeszköz, anyagminta vagy

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM SZERVETLEN ÉS ANALITIKAI KÉMIA TANSZÉK. Kmecz Ildikó, Kőmíves József, Devecser Eszter, Sándor Tamás

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM SZERVETLEN ÉS ANALITIKAI KÉMIA TANSZÉK. Kmecz Ildikó, Kőmíves József, Devecser Eszter, Sándor Tamás BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM SZERVETLEN ÉS ANALITIKAI KÉMIA TANSZÉK LEVEGŐSZENNYEZÉS VIZSGÁLÓLABORATÓRIUM a NAT által NAT-1-0972/2008 számon akkreditált vizsgálólaboratórium TELEPÍTETT

Részletesebben

Hanthy László Tel.: 06 20 9420052

Hanthy László Tel.: 06 20 9420052 Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

WESSLING Közhasznú Nonprofit Kft. QualcoDuna jártassági vizsgálatok Általános feltételek 2016.

WESSLING Közhasznú Nonprofit Kft. QualcoDuna jártassági vizsgálatok Általános feltételek 2016. QualcoDuna jártassági vizsgálatok Általános feltételek 2016. 1. kiadás, 1. változat Kiadás dátuma: 2015.12.11. Készítette: Szegény Zsigmond és dr. Bélavári Csilla, Átvizsgálta: Rikker Tamás Tudományos

Részletesebben

WESSLING Közhasznú Nonprofit Kft. QualcoDuna jártassági vizsgálatok Általános feltételek 2015.

WESSLING Közhasznú Nonprofit Kft. QualcoDuna jártassági vizsgálatok Általános feltételek 2015. QualcoDuna jártassági vizsgálatok Általános feltételek 2015. 1. kiadás, 1. változat Kiadás dátuma: 2014.11.21. Készítette: Szegény Zsigmond és dr. Bélavári Csilla, Átvizsgálta: Rikker Tamás Tudományos

Részletesebben

Ivóvizek mikrobiológiai jellemzői minőségirányítási elvárások

Ivóvizek mikrobiológiai jellemzői minőségirányítási elvárások Ivóvizek mikrobiológiai jellemzői minőségirányítási elvárások Reskóné Nagy Mária Wessling Hungary Kft. HUNGALIMENTARIA - 2013. április 16-17. 1146 Budapest, Városliget, Vajdahunyadvár, Mezőgazdasági Múzeum

Részletesebben

Záróvizsga szakdolgozat. Mérési bizonytalanság meghatározásának módszertana metallográfiai vizsgálatoknál. Kivonat

Záróvizsga szakdolgozat. Mérési bizonytalanság meghatározásának módszertana metallográfiai vizsgálatoknál. Kivonat Záróvizsga szakdolgozat Mérési bizonytalanság meghatározásának módszertana metallográfiai vizsgálatoknál Kivonat Csali-Kovács Krisztina Minőségirányítási szakirány 2006 1 1. Bevezetés 1.1. A dolgozat célja

Részletesebben

NEMZETI TESTÜLET. Nemzeti Akkreditálási Rendszer. A környezeti minták vételével foglalkozó szervezetek NAR-19-IV. 1. kiadás. 2001.

NEMZETI TESTÜLET. Nemzeti Akkreditálási Rendszer. A környezeti minták vételével foglalkozó szervezetek NAR-19-IV. 1. kiadás. 2001. NEMZETI AKKREDITÁLÓ TESTÜLET Nemzeti Akkreditálási Rendszer A környezeti minták vételével foglalkozó szervezetek akkreditálása NAR-19-IV 1. kiadás 2001. március 1. Bevezetés A környezeti minták vételével

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Scan 1200 teljesítmény-értékelés evaluation 1/5

Scan 1200 teljesítmény-értékelés evaluation 1/5 evaluation 1/5 interscience Feladat Összefoglalónk célja a Scan 1200 teljesítmény-értékelése manuális és automata telepszámlálások összehasonlításával. Az összehasonlító kísérleteket Petri-csészés leoltást

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Dr. Zsuga Katalin jártassági vizsgálati szakértő

Dr. Zsuga Katalin jártassági vizsgálati szakértő QualcoDuna jártassági vizsgálatok WESSLING Közhasznú Nonprofit Kft. Jártassági Vizsgálati Osztály 1047 Budapest, Fóti út 56. Tel: 06-1-272-2128 Fax: 06-1-272-2126 E-mail: info@qualcoduna.hu Web: www.qualcoduna.hu

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Megfelelőségi határértékek az étrend-kiegészítőknél Uniós ajánlás a kompetens hatóságoknak

Megfelelőségi határértékek az étrend-kiegészítőknél Uniós ajánlás a kompetens hatóságoknak Megfelelőségi határértékek az étrend-kiegészítőknél Uniós ajánlás a kompetens hatóságoknak Horányi Tamás Magyarországi Étrend-kiegészítő Gyártók és Forgalmazók Egyesülte Étrend-kiegészítők, gyógyhatású

Részletesebben

Minőségbiztosítás, validálás

Minőségbiztosítás, validálás Minőségbiztosítás, validálás Mi a minőség? A termék sajátos tulajdonságainak összessége Mérhető Imateriális (pl. szolgáltatás, garancia) Elégítse ki a vevő igényeit Feleljen meg az Elvárásoknak Előírásoknak

Részletesebben

Mérési hibák. 2008.03.03. Méréstechnika VM, GM, MM 1

Mérési hibák. 2008.03.03. Méréstechnika VM, GM, MM 1 Mérési hibák 2008.03.03. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség általánosított

Részletesebben

2014. évi jártassági vizsgálati program

2014. évi jártassági vizsgálati program QualcoDuna jártassági vizsgálatok WESSLING Közhasznú Nonprofit Kft. Jártassági Vizsgálati Osztály 1047 Budapest, Fóti út 56. Tel: (+36)-1-872-3628 Fax: (+36)-1-872-3806 E-mail: info@qualcoduna.hu Web:

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

MIKROBIOLÓGIAI VIZSGÁLATOKKAL SZEMBEN TÁMASZTOTT ÚJABB KÖVETELMÉNYEK. Tabajdiné Pintér Vera. Országos Élelmiszervizsgáló Intézet

MIKROBIOLÓGIAI VIZSGÁLATOKKAL SZEMBEN TÁMASZTOTT ÚJABB KÖVETELMÉNYEK. Tabajdiné Pintér Vera. Országos Élelmiszervizsgáló Intézet MIKROBIOLÓGIAI VIZSGÁLATOKKAL SZEMBEN TÁMASZTOTT ÚJABB KÖVETELMÉNYEK Tabajdiné Pintér Vera Országos Élelmiszervizsgáló Intézet A XX.sz. végén az élelmiszer-mikrobiológiai vizsgálatok területén a legfontosabb

Részletesebben

Titrimetria - Térfogatos kémiai analízis -

Titrimetria - Térfogatos kémiai analízis - Titrimetria - Térfogatos kémiai analízis - Alapfogalmak Elv (ismert térfogatú anyag oldatához annyi ismert konc. oldatot adnak, amely azzal maradéktalanul reagál) Titrálás végpontja (egyenértékpont) Törzsoldat,

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Fényerősség. EV3 programleírás. Használt rövidítések. A program működésének összegzése

Fényerősség. EV3 programleírás. Használt rövidítések. A program működésének összegzése EV3 programleírás A 11- es program egy 60W- os hagyományos izzó fényerősségét méri (más típusú izzókkal is használható) tíz pontnál, 5 cm- es intervallumokra felosztva. Használt rövidítések ol Külső ciklus

Részletesebben

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3 5. gyakorlat. Tömegmérés, térfogatmérés, pipettázás gyakorlása tömegméréssel kombinálva. A mérési eredmények megadása. Sóoldat sőrőségének meghatározása, koncentrációjának megadása a mért sőrőség alapján.

Részletesebben

Levegőtisztaság-védelmi mérések, aktuális és várható szabályok

Levegőtisztaság-védelmi mérések, aktuális és várható szabályok Levegőtisztaság-védelmi mérések, aktuális és várható szabályok KSZGYSZ konferencia 2012. május 22. Bibók Zsuzsanna Tartalom A 2011-ben hatályba lépett jogszabályok új előírásai; 306/2011.(XII.23.)kormányrendelet,

Részletesebben

Matematika, 1 2. évfolyam

Matematika, 1 2. évfolyam Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Térfogat és súly alapú faátvétel problémái

Térfogat és súly alapú faátvétel problémái 49. FAGOSZ Fakonferencia 2015. október 28-29. Balatonszemes Térfogat és súly alapú faátvétel problémái Nyugat-magyarországi Egyetem Innovációs Központ Pásztory Zoltán Fakitermelés Fakitermelés 6,5-7,5

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola A versenyző kódja:... VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI

Részletesebben

UV-sugárzást elnyelő vegyületek vizsgálata GC-MS módszerrel és kimutatásuk környezeti vízmintákban

UV-sugárzást elnyelő vegyületek vizsgálata GC-MS módszerrel és kimutatásuk környezeti vízmintákban UV-sugárzást elnyelő vegyületek vizsgálata GC-MS módszerrel és kimutatásuk környezeti vízmintákban Készítette: Kovács Tamás Környezettudomány szakos hallgató Témavezető: Zsigrainé Dr. Vasanits Anikó adjunktus

Részletesebben

STATISZTIKA PÉLDATÁR

STATISZTIKA PÉLDATÁR STATISZTIKA PÉLDATÁR www.matektanitas.hu www.matektanitas.hu info@matektanitas.hu 1 Minden feladat csak szöveges válasszal együtt ad teljes értékű megoldást! Becslés 1. feladat Az alábbi táblázat megadja

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

jártassági vizsgálatok

jártassági vizsgálatok jártassági vizsgálatok SZENNYVÍZ vizsgálati minták eredményeinek értékelése 2013/II. forduló zárójelentése 2013. június 18. Szennyvíz minták vizsgálata 2013/II. forduló TARTALOMJEGYZÉK Oldal 1. A jártassági

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN

NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN KALIBRÁCIÓ A kalibráció folyamata során a műszer válaszjele és a mérendő koncentrációja közötti összefüggést határozzuk meg. A kísérletileg meghatározott

Részletesebben

A megbízható pontosság

A megbízható pontosság A megbízható pontosság Tájékoztató a vércukormérő rendszerek pontosságáról Ismerje meg, mire képesek az Accu-Chek termékek! Vércukor-önellenőrzés A vércukor-önellenőrzés szerves része mind az 1-es, mind

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Külső minőség-ellenőrzés jelentősége és követelményei. Dr. Tomai Erzsébet Uzsoki utcai Kórház

Külső minőség-ellenőrzés jelentősége és követelményei. Dr. Tomai Erzsébet Uzsoki utcai Kórház Külső minőség-ellenőrzés jelentősége és követelményei Dr. Tomai Erzsébet Uzsoki utcai Kórház 1 Az orvosi laboratóriumok feladata I. Az emberi szervezetben előforduló anyagok kimutatása és szintjük meghatározása

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben

NEMZETI TESTÜLET. Nemzeti Akkreditálási Rendszer. EA Útmutató mennyiségi vizsgálatok bizonytalanságának kifejezéséhez NAR-EA-4/16. 1.

NEMZETI TESTÜLET. Nemzeti Akkreditálási Rendszer. EA Útmutató mennyiségi vizsgálatok bizonytalanságának kifejezéséhez NAR-EA-4/16. 1. NEMZETI AKKREDITÁLÓ TESTÜLET Nemzeti Akkreditálási Rendszer EA Útmutató mennyiségi vizsgálatok bizonytalanságának kifejezéséhez NAR-EA-4/16 1. kiadás 2004. szeptember EA-4/16 EA útmutató a mennyiségi vizsgálatok

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ ÖSSZEÁLLÍTOTTA: DEÁK KRISZTIÁN 2013 Az SPM BearingChecker

Részletesebben

Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság

Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Mőszaki-technológiai Laboratórium 1095 Budapest, Mester u. 81. ; 1144 Budapest, Remény u. 42. (+36)-1-383-1190, (+36)-1-468-3757;

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI ORSZÁGOS SZAKMAI TANULMÁNYI

Részletesebben

Nemzeti Élelmiszerlánc-biztonsági Hivatal

Nemzeti Élelmiszerlánc-biztonsági Hivatal Nemzeti Élelmiszerlánc-biztonsági Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság 1024 Budapest, Keleti Károly út 24. Tel: 06/1/336-9474 Fax: 06/1/336-9169 E-mail: etbi@nebih.gov.hu.hu www.nebih.gov.hu

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió Mérés és adatgyűjtés - Kérdések 2.0 verzió Megjegyzés: ezek a kérdések a felkészülést szolgálják, nem ezek lesznek a vizsgán. Ha valaki a felkészülése alapján önállóan válaszolni tud ezekre a kérdésekre,

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Patogén mikroorganizmusok vizsgálata molekuláris biológiai módszerekkel

Patogén mikroorganizmusok vizsgálata molekuláris biológiai módszerekkel Patogén mikroorganizmusok vizsgálata molekuláris biológiai módszerekkel Rohonczy Kata, Zoller Linda, Fodor Andrea, Tabajdiné, dr. Pintér Vera FoodMicro Kft. Célkitűzés Élelmiszerekben és takarmányokban

Részletesebben

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

2012. évi jártassági vizsgálati program biológiai program összefoglaló. 2013. évi program. Dr. Zsuga Katalin

2012. évi jártassági vizsgálati program biológiai program összefoglaló. 2013. évi program. Dr. Zsuga Katalin QualcoDuna jártassági vizsgálatok WESSLING Közhasznú Nonprofit Kft. Jártassági Vizsgálati Osztály 1047 Budapest, Fóti út 56. Tel: 06-1-272-2128 Fax: 06-1-272-2126 E-mail: info@qualcoduna.hu Web: www.qualcoduna.hu

Részletesebben

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS Műszaki Földtudományi Közlemények, 83. kötet, 1. szám (2012), pp. 271 276. HULLADÉKOK TEHERBÍRÁSÁNAK MEGHATÁROZÁSA CPT-EREDMÉNYEK ALAPJÁN DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST

Részletesebben

BEVEZETÉS AZ ELŐADÁS BETEKINTÉST AD A HATÓSÁG SZÉLESSÁV-MÉRŐ PROGRAMJÁBA. 2012.10.16. 2

BEVEZETÉS AZ ELŐADÁS BETEKINTÉST AD A HATÓSÁG SZÉLESSÁV-MÉRŐ PROGRAMJÁBA. 2012.10.16. 2 2 BEVEZETÉS AZ NEMZETI MÉDIA-ÉS HÍRKÖZLÉSI HATÓSÁG ELKÖTELEZETT A SZÉLESSÁVÚ SZOLGÁLTATÁSOK ELTERJEDÉSÉNEK ELŐSEGÍTÉSÉBEN, A FOGYASZTÓI TUDATOSSÁG NÖVELÉSÉBEN. A FOGYASZTÓ ÁLTALÁBAN GYAKRAN AZ ISMERETEK

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4. EURÓPAI ÉRETTSÉGI 2010 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2010. Június 4. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Dr. Kriszt Balázs tanszékvezető egyetemi docens

Dr. Kriszt Balázs tanszékvezető egyetemi docens Dr. Kriszt Balázs tanszékvezető egyetemi docens Élelmiszerek, takarmányok mintavétele aflatoxin-vizsgálatokra, a mikotoxinok bevitele az állati szervezetbe a takarmányokon keresztül Szipola Ilona Élelmiszerbiztonsági

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben