A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában"

Átírás

1 A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában Készítette: Szegény Zsigmond Mezőgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Műszaki-technológiai Laboratórium

2 Általános elvek A mérés eredménye a legjobb esetben is csupán közelítésea mérendő mennyiség valódi értékének. A mérési eredmény csak akkor teljes, ha a mért érték mellett a mérés bizonytalanságát is megadjuk.

3 Átlag, szórás, normális eloszlás és bizonytalanság (1) Többször megismétlünk egy mérést és ezekből kiszámolható a mérések átlaga ( ) és korrigált szórása (s (q) ) Ha az ismétlések száma nagyon nagy ( pl.>100 db [kontrol kártya]), akkor igaz: Gyakoriság Ha semmit nem változtatunk és +1 ismétlést végzünk, akkor annak az eredménye 95%-os valószínűséggel az átlag (várható értékbecslése) ± 2*s intervallumba fog esni. (pontosabban ± 1.96*s) A görbe alatti összes terület 95%-a az A ± 2*s tartományban van A= : a várható érték becslése

4 Átlag, szórás, normális eloszlás és bizonytalanság (2) Az átlag bizonytalansága: = ( ) = 1 ( 1) ( ) Tehát ha nagyon sok mérési eredményünk van, akkor a várható, vagy valódi érték 95 %-os valószínűséggel az átlag (sok eredmény) ±2 ( ) tartományba esik. A gond az, hogy a nagyszámú mérés várható értékét és szórását, a haranggörbe természetét nem ismerjük(sokba kerül). Ezért leggyakrabban csak kis számú mérésre (<20) számolt átlag, szórás és a t-eloszlás segítségével végezzük a becslést: átlag (k mérés átlaga) ± ( ) ahol = ( ( ) ) (95 %-os szignifikanciaszinten a t értéke k=3 esetén 4,3 ; k=5 esetén 2,776; ha k= akkor 1,96)

5 Precizitás és helyesség Precizitás (szórással összefügg) Helyesség vagy pontosság (a valódi értéktől való távolság) Precizitás: - Helyesség: - Valódi érték Átlag eredmény Precizitás: + Helyesség: - Precizitás: - Helyesség: + Precizitás: + Helyesség: +

6 A mérési eredmény, a hiba és a bizonytalanság (1) A mérési hibája a mérés bizonytalansága Egy laboratórium akkor határozza meg jól a bizonytalanságát, ha az legalább akkora, mint a mérés hibája ( Ideális esetben a bizonytalanság = a hiba )

7 A mérési eredmények, a hibák és a bizonytalanság (2) Végtelen sok mérés sűrűségfüggvénye Gyakoriság Végtelen sok mérés átlaga Néhány mérés átlaga Néhány mérés hisztogramja Valódi érték Egyetlen mérés (y) Y Néhány mérés hibája Helyesség vagy módszeres hiba Egyetlen mérés hibája Átlagok hibájának különbsége y - U y + U Bizonytalansági tartomány : a valódi érték nagy (pl.95%) valószínűséggel beleesik

8 Mérési bizonytalanság A mérések természetes velejárója Mérési folyamat során a végzett műveletek mindegyikének elemi bizonytalansága van. Ezek egymásra rakódása következtében alakul ki a mérés teljes bizonytalansága A mérési bizonytalanság a mért érték körüli tartomány.a mérendő paraméter valódi értéke azon belül nagy valószínűséggel megtalálható

9 A mérési bizonytalanság forrásai Mintavétel (mennyire reprezentatív) Tárolási körülmények (stabilitás) Minta előkészítés (homogenitás) Készülékek állapota Reagensek tisztasága A mérés környezeti körülményei Minta effektusok (zavaró hatások) Számítástechnikai effektusok (pl. integráció) Operátortól függő hatások Véletlenszerű effektusok

10 Miért kell a mérési bizonytalanságot használni? (1) 1. A méréseink megbízhatóságát tudjuk igazolni. (Pl. CRM minta mérése) C LAB ±U LAB : a labor eredménye (C LAB ) a bizonytalansággal (U LAB ) C CRM ±U CRM : a CRM minta tanúsított értéke (C CRM ) a bizonytalansággal (U CRM ) Ha akkor a laboratórium jól mér, mert az eredmények különbsége kisebb mint az un. kombinált bizonytalanság. 2. Lehetővé teszi a különböző laboratóriumokból származó, eredmények összehasonlítását: Követelmény: C LAB1 C (Kérdés, hogy legalább az egyik labor eredménye mennyire van a valódi érték közelében? Ezt valamilyen módon igazolni kell. [CRM mérés vagy körvizsgálat])

11 Miért kell a mérési bizonytalanságot használni? (2) 3. Megalapozott döntéseket lehet hozni, hogy az illető paraméter koncentrációja biztosan túllépi-e a megadott határértéket, vagy egy adott intervallumon biztosan belül van-e 4. A mérési bizonytalanság összetevőinek átfogó értékelése rámutat a vizsgálati módszer esetleges kritikus pontjaira, amelyekre nagyobb figyelmet kell fordítani. 5. Meghatározását az ISO/IEC nemzetközi szabvány előírja minden akkreditált laboratóriumnál: A vizsgálólaboratóriumoknak legyenek olyan eljárásaik, amelyek alkalmasak a mérési bizonytalanság becslésére, és ezeket az eljárásokat alkalmazniuk kell.

12 A mérési bizonytalanság becslésének módszerei I. Szigorú matematikai módszer: számba vesszük a részbizonytalanságokat és becsüljük az eredő bizonytalanságot (halszálka diagram) Mintavétel Térfogat mérés Analitikai jelképzés és jelértelmezés Bizonytalanság Előkészítés Tömeg mérés II. Meglévő minőségbiztosítási adatok (gyűjtött, ill. a kombinált bizonytalanságok) alapján történő meghatározás ( fekete doboz elve ) Bizonytalanság III. Kombinált módszer (a fenti két módszer együttes alkalmazása)

13 I. Szigorú matematikai módszer (1) START Mérendő paraméter, a módszer és a végeredmény számolás definiálása Független bizonytalanságforrások azonosítása (A- vagy B-típusú bizonytalanság) Az elemi standard bizonytalanságok kiszámítása Az eredő, kombinált standard bizonytalanság kiszámítása A kiterjesztett bizonytalanság meghatározása (95%-os szignifikancia szint mellett) és DOKUMENTÁLÁSA STOP

14 I. Szigorú matematikai módszer (2) ISO iránymutatás a mérési bizonytalanság kifejezésére (ISO Guide to the Expression of Uncertainty Measurement)(GUM) alapján A bizonytalanság értékelés típusai: A-típusúbizonytalanság értékelés: a mért értékek bizonytalanságának statisztikai módszerekkel történő becslése El kell végezni minden korrekciót azért, hogy torzítás ne legyen: q i = korrigált mérési eredmény (a módszeres hibát kiiktatjuk) Átlag: Korrigált szórás: A standard bizonytalanság (középérték szórása, a számtani közép bizonytalansága):

15 I. Szigorú matematikai módszer (3) B-típusúbizonytalanság értékelés: egyedileg mért vagy becsült értékek bizonytalanságának nem-statisztikaimódszerekkel végzett értékelése (hozott anyag)» a kalibrálási bizonyítványból vett adatok;» a gyártói specifikációk;» a kézikönyvekből vett referenciaadatok bizonytalanságai;» korábbi mérések adatai;» eszközök viselkedésére és tulajdonságaira vonatkozó tapasztalatok és általános ismeretek (digitális mérleg, büretta) Lehetőségek: 1. A rendelkezésre álló adatot és tartományt 95%-os szignifikanciaszinthez tartozó konfidencia intervallumként adták meg (pl. a certifikáltérték 50.0 ±aμg/l), ekkor az adat feltehetőleg normális eloszlású: Ekkor a megadott bizonytalanság fele tekinthető standard bizonytalanságnak(mert az un. kiterjesztett bizonytalanságot adták meg): =

16 I. Szigorú matematikai módszer (4) 2. Ha a változó egyenletes eloszlású, akkor az egyenletes eloszlás standard bizonytalansága a félszélesség osztva 3-mal. (digitális mérleg). Amikor az eloszlást nem ismerjük, gyakran folytonosnak tekintjük azt. Ebben az esetben a standard bizonytalanság: 3. Háromszög (Simpson) eloszlás esetében (amikor a szélső értékek valószínűsége nagyon kicsi) az osztó értéke 6. (Pl. mérőlombik jelzésig való feltöltése) A standard bizonytalanság:

17 I. Szigorú matematikai módszer (5) A mérés egyenlete (a mérés matematikai modellje): Y= G(X 1, X 2.., X M ) Bemeneti mennyiségek : X 1, X 2.., X M ; eloszlásaik (valószínűségi sűrűségfüggvények): pdf 1, pdf 2,.. pdf M Y a mérendő mennyiség eloszlása: F Y vagy pdf(y) Kiterjesztett (eredő) bizonytalanság: U, az Y eloszlásból. A legvalószínűbb érték körüli tartomány, ahol a görbe alatti terület 95%-a a teljes görbe alatti területnek. *Ha nem tekinthetők függetlennek X 1, X 2,, X M -ek, akkor együttes eloszlás-/ sűrűségfüggvényt kell alkalmazni.

18 I. Szigorú matematikai módszer (6) A kombinált bizonytalanság meghatározása: Ha a mérési egyenletcsak összeadásokat és kivonásokat tartalmaz (y=x 1 +x 2 +x 3 -x 4.), akkor a kombinált bizonytalanság a bizonytalanságok négyzetösszegének a négyzetgyöke (pl. büretta leolvasás titráláskor): Ha a mérési egyenlet szorzásokat és osztásokat tartalmaz (y=x 1 x 2 x 3 /x 4.), akkor a kombinált bizonytalanság a relatív bizonytalanságoknégyzet összegének a négyzetgyöke (a legtöbb mérési eredményünk így számolódik):

19 I. Szigorú matematikai módszer (7) A kiterjesztett bizonytalanság meghatározása: Az eredmény megadásának helyes módja: Y = y±u U= k u comb (y) Ahol y: a mérési eredmények átlaga U : a kiterjesztett bizonytalanság k : a kiterjesztési tényező k= 2, akkor 95 %-os szignifikancia szint (ez a leggyakoribb) k= 3, akkor 99 %-os szignifikancia szint Programozható,ezért lehet programokat venni, vagy a laboratórium maga is készíthet számolótáblát a bizonytalanság becslésére. Példa: a Mg eredmény formája a kiterjesztetett bizonytalanság megadásával a következő módon történik (u comb (y) =0,75): c Mg = 23,5 ±1,5 mg/l (k=2 ; 95%) => a valódi érték 95 %-os valószínűséggel 22 és 25 mg/l közé esik.

20 II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (1) 1. Szabványokban leírt bizonytalansági adatok (bizonytalanság, reprodukálhatósági adatok, körvizsgálati eredmények) Ha a labor bizonyítja, hogy alkalmas a szabvány végrehajtására, használhatja ezeket a bizonytalansági értékeket, vagy ezekből az adatokból számolt bizonytalanságokat

21 II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (2) 2.Sok ismétlésből számolt eredmények, a laboratórium saját módszereinek validálásasorán keletkező adatok (ismételhetőség, [reprodukálhatóság]) használhatók a bizonytalansági intervallum megállapításához : Ahol c: a koncentráció c ±k*rsd R * c RSD R : a reprodukálhatóság relatív korrigált szórása k: kiterjesztési tényező

22 II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (3) 3. Körvizsgálati eredmények : A jártassági körvizsgálatok (JV) szervezői vagy számolják, vagy előírásokból veszik a maximálisan megengedhető hibát. A labor jól szerepel a körvizsgálatban, ha lx lab Āl 2*s (3*s). ahol x lab : labor eredménye, Ā: a hozzárendelt érték, s: a JV célszórása Ha egy megengedett eltérést (Δ ) írnak elő, akkor a jó szereplés feltétele lx i Āl Δ. A laboratórium bizonytalanságának értékelése : Sok résztvevő esetén az eredmények átlagának (hozzárendelt érték) standard bizonytalansága : u (x) = ahol n: a résztvevők száma : az illető komponens eredményinek szórása Az átlag (hozzárendelt érték) kiterjesztett bizonytalansága: U (x) =2* u (x) A labor x lab eredményének kiterjesztett bizonytalanságára U lab otadott meg Kiszámoljuk az E n számot, amely fontos teljesítményjellemző : Elvárás a labor felé: E n 1 HA EZ IGAZ, AKKOR A LABORATÓRIUM JÓL BECSÜLI A KITERJESZTETT BIZONYTALANSÁGÁT Ha a labor nem tudja x lab eredményéhez tartozó kiterjesztett bizonytalanságot (U lab ), akkor E n = 1 esetre a labor kiszámolhatja, hogy mekkora az U lab minimális értéke az adott körvizsgálatban. mg/kg 35,0 30,0 25,0 20,0 15,0 10,0 5,0 0, Laborkód / Lab. code = ( )

23 II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (4) 4. Szakértői becslések: A Horwitz-egyenletekből becsülhetjük a mérések szórását (s), standard bizonytalanságát. Ha ezt 2-vel szorozzuk a kiterjesztett bizonytalanságot kapjuk. Ez jellemző az adott koncentrációra (szilárd minták előkészítése, majd mérése). A koncentrációtól függően a std. bizonytalanságra (becsült szórásra) három egyenlet: Ha Ā <120 ppb, akkor s= 0,22(Ā*ta) /ta= 0,22Ā (ebben a tartományban RSD=22,0 R% ) Ha 120 ppb<= Ā <=13,8%, akkor s= 0,02 (Ā*ta) 0,8495 /ta (RSD=22,0.2,7 R%) Ha Ā >13,8%, akkor s= 0,01 (Ā*ta) 0,5 /ta (ha 90 %-ig vizsgálunk, akkorrsd=2,7 1,0 R%) (ta: dimenzió nélküli tömegarány, pl. ha a mértékegység ppmakkor 10-6, ha % akkor10-2 )

24 II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (5) 5. Kontrol kártya adatok: > 20 db mérés estén az ismételhetőség kiterjesztett bizonytalansága az adott koncentrációnál: U= 2*s 53 Klorid (névleges konc. 50 mg/liter) mg/liter

25 II. A meglévő minőségbiztosítási adatok használata a bizonytalanságok becslésére (6) 6. Hiteles anyagminta használatával: a mérés visszavezethetősége és a bizonytalanság becslése is megoldható és az esetleges módszeres hiba is benne van a becslési intervallumban C LAB ±U LAB C CRM ±U CRM C C akkor + Tehát a labor által mért középérték kiterjesztett bizonytalansága legalább U LAB

26 III. A bizonytalanság becslése kombinált Példa: módszerrel Szulfát meghatározás ionkromatográfiásan Kontrol kártyánkon a szulfát mérés relatív bizonytalansága (szórása) u kk =3,8 % (átlag= 5,0 mg/l) A mintában 100,0 mg/l szulfátot mértünk Mivel a kontrol minta koncentrációja távol esik a mérendő koncentrációtól, ezért hígítás szükséges. A hígítás relatív bizonytalansága u hig = 1% u comb = (u kk2 + u hig2 ) = (3, )= 3,9 %, tehát u comb = 3,9 mg/l a 100 mg/l szulfátra U kiterjesztett = k u comb = 2 3,9 mg/l = 7,8 mg/l Tehát a szulfát tartalom: 100,0 ±7,8 mg/l (k=2; 95%)

27 Mikrobiológiai vizsgálatok bizonytalansága (1) (G108---A2LA (American Association for Laboratory Accreditation)) Az értékelésnél a telepszámok (CFU) logaritmusát kell venni, mert ez normális eloszlású 1. Becslés a reprodukálhatósági vizsgálatokból: A reprodukálhatóság relatív standard deviációja: = (lg ) 2 /2 lg a i és lg b i : az az i-edik mérési adatpár telepszám eredményeinek logaritmusa M: lg a i és lg b i eredmények nagy átlaga n: az adatpárok száma c telepszámnál a kiterjesztett mérési bizonytalanság intervalluma: lg c ±k*rsd R *lg c ahol k: a kiterjesztési tényező (k=2) Telepszámra átszámolva: 10 (lg c -k*rsdr*lg c) 10 (lg c +k*rsdr*lg c) CFU amely a c telepszámot tekintve aszimmetrikus.

28 Mikrobiológiai vizsgálatok bizonytalansága (2) Mikrobiológiai vizsgálatok bizonytalanságának meghatározása reprodukálhatósági vizsgálatokból A reprodukálhatóság relatív standard deviációja: = (lg 2 /2 Labor Minta sorszám 1.ismétlés (ai) CFU/g 2.ismétlés (bi) CFU/g lg ai lg bi Különbség (lg ai-lg bi) Különbség 2 (lg ai-lg bi) 2 A ,1173 2,1523-0,0350 0,00123 B ,8388 1,9542-0,1154 0,01332 A ,6532 1,8808-0,2276 0,05180 B ,6021 1,7404-0,1383 0,01913 A ,4914 1,3010 0,1903 0,03623 B ,5185 1,6021-0,0835 0,00698 A ,4914 1,7924-0,3010 0,09062 B ,5682 1,6990-0,1308 0,01710 A ,2695 2,2227 0,0468 0,00219 B ,3385 2,4116-0,0732 0,00535 A ,3010 2,3856-0,0846 0,00715 B ,5911 1,7324-0,1413 0,01997 A ,3365 2,2553 0,0812 0,00659 B ,0755 2,1239-0,0483 0,00233 A ,4472 1,6628-0,2156 0,04648 B ,0253 2,0492-0,0239 0,00057 A ,0294 1,9494 0,0800 0,00640 B ,6532 1,7924-0,1392 0,01937 A ,9912 2,1072-0,1160 0,01345 B ,3802 2,3424 0,0378 0,00143 Nagy átlag (M): 1,9219 Mérések száma (2*n): 40 s 2 =szum(különbség 2 )/2n: 0,00919 gyök(s 2 ) 0,0959 RSD (s/m): 0,0499 2*RSD 0,0998 Kiterjesztett mérési bizonytalanság intervalluma: MU=lg c ± k*rsd R *lg c c= 150 CFU/g k= 2 lg c = 2,1761 k*rsdr*lg c = 0,2171 lg c - k*rsdr*lg c = 1,9590 Amely megfelel 10 (lg c - k*rsdr*lg c ) = lg c + k*rsdr*lg c = 2,3932 Amely megfelel 10 (lg c + k*rsdr*lg c ) = 90,986 CFU/g 247,290 CFU/g Tehát a 150 CFU/g kiterjesztett mérési bizonytalanság intervalluma: CFU/g CFU/g CFU/g Bizonytalansági intervallum Bizonytalansá 300,000 gi intervallum 250, , , ,000 50, ,000 0, ,000 50, Sorozat ok1 Mikrobiológiai mérés 0, Mikrobiológiai mérés

29 Mikrobiológiai vizsgálatok bizonytalansága (3) 2. Becslés a visszanyerési vizsgálatokból (nagyobb koncentráció tartomány): a) % rec=(lg b i / lg a i )*100 ahol: lg b i : visszanyert CFU (mátrixban) lg a i : beoltott CFU (mátrix nélkül) b) Kiszámoljuk a % rec nekastandard deviációját (%recsd) c) c telepszámnál a kiterjesztett mérési bizonytalanság intervalluma: lg c ±k*[(% recsd)/100]*lg c ahol: a [(% recsd)/100] a visszanyerési arány SD-je; k: kiterjesztési tényező d) Tízes hatványra emelve a bizonytalansági intervallum: 10 (lg c -k*[(% recsd)/100]*lg c)...10 (lg c + k*[(% recsd)/100]*lg c)

30 Mikrobiológiai vizsgálatok bizonytalansága (4) Mikrobiológiai vizsgálatok bizonytalanságának meghatározása visszanyerési vizsgálatokból Visszanyerési %= (lg b i / lg a i )*100 Minta sorszám Nagy koncentráció tartományban vizsgáljuk a visszanyerést Beoltott (mátrix nélkül) (ai) CFU/g Visszanyert (mátrixban) (bi) CFU/g lg ai lg bi A lg értékek %-os visszanyerése (lg bi / lg ai)*100 Visszanyerési arány ,4771 4, ,1 0, ,2304 4, ,4 0, ,5563 4, ,9 1, ,1761 1, ,8 0, ,3802 3, ,1 0, ,6335 4, ,2 0, ,0000 1, ,6 0, ,6232 4, ,1 0, ,2788 4, ,3 0, ,0000 2, ,0 1, ,7634 5, ,4 0, ,3979 3, ,1 0, ,0414 2, ,6 0, ,2553 4, ,9 0, ,3010 3, ,3 0, ,2304 3, ,8 1, ,3222 3, ,2 0, ,1761 2, ,9 0, ,3010 3, ,1 0, ,1761 2, ,8 0, Visszanyerési arány lg értékek %-os visszanyerésének átlaga (M): 97,0 % 0,970 A %-os visszanyerés SD (% rec SD): 3,6 % 0,0361 %-os visszanerés kiterjesztett bizonytalanság (k=2) 2*(% rec SD): 7,2 % 0,072 Visszanyerési arány kit. bizonytalansága (k=2) 2*(% rec SD)/100): 0,072 Kiterjesztett mérési bizonytalanság intervalluma: MU=lg c ± k*[(% rec SD)/100]*lg c c= 150 CFU/g k= 2 lg c = 2,1761 k*[(% rec SD)/100] * lg c = 0,1570 lg c - k*[(% rec SD)/100]*lg c= 2,0191 Amely megfelel 10 (lg c - k*[(% rec SD)/100]*lg c) = 104,5 CFU/g lg c + k*[(% rec SD)/100]*lg c= 2,3331 Amely megfelel 10 (lg c + k*[(% rec SD)/100]*lg c) = 215,3 CFU/g Tehát a 150 CFU/g kiterjesztett mérési bizonytalanság intervalluma: CFU/g CFU/g Bizonytalansági intarvallum 250, , , ,000 50,000 0, Mikrobiológiai mérés

31 Összefoglalás (1) A laboratóriumi gyakorlatban - különösen ha az akkreditált - nagyon sok adat létezik, amelyek segítségével különösebb erőfeszítés nélkül becsülhetjük a vizsgálataink bizonytalanságait (kombinált bizonytalanságok): Szabványokban szereplő bizonytalanságok Validálásiadataink (ha vannak házi módszereink, akkor reprodukálhatósági és visszanyerési eredmények születtek) Körvizsgálati adatok Kontrol kártyáink adatai Szakértői becslések (Horwitz) CRM minta mérési eredménye Ha szükség van a bizonytalanságok saját becslésére, akkor fel kell mérnünk a független bizonytalanság forrásokat és meg kell határoznunk azt, hogy statisztikai módszerekkel leírható A- típusú bizonytalanságokkal, vagy statisztikai módszerekkel nem számolható B- típusú bizonytalanságokkal van-e dolgunk. Ezek figyelembevételével ki kell számolnunk az elemi standard bizonytalanságokat.

32 Összefoglalás (2) Az elemi standard bizonytalanságokból a kombinált bizonytalanságot határozzuk meg, amelynek számolása attól függ, hogy a mérés végeredményét hogyan számoljuk (összeadással és kivonással, vagy szorzással és osztással). A kombinált bizonytalanság ismeretében az un. kiterjesztési tényezővel való szorzás után kapjuk az un. kiterjesztett bizonytalanságot.a kiterjesztési tényező értéke leggyakrabban 2, amely azt mutatja, hogy a valódi érték 95 %-os valószínűséggel megtalálható a mérési eredményünk ±kiterjesztett bizonytalanság tartományában A mérési bizonytalanság koncentráció függő Néhány Minőségirányítási Kézikönyvben csak egy ±értéket adnak meg, ami nem helyes, mert koncentráció tartományokra kellene szerepeltetni a kiterjesztett bizonytalanság értékeket.

33 Fontos a józan ész! Gyakran több módszer alkalmazásával célszerű a becsléstvégezni és ha nincs nagy eltérés az eredmények között, akkor feltehetően jól határoztuk meg a mérésünk bizonytalanságát

34 Köszönöm a megtisztelő figyelmet! Kérdések?????

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése Szegény Zsigmond WESSLING Közhasznú Nonprofit Kft., Jártassági Vizsgálati Osztály szegeny.zsigmond@qualcoduna.hu 2014.01.21. 2013.

Részletesebben

Kontrol kártyák használata a laboratóriumi gyakorlatban

Kontrol kártyák használata a laboratóriumi gyakorlatban Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011. Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő

Részletesebben

Laboratóriumi jártassági vizsgálatok jelentősége, szervezése. Készítette:Szegény Zsigmond Jártassági Vizsgálati Osztály, osztályvezető 2013.10.01.

Laboratóriumi jártassági vizsgálatok jelentősége, szervezése. Készítette:Szegény Zsigmond Jártassági Vizsgálati Osztály, osztályvezető 2013.10.01. Laboratóriumi jártassági vizsgálatok jelentősége, szervezése Készítette:Szegény Zsigmond Jártassági Vizsgálati Osztály, osztályvezető 2013.10.01. A körvizsgálatok típusai Módszertani körvizsgálat (egy-egy

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

MAGYAR ÉLELMISZERKÖNYV (Codex Alimentarius Hungaricus) Hivatalos Élelmiszervizsgálati Módszergyűjtemény /16 számú előírás (1.

MAGYAR ÉLELMISZERKÖNYV (Codex Alimentarius Hungaricus) Hivatalos Élelmiszervizsgálati Módszergyűjtemény /16 számú előírás (1. MAGYAR ÉLELMISZERKÖNYV (Codex Alimentarius Hungaricus) Hivatalos Élelmiszervizsgálati Módszergyűjtemény 3-1-2004/16 számú előírás (1. kiadás) Mintavételi és vizsgálati módszerek a konzervekben lévő ón

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész 2011.

Gyártástechnológia alapjai Méréstechnika rész 2011. Gyártástechnológia alapjai Méréstechnika rész 2011. 1 Kalibrálás 2 Kalibrálás A visszavezethetőség alapvető eszköze. Azoknak a műveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

MAGYAR ÉLELMISZERKÖNYV. Codex Alimentarius Hungaricus /78 számú előírás

MAGYAR ÉLELMISZERKÖNYV. Codex Alimentarius Hungaricus /78 számú előírás MAGYAR ÉLELMISZERKÖNYV Codex Alimentarius Hungaricus 3-1-2003/78 számú előírás Mintavételi és vizsgálati módszerek az élelmiszerekben lévő patulin mennyiségének hatósági ellenőrzésére Sampling methods

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Laboratóriumok Vizsgálatainak Jártassági Rendszere MSZ EN ISO/IEC 17043:2010 szerint

Laboratóriumok Vizsgálatainak Jártassági Rendszere MSZ EN ISO/IEC 17043:2010 szerint ÚTLAB Közgyűlés Budapest 2012. május 14. Laboratóriumok Vizsgálatainak Jártassági Rendszere MSZ EN ISO/IEC 17043:2010 szerint BORS Tibor főmunkatárs Jártassági Vizsgálatokat Szervező Iroda Irodavezető

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Autovalidálási folyamatok Lókiné Farkas Katalin Az autovalidálás elméleti alapjai Az előző eredménnyel való összehasonlítás

Részletesebben

Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság

Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Mőszaki-technológiai Laboratórium 95 Budapest, Mester u. 8. ; 44 Budapest, Remény u. 4. (+6)--8-9, (+6)--468-757; (+6)--467-46

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

1/8. Iskolai jelentés. 10.évfolyam matematika

1/8. Iskolai jelentés. 10.évfolyam matematika 1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,

Részletesebben

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Környezetvédelmi mérések követelményei A mérések megbízhatóságát megbízhatóan igazolni kell. Az elvégzett méréseknek máshol is elvégezhetőnek

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Kábítószer szubsztanciavizsgálatok. EWS december 14.

Kábítószer szubsztanciavizsgálatok. EWS december 14. Kábítószer szubsztanciavizsgálatok Magyarországon EWS 2006. december 14. Illetékesség 2/1988. (V.19.) IM rendelet és a 2/2005. (I.17.) ORFK Utasítás Testnedvek (vér, vizelet) vizsgálata Országos Igazságügyi

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Minőségi indikátorok az analitikai szakaszban Dr. Kocsis Ibolya Semmelweis Egyetem Laboratóriumi Medicina Intézet Központi Laboratórium

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Körvizsgálatok

Körvizsgálatok 2012 Körvizsgálatok - 2012 1) Március 6. Enterococcus faecalis Pseudomonas aeruginosa 2) Május 15. Telepszám (37 C) Escherichia coli 3) Szeptember 10. Enterococcus faecalis Telepszám (22/37 C) 4) November

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Munka azonosító jele: (C1276/2016) Tranzit Food Baromfifeldolgozó és Élelmiszeripari Kft Nyírgelse, Debreceni út 1.

Munka azonosító jele: (C1276/2016) Tranzit Food Baromfifeldolgozó és Élelmiszeripari Kft Nyírgelse, Debreceni út 1. SZAKÉRTŐI VÉLEMÉNY élelmiszer minőségének ellenőrzéséről Munka azonosító jele: (C1276/2016) Termékek neve Sült libamell Megrendelő A vizsgálat célja Tranzit Food Baromfifeldolgozó és Élelmiszeripari Kft.

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

2011. ÓE BGK Galla Jánosné,

2011. ÓE BGK Galla Jánosné, 2011. 1 A mérési folyamatok irányítása Mérésirányítási rendszer (a mérés szabályozási rendszere) A mérési folyamat megvalósítása, metrológiai megerősítés (konfirmálás) Igazolás (verifikálás) 2 A mérési

Részletesebben

Mérések hibája pontosság, reprodukálhatóság és torzítás

Mérések hibája pontosság, reprodukálhatóság és torzítás Mérések hibája pontosság, reprodukálhatóság és torzítás A kémiai mérések és számítások során számos adat felhasználásával jutunk a végeredményhez. Gyakori eset, hogy egyszerű mérési eredményekből a köztük

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Természetes és medencés fürdővíz mikrobiológiai körvizsgálatok értékelése. Schuler Eszter, dr. Vargha Márta

Természetes és medencés fürdővíz mikrobiológiai körvizsgálatok értékelése. Schuler Eszter, dr. Vargha Márta Természetes és medencés fürdővíz mikrobiológiai körvizsgálatok értékelése Schuler Eszter, dr. Vargha Márta 2012 Természetes fürdővíz körvizsgálatok - 2012 11.tfKv 2012. május 15. Escherichia coli Enterococcus

Részletesebben

Vizsgálati jegyzőkönyvek általános felépítése

Vizsgálati jegyzőkönyvek általános felépítése Vizsgálati jegyzőkönyvek általános felépítése 1. Intézményi és személyi adatok 1. Megbízó intézmény neve és címe 2. Megbízó képviselőjének neve és beosztása 3. A vizsgáló intézmény illetve laboratórium

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:

Részletesebben

3. Az országos mérés-értékelés eredményei, évenként feltüntetve

3. Az országos mérés-értékelés eredményei, évenként feltüntetve 3. Az országos mérés-értékelés eredményei, évenként feltüntetve 4. évfolyam-okév 2005/2006. tanév: Ebben a tanévben első alkalommal mértek a 4. évfolyamon különböző készségeket és ezek gyakorlottságát.

Részletesebben

Adszorbeálható szerves halogén vegyületek kimutatása környezeti mintákból

Adszorbeálható szerves halogén vegyületek kimutatása környezeti mintákból Eötvös Loránd Tudományegyetem Természettudományi Kar Adszorbeálható szerves halogén vegyületek kimutatása környezeti mintákból Turcsán Edit környezettudományi szak Témavezető: Dr. Barkács Katalin adjunktus

Részletesebben

WESSLING Közhasznú Nonprofit Kft. QualcoDuna jártassági vizsgálatok Általános feltételek 2017.

WESSLING Közhasznú Nonprofit Kft. QualcoDuna jártassági vizsgálatok Általános feltételek 2017. QualcoDuna jártassági vizsgálatok Általános feltételek 2017. 1. kiadás, 1. változat Kiadás dátuma: 2016.12.19. Készítette: Szegény Zsigmond és dr. Bélavári Csilla, Átvizsgálta: Rikker Tamás Tudományos

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.

Részletesebben

etalon etalon (folytatás) Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói

etalon etalon (folytatás) Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói Etalonok, kalibrálás, rekalibrálás, visszavezethetőség, referencia eljárások Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói etalon Mérték, mérőeszköz, anyagminta vagy

Részletesebben

Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság

Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Mezıgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Mőszaki-technológiai Laboratórium 095 Budapest, Mester u. 8. ; 44 Budapest, Remény u. 42. (+6)--8-90, (+6)--468-757;

Részletesebben

A mérési bizonytalanság

A mérési bizonytalanság NEMZETI AKKREDITÁLÓ TESTÜLET Nemzeti Akkreditálási Rendszer A mérési bizonytalanság meghatározása kalibrálásnál NAR-EA-4/0 1. kiadás 003. január EA Európai Akkreditálási Együttmûködés EA-4-0 Referencia

Részletesebben

STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69)

STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) 1. AZ ISO SZABVÁNYOK TÉRKÉPE 2. A SZABVÁNYOK BEMUTATÁSA 3. HASZNÁLATI TANÁCSOK 4. A STATISZTIKAI SZABVÁNYOK ÉS AZ ISO 9001 5. JAVASLATOK

Részletesebben

Minőségirányítási rendszerek 9. előadás

Minőségirányítási rendszerek 9. előadás Minőségirányítási rendszerek 9. előadás 013.05.03. MÉRŐESZKÖZÖK MÉRÉSTECHNIKAI TULAJDONSÁGAI Mérőeszköz rendszeres hibája (Systematic Error of Measurement) alatt ugyanannak az értéknek megismételhetőségi

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2010 Iskolai jelentés 10. évfolyam szövegértés Szövegértési-szövegalkotási kompetenciaterület A fejlesztés célja Kommunikáció-központúság Tevékenység centrikusság Rendszeresség Differenciáltság Partnerség

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Hanthy László Tel.: 06 20 9420052

Hanthy László Tel.: 06 20 9420052 Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM SZERVETLEN ÉS ANALITIKAI KÉMIA TANSZÉK. Kmecz Ildikó, Kőmíves József, Devecser Eszter, Sándor Tamás

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM SZERVETLEN ÉS ANALITIKAI KÉMIA TANSZÉK. Kmecz Ildikó, Kőmíves József, Devecser Eszter, Sándor Tamás BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM SZERVETLEN ÉS ANALITIKAI KÉMIA TANSZÉK LEVEGŐSZENNYEZÉS VIZSGÁLÓLABORATÓRIUM a NAT által NAT-1-0972/2008 számon akkreditált vizsgálólaboratórium TELEPÍTETT

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban 6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Egyszempontos variancia analízis. Statisztika I., 5. alkalom

Egyszempontos variancia analízis. Statisztika I., 5. alkalom Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

WESSLING Közhasznú Nonprofit Kft. QualcoDuna jártassági vizsgálatok Általános feltételek 2016.

WESSLING Közhasznú Nonprofit Kft. QualcoDuna jártassági vizsgálatok Általános feltételek 2016. QualcoDuna jártassági vizsgálatok Általános feltételek 2016. 1. kiadás, 1. változat Kiadás dátuma: 2015.12.11. Készítette: Szegény Zsigmond és dr. Bélavári Csilla, Átvizsgálta: Rikker Tamás Tudományos

Részletesebben

NEMZETI TESTÜLET. Nemzeti Akkreditálási Rendszer. A környezeti minták vételével foglalkozó szervezetek NAR-19-IV. 1. kiadás. 2001.

NEMZETI TESTÜLET. Nemzeti Akkreditálási Rendszer. A környezeti minták vételével foglalkozó szervezetek NAR-19-IV. 1. kiadás. 2001. NEMZETI AKKREDITÁLÓ TESTÜLET Nemzeti Akkreditálási Rendszer A környezeti minták vételével foglalkozó szervezetek akkreditálása NAR-19-IV 1. kiadás 2001. március 1. Bevezetés A környezeti minták vételével

Részletesebben

Az értékelés a Móricz Zsigmond Gimnázium 3 gimnáziumi osztályának eredményei alapján készült, 102 tanuló adatai kerültek feldolgozásra.

Az értékelés a Móricz Zsigmond Gimnázium 3 gimnáziumi osztályának eredményei alapján készült, 102 tanuló adatai kerültek feldolgozásra. I. A Gimnáziumi ágazat Az értékelés a Móricz Zsigmond Gimnázium 3 gimnáziumi osztályának eredményei alapján készült, 102 tanuló adatai kerültek feldolgozásra. matematika Az eredmények szerint a 4 évfolyamos

Részletesebben

Záróvizsga szakdolgozat. Mérési bizonytalanság meghatározásának módszertana metallográfiai vizsgálatoknál. Kivonat

Záróvizsga szakdolgozat. Mérési bizonytalanság meghatározásának módszertana metallográfiai vizsgálatoknál. Kivonat Záróvizsga szakdolgozat Mérési bizonytalanság meghatározásának módszertana metallográfiai vizsgálatoknál Kivonat Csali-Kovács Krisztina Minőségirányítási szakirány 2006 1 1. Bevezetés 1.1. A dolgozat célja

Részletesebben