MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI"

Átírás

1 MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a statisztikus hibát. A determinisztikus hiba nagysága és előjele elvileg meghatározható (ezért ezt a hibafajtát sok esetben korrigálhatjuk). Egészen más a helyzet a statisztikus hiba esetén, amikor a hiba véletlenszerű, tehát nagyságát, de még előjelét sem tudjuk megjósolni. A következőkben a statisztikus hiba kezelésével foglalkozunk. A mérési eredmény a mérési adatok és a hiba nagyságának ismeretében adható meg, a hiba ismerete nélkül a mérési adat önmagában elégtelen információt ad. Statisztikus hiba esetén a mérés hibájához csak valószínűségi értelmezést adhatunk, tehát azt mondjuk, hogy az valódi érték amit az <> várhatóértékkel azonosítunk adott valószínűséggel esik az ún. megbízhatósági (konfidencia) intervallumba: amelynek szokásos rövidebb írásmódja: < < +, () = ±. () Itt a mért adat, pedig a statisztikus hiba. Gyakran használjuk a dimenzió nélküli relatív hibát is, mely a következő formulával adható meg:. (3) A relatív hibát százalékban is megadhatjuk, melynek számértéke a fenti mennyiség százszorosa. Laboratóriumi gyakorlatokon sokszor előfordul, hogy egy olyan fizikai mennyiséget mérünk, melynek értékét irodalmi értékkel vetjük össze. Ebben az esetben az irodalmi értéktől való relatív eltérést használhatjuk mérésünk hibájának jellemzésére: 0 0, (4) ahol 0 az irodalmi érték. Fontos megjegyeznünk, hogy ez a hiba nem csak a statisztikus, hanem a determinisztikus hibát is tartalmazza! 5

2 A következőkben megmutatjuk, hogyan adhatjuk meg a mérési eredményt a legfontosabb esetekben. A véletlen ingadozások mértékét a szórással jellemezzük és így a mérési eredmény statisztikus hibájának megadásához is a szórást használjuk fel. A mérési eredmények megadásakor két alapvető esetet különböztetünk meg... A σ szórás értéke ismert Ez az eset gyakran előfordul, amikor a mérőműszer okozza a statisztikus hibát, és a műszer gyártója a szórást az adatlapban megadja. Ilyen esettel találkozhatunk, ha pl. tolómérőt vagy mikrométert használunk. A mérési eredmény megadása ekkor a következő alakú: = ± λσ. (5) Itt a mért adat, λ pedig az előírt valószínűségtől függő szám. Ha tudjuk, hogy a statisztikus ingadozás normális eloszlású, akkor λ értékét a következő összefüggés adja meg: λ = F p +, (6) ahol F a [0,] paraméterű normális eloszlás eloszlásfüggvényének inverze, p pedig annak a valószínűsége, hogy a szélességű konfidencia intervallumban található a valódi érték. Mivel λ zárt formulával nem adható meg, értékét általában táblázat segítségével kaphatjuk meg (l. I. táblázat). Megjegyezzük, hogy p helyett szokás az α = p szignifikancia szintet is használni. Tudjuk, hogy <> várhatóértéket jobban közelíti a több mért adatból kiszámított középérték, amely a következő formulával adható meg: = i= i. (7) Természetesen az mért adatból számított középérték is egy véletlenszerűen ingadozó mennyiség, melynek várható értéke szintén <>, szórása viszont az eredeti szórás -ed része. Ebből következően a mérési eredmény megadása több mért adat esetén a következő alakú: = ± λσ. (8) Látható tehát, hogy azonos szignifikanciaszint mellett több mérési adat középértékének kiszámításával csökkenthető a mérés = λσ statisztikai hibája. 6

3 . A szórás értéke ismeretlen Ha a szórás értékét nem ismerjük, akkor az eddigiek szerint nem is adhatnánk meg a mérési eredményt, mivel nem tudjuk megadni a statisztikus hibát. Ebben az esetben a szórás szerepét a korrigált empirikus szórás veszi át, melyet az i mért adatokból számítunk ki a következő formulával: ( ), (9) σ = i = i i i= i= i= λ helyett most a t-eloszlásra utaló t jelölést használva a mérési eredmény megadása a következő alakú: t = ± σ, (0) t szokásos értékeit a II. táblázatban foglaltuk össze. Vegyük észre, hogy a korrigált empirikus szórás definíciójából következően nem adhatjuk meg a mérési eredményt egyetlen mért adat esetén, mert nullával kellene osztanunk. Ez a tény is jól mutatja, hogyha a szórás ismeretlen, egyetlen mért adattal nem adható meg a mérés eredménye. A következőkben összefoglaljuk a mérési eredmény megadását az előzőekben tárgyalt esetekre. Ha a szórás ismert, és egy mért adatunk van: Ha a szórás ismert, és mérési adatunk van: Ha a szórás ismeretlen és mért adatunk van: = ± λσ. () = ± λσ. () t = ± σ. (3) (Fontos: a kiszámolt hibát két vagy három értékes jegyre kell kerekíteni, és a középértéket is ugyanannyi tizedesjegy pontossággal kell feltüntetni!) Az I. és II. táblázatok segítséget adnak λ és t értékeinek meghatározásához normális eloszlású, véletlenszerű hiba esetére. Megjegyezzük, hogy laboratóriumi gyakorlatainkon leggyakrabban a 0,95 valószínűségi értéket használjuk. 7

4 p α 0,9 0, 0,95 0,05 0,99 0,0 0,995 0,005 0,999 0,00 λ,645,96039,5764, ,9076 I. táblázat: λ értékei a p valószínűség, illetve α = p szignifikanciaszint függvényében normális eloszlás esetére ν p =0,9 α =0, p = 0,95 α = 0,05 p = 0,99 α = 0,0 p = 0,995 α = 0,005 p = 0,999 α = 0,00 6,3370, ,6567 7, ,690 3,9996 4,3064 9,9477 4, , , ,844 5, ,4536, ,383, , , , ,050,5705 4,03 4,7739 6, ,943, ,7074 4,3679 5, ,89453, , ,097 5, ,8595, , ,8350 5, ,83307,65 3,4979 3, , ,793,0930, ,737 3, ,6990,0458, , , ,68487,068,70784, , ,67653,00957,67990, , ,66036,9846,6640,8730 3, ,65507,97597,6099, , ,6554,9795,60070, ,3400 II. táblázat: t értékei a p valószínűség, illetve α = p szignifikanciaszint és az mérési adatok száma, illetve ν = szabadsági fok függvényében t-eloszlás esetére 8

5 Az alábbiakban néhány kidolgozott feladaton keresztül mutatjuk meg a fenti összefüggések alkalmazását.. Tömegmérés adata: m =, kg A szórás ismert, értéke: σ = 0,07 kg Adjuk meg az α = 0,0 szignifikanciaszinthez tartozó mérési eredményt! p = α = 0, 99 λ =, 5764, m = λ σ =, , 07 kg = 0, kg ~ 0, 044 kg, m = 0, kg ± 0044, kg. (4). Az előző feladatban megadott feltételek mellett hány mérési adatot kell gyűjtenünk ahhoz, hogy a mérés hibája 0,0 kg alá csökkenjen? λσ m < < > 0, , kg 00, kg 00, 0. (5), 3. Egy mérést többször elvégezve kaptuk: R = 7,0 Ω, R = 7,9 Ω, R 3 = 7,9 Ω, R 4 = 7, Ω, R 5 = 7,3 Ω. Adjuk meg az α = 0,05 szignifikanciaszinthez tartozó mérési eredményt! Középérték: 7,06 Ω. Korrigált empirikus szórás: 0,0866 Ω. α = 0,05, = 5 (ν = 4) t =, Hiba: t σ ~ 0, 0556 Ω. R = 706, Ω ± 003, Ω. (6) 9

6 . A mérési eredmény megadása közvetett mérés esetén A mérési hiba terjedése Ha ismert egy fizikai mennyiség más fizikai mennyiségektől való q = q(,y,...) függése, akkor,y,... mérésével q mérési eredménye is megadható. Ha az,y,... mennyiségeket kicsi hibával mértük, akkor jó közelítéssel igaz, hogy ahol a felülvonás a középértéket jelöli, és q = q(, y,...), (7) q q q = + y (8) y y,,... y,,... Ez a képlet alkalmas arra, hogy az, y,... fizikai mennyiségek középértékének és hibáinak ismeretében meghatározzuk a származtatott q mennyiség középértékét és hibáját. Egyváltozós függvény esetén a származtatott mennyiség hibáját megadó formula a következőképpen egyszerűsödik: q q = d d. (9) Példa: m = 3, kg ± 0,05 kg, v = 7,3 m/s ± 0, m/s. E = mv, E =? E = mv = 3, 7, 3 J 85, 7649 J. (0) E v E = = m v m, v. () v E = m + mv v = 0

7 4 73, = 005, + ( 373,, ) 0, J, J. 4 Az E kinetikus energia mérési eredménye tehát: E = 85, 76 J ±, 9J. (3) Ajánlott irodalom:. Kemény S. - Deák A.: Mérések tervezése és eredmények értékelése, Műszaki Könyvkiadó, Budapest, 993.

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában

A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában Készítette: Szegény Zsigmond Mezőgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Műszaki-technológiai

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN

NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN KALIBRÁCIÓ A kalibráció folyamata során a műszer válaszjele és a mérendő koncentrációja közötti összefüggést határozzuk meg. A kísérletileg meghatározott

Részletesebben

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója 1.) Általános tudnivalók: A segédtábla két méretben készül, 10, és 50 sort lehet kitölteni. A tábla megnevezéséből amit

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Kontrol kártyák használata a laboratóriumi gyakorlatban

Kontrol kártyák használata a laboratóriumi gyakorlatban Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

STATISZTIKA PÉLDATÁR

STATISZTIKA PÉLDATÁR STATISZTIKA PÉLDATÁR www.matektanitas.hu www.matektanitas.hu info@matektanitas.hu 1 Minden feladat csak szöveges válasszal együtt ad teljes értékű megoldást! Becslés 1. feladat Az alábbi táblázat megadja

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 2. előadás Előadó: Dr. Ertsey Imre Statisztikai sorok Meghatározott szempontok szerint kiválasztott két vagy több logikailag összetartozó statisztikai adat, statisztikai sort képez. általában

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA

MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA Czenky Márta MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA ABSZTRAKT Saját oktatói gyakorlatunkban a Moodle rendszer használata az évek során kiszorította az elméleti ismeretek számonkérésében a papír

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0622 ÉRETTSÉGI VIZSGA 2007. november 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál Nagy Zoltán, Tóth Zoltán, Morvai Krisztián, Szintai Balázs Országos Meteorológiai Szolgálat A globálsugárzás

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Mérések hibája pontosság, reprodukálhatóság és torzítás

Mérések hibája pontosság, reprodukálhatóság és torzítás Mérések hibája pontosság, reprodukálhatóság és torzítás A kémiai mérések és számítások során számos adat felhasználásával jutunk a végeredményhez. Gyakori eset, hogy egyszerű mérési eredményekből a köztük

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Autovalidálási folyamatok Lókiné Farkas Katalin Az autovalidálás elméleti alapjai Az előző eredménnyel való összehasonlítás

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt szint 0804 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Statisztikai táblázatok, kimutatások (Pivot) készítése

Statisztikai táblázatok, kimutatások (Pivot) készítése Statisztikai táblázatok, kimutatások (Pivot) készítése Elméleti összefoglaló Az adatok egy, vagy több szempontú rendezése céljából célszerű azokat táblázatokba foglalni. Tehát az elemi adatokat alapján

Részletesebben

Teljesítményprognosztizáló program FELHASZNÁLÓI KÉZIKÖNYV

Teljesítményprognosztizáló program FELHASZNÁLÓI KÉZIKÖNYV Teljesítményprognosztizáló FELHASZNÁLÓI KÉZIKÖNYV Tartalomjegyzék 1. A szoftver feladata...3 2. Rendszerigény...3 3. A szoftver telepítése...3 4. A szoftver használata...3 4.1. Beállítások...3 4.1.1. Elszámolási

Részletesebben

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez Bevezetés Ebben a fejezetben megismerkedünk a Logikai függvények típusaival és elsajátítjuk alkalmazásukat. Jártasságot szerzünk bonyolultabb feladatok megoldásában, valamint képesek leszünk a függvények

Részletesebben

Méretlánc átrendezés elmélete

Méretlánc átrendezés elmélete 1. Méretlánc átrendezés elmélete Méretlánc átrendezés elmélete Egyes esetekben szükség lehet, hogy arra, hogy a méretláncot átrendezzük. Ezeknek legtöbbször az az oka, hogy a rajzon feltüntetett méretet

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Microsoft Excel 2010

Microsoft Excel 2010 Microsoft Excel 2010 Milyen feladatok végrehajtására használatosak a táblázatkezelők? Táblázatok létrehozására, és azok formai kialakítására A táblázat adatainak kiértékelésére Diagramok készítésére Adatbázisok,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

1 Energetikai számítások bemutatása, anyag- és energiamérlegek

1 Energetikai számítások bemutatása, anyag- és energiamérlegek 1 Energetikai számítások bemutatása, anyag- és energiamérlegek Előzőleg a következőkkel foglalkozunk: Fizikai paraméterek o a bemutatott rendszer és modell alapján számítást készítünk az éves energiatermelésre

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

Szoftverminőségbiztosítás

Szoftverminőségbiztosítás NGB_IN003_1 SZE 2014-15/2 (11) Szoftverminőségbiztosítás Tesztautomatizálás A tesztelés kivitelezése Tesztelési feladatok Detektálatlan maradék hibák számának csökkentése hatásosan és hatékonyan megfelelő

Részletesebben

KITÖLTÉSI ÚTMUTATÓ az állandó jelleggel végzett iparűzési tevékenység esetén fizetendő 2011. évi HELYI IPARŰZÉSI ADÓ BEVALLÁSÁHOZ

KITÖLTÉSI ÚTMUTATÓ az állandó jelleggel végzett iparűzési tevékenység esetén fizetendő 2011. évi HELYI IPARŰZÉSI ADÓ BEVALLÁSÁHOZ 1 KITÖLTÉSI ÚTMUTATÓ az állandó jelleggel végzett iparűzési tevékenység esetén fizetendő 2011. évi HELYI IPARŰZÉSI ADÓ BEVALLÁSÁHOZ Adókötelezettség, az adó alanya Adóbevallási és adófizetési kötelezettség

Részletesebben

1.1.1 Dátum és idő függvények

1.1.1 Dátum és idő függvények 1.1.1 Dátum és idő függvények Azt már tudjuk, hogy két dátum különbsége az eltelt napok számát adja meg, köszönhetően a dátum tárolási módjának az Excel-ben. Azt is tudjuk a korábbiakból, hogy a MA() függvény

Részletesebben

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések) Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

2002. ELSÕ ÉVFOLYAM 4. SZÁM 79

2002. ELSÕ ÉVFOLYAM 4. SZÁM 79 2002. ELSÕ ÉVFOLYAM 4. SZÁM 79 80 HITELINTÉZETI SZEMLE SOCZÓ CSABA A KOCKÁZTATOTT ÉRTÉKNÉL NAGYOBB VESZTESÉGEK VIZSGÁLATA A tíz gazdaságilag legfejlettebb ország (G-10) 1998-ban [3], míg Magyarország 2000-ben

Részletesebben

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8.

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8. A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi hiba számítása

Részletesebben

Az első lépések SPSS-ben.

Az első lépések SPSS-ben. Az első lépések SPSS-ben. Statistical Package for Social Science (SPSS) egy olyan Windows operációs rendszerben működő program, amely statisztikai adatok osztályozására, feldolgozására és elemzésére szakosodott.

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Készletgazdálkodás. TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor

Készletgazdálkodás. TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor Készletgazdálkodás TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor KÉSZLET A készlet az üzletben lévı áruk értékének összessége. A vállalkozás

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

DTH - KITÖLTÉSI ÚTMUTATÓ (NHH adatlapok) Műholdas televízió műsorterjesztés előfizetői szolgáltatás ( DTH )

DTH - KITÖLTÉSI ÚTMUTATÓ (NHH adatlapok) Műholdas televízió műsorterjesztés előfizetői szolgáltatás ( DTH ) DTH - KITÖLTÉSI ÚTMUTATÓ (NHH adatlapok) Műholdas televízió műsorterjesztés előfizetői szolgáltatás ( DTH ) A kérdőív minden lapján fel kell tüntetni a hatóság által adott szolgáltató-kódot, azaz az adatkérési

Részletesebben

EuroOffice Modeller felhasználói útmutató

EuroOffice Modeller felhasználói útmutató EuroOffice Modeller felhasználói útmutató 1 Bevezetés...5 EuroOffice Modeller: ANOVA felhasználói útmutató...5 Előkészítés...5 Egyutas ANOVA...5 Kétutas ANOVA...8 EuroOffice Modeller: Egymintás Z-próba

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

Gazdasági matematika 2. tantárgyi kalauz

Gazdasági matematika 2. tantárgyi kalauz Hanich József Gazdasági matematika 2. tantárgyi kalauz Szolnoki Főiskola Szolnok 2005. Gazdasági matematika 2. tantárgyi kalauz A kalauz a következő 3 kiadványhoz készült: Dr. Csernyák László: Matematika

Részletesebben

PRECÍZ Információs füzetek

PRECÍZ Információs füzetek PRECÍZ Információs füzetek Információk, Módszerek, Ötletek és Megoldások a Precíz Integrált Ügyviteli Információs rendszerhez 3. EXCEL adatkapcsolat (mod. 2009.07.) Ügyviteli nyilvántartások és EXCEL formátumú

Részletesebben

A százalékarányok pontossága

A százalékarányok pontossága 21. fejezet A százalékarányok pontossága Az ilyesfajta problémák megoldásánál az a fő dolog, hogy képesek legyünk visszafelé okoskodni. Igen hasznos képesség ez, és nagyon is könnyű, csak az emberek nemigen

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban

Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban Az alábbiakban részletezzük, hogy a Modulo Átlag módosítási kérvényén belül található adatok pontosan mit jelentenek.

Részletesebben

A Gázár és távhő-támogatás megváltozása

A Gázár és távhő-támogatás megváltozása A Gázár és távhő-támogatás megváltozása Ki lesz jogosult januártól a gázár-, illetve a távhő támogatásra? Azok a gáz- illetve távhő-fogyasztók, akik gázt, illetve távhőt háztartási célra (pl. sütésre,

Részletesebben

Hanthy László Tel.: 06 20 9420052

Hanthy László Tel.: 06 20 9420052 Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott jáva programok automatikus tesztelése Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott alkalmazások Automatikus tesztelés Tesztelés heurisztikus zaj keltés Tesztelés genetikus

Részletesebben

Online kötelező felelősségbiztosítás munkafolyamat 1 / 10

Online kötelező felelősségbiztosítás munkafolyamat 1 / 10 ONLINE KÖTELEZŐ FELELŐSSÉGBIZTOSÍTÁS A belépést követően a kötelező felelősségbiztosítási kötőfelület kerül megnyitásra. A legfontosabb mezők és felületek, amikkel a munkafolyamat során találkozni fogunk:

Részletesebben

VRV Xpressz Használati Útmutató

VRV Xpressz Használati Útmutató VRV Xpressz Használati Útmutató A programmal néhány perc alatt nem csak 5-6 beltéri egységes munkákat, hanem komplett, 3-400 beltéri egységgel rendelkez irodaházakat, szállodákat is meg lehet tervezni.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 1. A gyakorlat célja: Az inkrementális adók működésének megismerése. Számítások és szoftverfejlesztés az inkrementális adók katalógusadatainak feldolgozására

Részletesebben

A Hardy-Weinberg egyensúly. 2. gyakorlat

A Hardy-Weinberg egyensúly. 2. gyakorlat A Hardy-Weinberg egyensúly 2. gyakorlat A Hardy-Weinberg egyensúly feltételei: nincs szelekció nincs migráció nagy populációméret (nincs sodródás) nincs mutáció pánmixis van allélgyakoriság azonos hímekben

Részletesebben

Az MS Excel táblázatkezelés modul részletes tematika listája

Az MS Excel táblázatkezelés modul részletes tematika listája Az MS Excel táblázatkezelés modul részletes tematika listája A táblázatkezelés alapjai A táblázat szerkesztése A táblázat formázása A táblázat formázása Számítások a táblázatban Oldalbeállítás és nyomtatás

Részletesebben