Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv"

Átírás

1 Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009

2 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása. gyakorlat Mérés tolómércével. gyakorlat Mérés mikrométerrel. gyakorlat A) Mérés mérőórával B) Furatmérés 5. gyakorlat A) Mérés digitális tolómércével B) Mérés digitális mérőórával 6. gyakorlat A) Szögmérés B) Mérés digitális mikrométerekkel 7. gyakorlat Optikai elven működő hosszmérő eszközök 8. gyakorlat D mérés Táblázatok

3 . Mérőhasábok, mérési eredmény megadása Módszer: különbség mérés Elv: optomechanikus Mérés módja: érintkezéses Mérőeszköz: optiméter ( µm). feladat A mérési folyamat leírása A munkadarab L méretének megállapítása közelítő méréssel, kengyeles mikrométerrel. A közelítő méret ismeretében mérőhasáb-kombináció összeállítása. A mérőeszköz nullára állítása a mérőhasáb-kombináció segítségével. Az összeállított mérőhasáb-kombináció mérése 0-szer. A mért értékek a következők: 0; ; 0; -; ; ; ; 0; -; 0 µm. A munkadarab L méretének mérése 0-szer. A mért értékek a következők: ; ; -; ; -; 0; ; ; ; µm. A mérési eredmény megadása. A munkadarab közelítő mérete kengyeles mikrométerrel mérve: L = 56,6 mm. A szükséges mérőhasáb-kombináció mérete: =.mm. A mérőhasáb-kombináció tagjai: =..mm, =..mm, =..mm, =..mm, 5 =..mm. Írja be az alábbi táblázatba a mért értékek, eltérések a beállított 0-tól [µm] Mérések száma (k) Átlag Mérőhasáb eltérés a 0 helyzettől Munkadarab eltérés a 0 helyzettől. feladat A mért értékek statisztikai feldolgozása A mérőhasáb-kombináció mért értékeinek szórásnégyzete s 0 = k i= ( x x ) = i A munkadarab mért értékeinek tapasztalati szórásnégyzete s L 0 = k i= ( x x ) = Li L x x L = =

4 . Mérőhasábok, mérési eredmény megadása. feladat Az egyes bizonytalanságok jellegük szerint rendszeres és véletlen hibák, melyek részbizonytalanságokat tartalmaznak. L U = ± U + U + U mh ahol U L a munkadarab mérésének bizonytalansága, U a mérőhasáb-kombináció mérésének bizonytalansága, U mh a mérőhasáb-kombináció méretének bizonytalansága. U K + δ és U K + δ L ahol = L valamint Tehát mh = δ - a mérőműszer (optiméter) legnagyobb bizonytalansága a műszerhez tartozó használati leírás alapján a teljes mérési tartományban, δ = ± 0, µm; K L és K a munkadarab, illetve a mérőhasáb mérés megbízhatósági (konfidencia) intervalluma: sl s K L = t = K = t = k k ahol t a Student eloszlás paramétere, (k-)=9 szabadsági fokszám esetén értéke,6; 95%-os valószínűségi szinten. U = U = L U = H + U T ahol H = H + H + H + H + H 5 ahol: H = E + f =.. H = E + f =.. H = E + f =.. H = E + f =.. H 5 = E 5 + f 5 =.. Jelölések: H a mérőhasáb-kombináció bizonytalansága (hibakorlátja), melyet a gyárilag megadott két bizonytalanság (E és F ) alapján számítunk E a mérőhasáb megengedett eltérése a középmérettől, (ld. Táblázatok) F a mérőhasáb megengedett eltérése a párhuzamosságtól (ld. Táblázatok) Tehát valamint Tehát U = mh U = ± U L H + U = U T a hőmérséklet eltérésből adódó hiba, ha a munkadarab és a mérőhasáb hőtágulási együtthatói, ill. hőmérsékletei nem azonosak. Számítása: U T =. T. δ ahol T a 0 o C-tól mért különbség, δ különbség a hőtágulási együtthatók között. Példánkban U T elhanyagolható mértékű. + U mh = A mérési eredmény: X = + x x U =. L ±

5 . Mérés tolómércével. feladat Vázolja fel és ismertesse a mérés elvét!. feladat Rajzolja le, majd mérje meg 0,05 mm felbontóképességű tolómércével a munkadarab négy méretét! Rajz: Méretek.ism. x.ism. x.ism. x Mérések átlaga x + x + x x = A valódi méret 99,7% valószínőséggel esik az x = x ± s intervallumba.. feladat Mérje meg egyszer az alábbi rajzon látható munkadarab méretét és jelölje azokat! s = Mérések szórása ( x x) + ( x x) ( ) + x x Mérési eredmény A=.. B=.. C=.. D=..

6 . Mérés mikrométerrel. feladat Vázolja fel és ismertesse a mérés elvét!. feladat Rajzolja le, majd mérje meg 0,0 mm felbontóképességű mikrométerrel a munkadarab méretét! Rajz: Méretek.ism.. ism.. ism. Mérések átlaga A mikrométer mérési bizonytalansága U=±0,00 mm A valódi méret 99,7% valószínőséggel esik az x Mikrométer rendszeres hibája H a x = + H a ± U intervallumba. Korrigált mérési átlag. feladat Rajzolja le, majd mérje meg 0,0 mm felbontóképességű mikrométerrel a munkadarab méretét! Rajz: Mérési eredmény Méretek.ism.. ism.. ism. Mérések átlaga A mikrométer mérési bizonytalansága U=±0,00 mm A valódi méret 99,7% valószínőséggel esik az x Mikrométer rendszeres hibája H a x = + H a ± U intervallumba. Korrigált mérési átlag Mérési eredmény

7 A. Mérés mérőórával. feladat Mérje meg 0,00 mm felbontóképességű mérőórával a munkadarabok magasságát -szor! A mérőóra mérési bizonytalansága: u =±0,00 mm A beállító etalon mérési bizonytalansága: u =±0,0008 mm Munkadarab.ism.. ism.. ism. Mérések átlaga Mérési eredmény A valódi méret 95,5% valószínőséggel esik az x = x ± U intervallumba. U = ± u + u =. feladat Határozza meg a 0,00 mm-es osztású mérőóra hibadiagramját mindkét irányban! (,0 mm-től,0 mm-ig tíz részre osztva, a függőleges tengelyen a valós értéktől való eltérést ábrázolja µm-ben)

8 B. Furatmérés. feladat Készítse el a munkadarab vázlatát beméretezve! A furatok jelölése D, D, stb., a furathelyzetek jelölése a, a, ill. b, b, stb. legyen!. feladat Mérje meg a munkadarab furatainak átmérőjét furatmikrométerrel és adja meg a mérési eredményt! Furat jele D D D D D 5 D 6 D 7 Mért érték x i A mikrométer mérési bizonytalansága: u = ± 0,006 mm Rendszeres hiba H a A valódi méret 99,7 %-os valószínűséggel esik az X = x i + H a ± u intervallumba. Mérési eredmény. feladat Mérje meg kúpos tűs, hasított hüvelyes és szögemelős furatmérővel a munkadarab egy-egy furatát háromszor és adja meg a mérési eredményt! Mérőeszköz kúpos tűs hasított hüvelyes szögemelős Furat jele. ism.. ism.. ism. Mérések átlaga Rendszeres hiba H a Mérési eredmény A furatmérők mérési bizonytalansága: u = ± 0,005 mm A beállító etalon mérési bizonytalansága: u = ± 0,0008 mm Összegzett mérési bizonytalanság: u= u u + A valódi méret 99,7 %-os valószínűséggel esik az X = x etalon + x + H a ± u intervallumba.

9 5A. Mérés digitális tolómércével. feladat Mérje meg a munkadarab méreteit a kiadott mérési feladatnak megfelelően HS-SPC szoftver és digitális tolómérce segítségével!. feladat A mérési feladat leírása és kiértékelése alapján határozza meg az alábbi paramétereket! 5 Mért méret ATH FTH Összes elemszám Mérések átlaga Átlag konfidenciaintervalluma (Mérési eredmény) 5 C m C mk Tőrésmezın kívül esı ATH-n alul kiesı FTH-n felül kiesı Megfelelt?. feladat Végezzen szöveges értékelést a gyártási folyamatról!

10 5B. Mérés digitális mérőórával. feladat Mérje meg a munkadarab méreteit a kiadott mérési feladatnak megfelelıen HS-SPC szoftver és digitális mérıóra segítségével!. feladat A mérési feladat leírása és kiértékelése alapján határozza meg az alábbi paramétereket! 5 Mért méret ATH FTH Összes elemszám Mérések átlaga Átlag konfidenciaintervalluma 5 C m C mk Tőrésmezın kívül esı ATH-n alul kiesı FTH-n felül kiesı Megfelelt?. feladat Végezzen szöveges értékelést a gyártási folyamatról!

11 6A. Szögmérés. feladat Vázolja fel a munkadarabot és jelölje három szögét (α, β, γ)!. feladat Mérje meg a munkadarab jelzett szögeit mechanikai (u m =±5 ) szögmérővel háromszor! Számítsa ki az átlagot és adjuk meg a mérési eredményt! Mérıeszköz Mechanikai szögmérı Mérések száma... α β γ Mért érték x i Átlag x Mérési eredmény X Mért érték x i Átlag x Mérési eredmény X Mért érték x i Átlag x Mérési eredmény X. feladat Szinuszvonalzóval α=.. szöget kell beállítani. Válassza ki a szükséges mérıhasábokat az 7/-78 szerinti. pontosságú osztály készletébıl! Számítsa ki az α szög hibáját! A szinuszvonalzó mérete L=00±0,005 mm A mérés elvi vázlata:

12 6A. Szögmérés A mérőhasáb mérete: M= A felhasznált mérőhasábkombináció: M = U = M = U = M = U = M = U = M 5 = U 5 = U + U + U + U + 5 = = ± U U... f ( α ) = sinα = L M sinα α = ± cosα L L + U M =... α = ±

13 6B. Mérés digitális mikrométerekkel. feladat Mérje meg a munkadarab méreteit a kiadott mérési feladatnak megfelelően HS-SPC szoftver és digitális mikrométerek segítségével!. feladat A mérési feladat leírása és kiértékelése alapján határozza meg az alábbi paramétereket! 5 Mért méret ATH FTH Összes elemszám Mérések átlaga Átlag konfidenciaintervalluma Mérési eredmény 5 C m C mk Tőrésmezın kívül esı ATH-n alul kiesı FTH-n felül kiesı Megfelelt?. feladat Végezzen szöveges értékelést a gyártási folyamatról!

14 7. Optikai elven működő mérőeszközök. feladat Mérje meg optiméterrel a kiadott munkadarabok magasságát! évleges méret: 9,850 mm; Tőrés: ± 0,00 mm A beállító etalon véletlen hibája: u e = ± 0,6 µm Az optiméter mérési bizonytalansága: s m = ± 0,5 µm A mérés várható legnagyobb bizonytalansága: U = ± ( ) u + s = Egy munkadarab mérete 99,7 %-os valószínőséggel esik az X = x etalon + x i ± U intervallumba. feladat Munkadarab 5 Jele e Eltérés µm Méret mm m Mérési eredmény Vízszintes (vagy függıleges) hosszmérıgépen mérje meg a kiadott munkadarabok magasságát! A vízszintes hosszmérıgép szórása: s m = ± 0, µm A függıleges hosszmérıgép szórása: s m = ± 0, µm A hosszmérıgép lehetséges legnagyobb hibája: h m = ± (,5 + L/00) µm, ahol L a mért érték mm-ben. A mérési bizonytalanság: U = ± ( ) h m + s = mm Egy munkadarab mérete 99,7 %-os valószínőséggel esik az X = x ± U intervallumba. feladat Munkadarab 5 Jele m Eltérés µm Méret mm Mérési eredmény Vázolja fel a munkadarabot és jelöljön be a rajzon két hosszméretet! Mérje meg a jelölt méreteket műhelymikroszkópon és a projektoron! Méret L L Mért érték műhelymikroszkópon Mért érték projektoron

15 Hosszméréstechnikai és Minőségügyi Labor 8. D mérés. feladat A munkadarabok előkészítése és a koordináta rendszer felvétele a méréshez: Vegyen fel a funkcionalitásuk alapján a koordináta rendszereket a képen látható darabokon! Rajzolja be a képekre a felvett nullpontot és a koordináta tengelyek irányait! irá a) b)

16 8. D mérés c). feladat Indokolja meg mőszakilag (pár sorban) a választását! a) b) c).

17 Táblázatok Mérıhasábok gyakori névleges méretei, méretsorozatai. táblázat A mérıhasáb névleges mérete,, [mm],[mm],000,0005 0,0005 0,990 0,99 0,99 0,99 0,99 0,995 0,996 0,997 0,998 0,999 0,00,000,00,00,00,00,005,006,007,008,009,000,00,00,00,00,00,0,0,0,0,00,0,0,0,0,00,0,0,0,0,00,0,0,0,0,050,50,50,50,50,060,60,60,60,60,070,70,70,70,70,080,80,80,80,80,090,90,90,90,90 0,0,000,00,00,00,00,500,600,700,800,900 0, 5,500 0,500 5,500 0,500,000 6,000,000 6,000,000,500 6,500,500 6,500,500,000 7,000,000 7,000,000,500 7,500,500 7,500,500,000 8,000,000 8,000,000,500 8,500,500 8,500,500,000 9,000,000 9,000,000,500 9,500,500 9,500,500 5,000 0,000 5,000 0,000 5,000 0,5 0,000 0,000 0,000 0,000 50,000 60,000 70,000 80,000 90,000 00, ,000 50,000 75,000 00,000 5,000 50,000 75,000 00,000 5,000 50,000 5 A mérıhasábok megengedett eltérései a középmérettıl és a párhuzamosságtól. táblázat évleges méret, mm 0 osztályú mérıhasáb megengedett eltérése, µm felett -ig Középmérettıl Párhuzamosságtól Középmérettıl Párhuzamosságtól Középmérettıl Párhuzamosságtól Középmérettıl Párhuzamosságtól 0, 0 0, 0,0 0, 0, 0, 0, 0,8 0, 0 5 0, 0,0 0, 0, 0,6 0,, 0, ,0 0,0 0, 0, 0,8 0,,6 0, ,5 0, 0,5 0,,0 0,,0 0, ,0 0, 0,6 0,, 0,,5 0,

Gépipari minőségellenőrzés

Gépipari minőségellenőrzés Gépipari minőségellenőrzés ek Gépészmérnök nappali képzésben részt vevők részére Összeállította: Dr. DrégelyiKiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 0 Tartalomjegyzék. gyakorlat Furatok és menetek

Részletesebben

Gépipari minőségellenőr Gépipari minőségellenőr

Gépipari minőségellenőr Gépipari minőségellenőr A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Gépipari minőségellenőr Gépipari minőségellenőr

Gépipari minőségellenőr Gépipari minőségellenőr A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT-2-0317/2014 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT-2-0317/2014 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület RÉSZLETEZŐ OKIRAT a NAT-2-0317/2014 nyilvántartási számú akkreditált státuszhoz A Kalibra Dimension Kft. Kalibráló laboratórium (2151 Fót, Béke utca 72.) akkreditált területe

Részletesebben

Nemzeti Akkreditáló Hatóság. RÉSZLETEZŐ OKIRAT a NAH /2016 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Hatóság. RÉSZLETEZŐ OKIRAT a NAH /2016 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Hatóság RÉSZLETEZŐ OKIRAT a NAH-2-0124/2016 nyilvántartási számú akkreditált státuszhoz A TRIGO PRECÍZIÓS MÉRÉSTECHNIKA Kft. Kalibrálólaboratórium (1102 Budapest, Szent László tér 20.

Részletesebben

MÉRÉSTECHNIKA 4. ELŐADÁS. Galla Jánosné 2014

MÉRÉSTECHNIKA 4. ELŐADÁS. Galla Jánosné 2014 MÉRÉSTECHNIKA 4. ELŐADÁS 1 Galla Jánosné 2014 Minőség Mérethűség Alakhűség Helyzetpontosság Felületminőség Felületi mikrogeometria Felületi réteg állapota Érdesség Hullámosság Vegyi összetétel Szövetszerkezet

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Kalibráló készülékek. Height Master Oldal 343. Check Master Oldal 347. Kalibráló eszközök Oldal 352

Kalibráló készülékek. Height Master Oldal 343. Check Master Oldal 347. Kalibráló eszközök Oldal 352 Kalibráló készülékek Height Master Oldal 343 Check Master Oldal 347 Kalibráló eszközök Oldal 352 342 Digitális Height Master Funkciók ZERO/ABS DATA / HOLD Auto kikapcsolás (< 20 perc) Riasztás alacsony

Részletesebben

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Height Master Oldal 345. Check Master Oldal 349. Kalibráló eszközök Oldal 354

Height Master Oldal 345. Check Master Oldal 349. Kalibráló eszközök Oldal 354 Kalibráló készülékek Height Master Oldal 345 Check Master Oldal 349 Kalibráló eszközök Oldal 354 344 Digitális Height Master Funkciók ZERO/ABS DATA / HOLD Auto kikapcsolás (< 20 perc) Riasztás alacsony

Részletesebben

54 520 01 0000 00 00 Gépipari minőségellenőr Gépipari minőségellenőr

54 520 01 0000 00 00 Gépipari minőségellenőr Gépipari minőségellenőr A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

Mikrométerek Tolómérők Mélységmérők Mérőórák Belső mikrométerek Mérőhasábok Sztereo mikroszkópok Mérőmikroszkópok Profil projektorok

Mikrométerek Tolómérők Mélységmérők Mérőórák Belső mikrométerek Mérőhasábok Sztereo mikroszkópok Mérőmikroszkópok Profil projektorok Mikrométerek Tolómérők Mélységmérők Mérőórák Belső mikrométerek Mérőhasábok Sztereo mikroszkópok Mérőmikroszkópok Profil projektorok ELLENŐRZÖTT NÉMET MINŐSÉG Mikrométerek Felbontás: digitális 0.001 mm,

Részletesebben

Beállítógyűrű. Toldószár mm. 141.430,-Ft 141.430,- 141.430,- 142.500,- 142.500,- 185.250,- 187.000,- 228.000,- 228.000,-

Beállítógyűrű. Toldószár mm. 141.430,-Ft 141.430,- 141.430,- 142.500,- 142.500,- 185.250,- 187.000,- 228.000,- 228.000,- Webár uházu nkban továb bi 10% kedve zmény! ÉRV ÉNYES 2014.02.28 Hárompontos furatmikrométer készlet zsákfuratok méréséhez Leolvasás 0,001 -tól 12 -ig toldószárral beállítógyűrű alu kofferben 91022137

Részletesebben

Használható segédeszköz: Függvénytáblázat, szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép

Használható segédeszköz: Függvénytáblázat, szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 04 Mechatronikai technikus

Részletesebben

Mérőeszköz. Ajánlat 2014 20.990,- 193.990,- 31.370,- 2014.04.01. - 2014.12.31. Digitális tolómérő, DIN 862, IP 54. Precíziós digitális mérőóra, 3 V

Mérőeszköz. Ajánlat 2014 20.990,- 193.990,- 31.370,- 2014.04.01. - 2014.12.31. Digitális tolómérő, DIN 862, IP 54. Precíziós digitális mérőóra, 3 V 2014.04.01. - 2014.12.31. Mérőeszköz Ajánlat 2014 Digitális tolómérő, DIN 862, IP 54, üveg kijelző Adatkimenet RS232 (RB6) víz és por álló görgővel vagy görgő nélkül is használható Védelem IP 54 / 0,0005

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

Mérőeszköz. Ajánlat 2014. 20.990,- Ft. 193.990,- Ft. 31.370,- Ft 2014.04.01. - 2014.12.31. Digitális tolómérő DIN 862, IP 54

Mérőeszköz. Ajánlat 2014. 20.990,- Ft. 193.990,- Ft. 31.370,- Ft 2014.04.01. - 2014.12.31. Digitális tolómérő DIN 862, IP 54 2014.04.01. - 2014.12.31. Mérőeszköz Ajánlat 2014 Digitális tolómérő DIN 862, IP 54, üveg kijelző Adatkimenet RS232 (RB6) víz- és por álló görgővel vagy görgő nélkül is használható Védelem IP 54 Adatkimenet

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

SIKLÓCSAPÁGY KISFELADAT

SIKLÓCSAPÁGY KISFELADAT Dr. Lovas Lászl SIKLÓCSAPÁGY KISFELADAT Segédlet a Jármű- és hajtáselemek II. tantárgyhoz Kézirat 2012 SIKLÓCSAPÁGY KISFELADAT 1. Adatválaszték pk [MPa] d [mm] b/d [-] n [1/min] ház anyaga 1 4 50 1 1440

Részletesebben

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata

Piri Dávid. Mérőállomás célkövető üzemmódjának pontossági vizsgálata Piri Dávid Mérőállomás célkövető üzemmódjának pontossági vizsgálata Feladat ismertetése Mozgásvizsgálat robot mérőállomásokkal Automatikus irányzás Célkövetés Pozíció folyamatos rögzítése Célkövető üzemmód

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Eötvös Loránd Szakközép- és Szakiskola Oroszlány. Molnár István Gépészeti mérések Tantárgyi segédlet

Eötvös Loránd Szakközép- és Szakiskola Oroszlány. Molnár István Gépészeti mérések Tantárgyi segédlet Eötvös Loránd Szakközép- és Szakiskola Oroszlány Molnár István Gépészeti mérések Tantárgyi segédlet 1 TARTALOMJEGYZÉK Tartalomjegyzék... 2 Az év végi számonkérés témakörei... 3 SI mértékegységek... 4 Hosszmérés...

Részletesebben

Tolómérők, mikrométerek

Tolómérők, mikrométerek Tolómérők, mikrométerek Mérőeszköz készlet tárolódobozban F2 00 F2 00 - Négy részes. - Analóg. 2 11 Tartalom Szerszám Tolómérő Mikrométer Derékszög Vonalzó x 0,0 0-2 x x 0 x 1 x 0, Kengyeles mikrométer

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

TÖBBFOGMÉRET MÉRÉS KISFELADAT

TÖBBFOGMÉRET MÉRÉS KISFELADAT Dr. Lovas László TÖBBFOGMÉRET MÉRÉS KISFELADAT Segédlet a Jármű- és hajtáselemek II. tantárgyhoz BME Közlekedésmérnöki és Járműmérnöki Kar Járműelemek és Jármű-szerkezetanalízis Tanszék Kézirat 2013 TÖBBFOGMÉRET

Részletesebben

Géprajz - gépelemek. Előadó: Németh Szabolcs mérnöktanár. Belső használatú jegyzet 2

Géprajz - gépelemek. Előadó: Németh Szabolcs mérnöktanár. Belső használatú jegyzet  2 Géprajz - gépelemek FELÜLETI ÉRDESSÉG Előadó: Németh Szabolcs mérnöktanár Belső használatú jegyzet http://gepesz-learning.shp.hu 1 Felületi érdesség Az alkatrészek elkészítéséhez a rajznak tartalmaznia

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

International GTE Conference MANUFACTURING 2012. 14-16 November, 2012 Budapest, Hungary. Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*,

International GTE Conference MANUFACTURING 2012. 14-16 November, 2012 Budapest, Hungary. Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*, International GTE Conference MANUFACTURING 2012 14-16 November, 2012 Budapest, Hungary MÉRŐGÉP FEJLESZTÉSE HENGERES MUNKADARABOK MÉRETELLENŐRZÉSÉRE Ákos György*, Bogár István**, Bánki Zsolt*, Báthor Miklós*,

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Minőségi indikátorok az analitikai szakaszban Dr. Kocsis Ibolya Semmelweis Egyetem Laboratóriumi Medicina Intézet Központi Laboratórium

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

Munkavédelmi mérnökasszisztens Galla Jánosné, 2012.

Munkavédelmi mérnökasszisztens Galla Jánosné, 2012. Munkavédelmi mérnökasszisztens Galla Jánosné, 2012. 1 Hossz- és szögmérés A hosszméréstechnika alaptételei Mérési segédeszközök Egyszerű hosszmérő eszközök Szögmérés 2 Felosztásuk történhet metrológiai

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési

Részletesebben

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek 1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.

Részletesebben

Vízóra minıségellenırzés H4

Vízóra minıségellenırzés H4 Vízóra minıségellenırzés H4 1. A vízórák A háztartási vízfogyasztásmérık tulajdonképpen kis turbinák: a mérın átáramló víz egy lapátozással ellátott kereket forgat meg. A kerék által megtett fordulatok

Részletesebben

Felületminőség. 11. előadás

Felületminőség. 11. előadás Felületminőség 11. előadás A felületminőség alapfogalmai Mértani felületnek nevezzük a munkadarab rajzán az ábrával és méretekkel, vagy az elkészítési technológiával meghatározott felületet, ha ez utóbbinál

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Diszkrét idejű felújítási paradoxon

Diszkrét idejű felújítási paradoxon Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP

Részletesebben

MUNKAANYAG. Molnár István. Gépelemek szerelésekor, gyártásakor használt mérőezközök fajtái, használhatóságuk a gyakorlatban

MUNKAANYAG. Molnár István. Gépelemek szerelésekor, gyártásakor használt mérőezközök fajtái, használhatóságuk a gyakorlatban Molnár István Gépelemek szerelésekor, gyártásakor használt mérőezközök fajtái, használhatóságuk a gyakorlatban A követelménymodul megnevezése: Gépelemek szerelése A követelménymodul száma: 0221-06 A tartalomelem

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011. Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Forgácsolás és szerszámai

Forgácsolás és szerszámai Tengelyszerő alkatrész gyártása (II. feladat) Feladatkiírás: Kiinduló adatok tengely anyaga, állapota (keménysége) a tengely méretei, a megoldás sorrendje (pontokba foglalva) szakirodalom beadási határidı

Részletesebben

Gépészeti berendezések szerelésének geodéziai feladatai. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Gépészeti berendezések szerelésének geodéziai feladatai. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Gépészeti berendezések szerelésének geodéziai feladatai Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Gépészeti berendezések szerelésének geodéziai feladatai '80 Geodéziai elvű módszerek gépészeti alkalmazások

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

Legnagyobb anyagterjedelem feltétele

Legnagyobb anyagterjedelem feltétele Legnagyobb anyagterjedelem feltétele 1. Legnagyobb anyagterjedelem feltétele A legnagyobb anyagterjedelem feltétele (szabványban ilyen néven szerepel) vagy más néven a legnagyobb anyagterjedelem elve illesztett

Részletesebben

Geodézia terepgyakorlat számítási feladatok ismertetése 1.

Geodézia terepgyakorlat számítási feladatok ismertetése 1. A Geodézia terepgyakorlaton Sukorón mért geodéziai hálózat új pontjainak koordináta-számításáról Geodézia terepgyakorlat számítási feladatok ismertetése 1. Dr. Busics György 1 Témák Cél, feladat Iránymérési

Részletesebben

2.6. A fogaskerekek tőrésezése, illesztése. Fogaskerék szerkezetek. Hajtómővek.

2.6. A fogaskerekek tőrésezése, illesztése. Fogaskerék szerkezetek. Hajtómővek. 2.6. A fogaskerekek tőrésezése, illesztése. Fogaskerék szerkezetek. Hajtómővek. Tevékenység: Olvassa el a jegyzet 124-145 oldalain található tananyagát! Tanulmányozza át a segédlet 9.8. fejezetében lévı

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

TANFOLYAMZÁRÓ ÍRÁSBELI VIZSGAFELADAT

TANFOLYAMZÁRÓ ÍRÁSBELI VIZSGAFELADAT CNC PROGRAMOZÓ TECHNOLÓGUS TANFOLYAM TANFOLYAMZÁRÓ ÍRÁSBELI VIZSGAFELADAT MEZŐKÖVESD, 2014. február 23. Összeállította: Daragó Gábor 1 CNC PROGRAMOZÓ TECHNOLÓGUS TANFOLYAM TANFOLYAMZÁRÓ ÍRÁSBELI VIZSGAFELADAT

Részletesebben

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám: Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

Segédlet a gördülőcsapágyak számításához

Segédlet a gördülőcsapágyak számításához Segédlet a gördülőcsapágyak számításához Összeállította: Dr. Nguyen Huy Hoang Budapest 25 Feladat: Az SKF gyártmányú, SNH 28 jelű osztott csapágyházba szerelt 28 jelű egysorú mélyhornyú golyóscsapágy üzemi

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 20%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 20%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2011. (VII. 18.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Minőségirányítási rendszerek 9. előadás

Minőségirányítási rendszerek 9. előadás Minőségirányítási rendszerek 9. előadás 013.05.03. MÉRŐESZKÖZÖK MÉRÉSTECHNIKAI TULAJDONSÁGAI Mérőeszköz rendszeres hibája (Systematic Error of Measurement) alatt ugyanannak az értéknek megismételhetőségi

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Fedélszerkezet kivitelezése

Fedélszerkezet kivitelezése Fedélszerkezet kivitelezése Összeállította: Kreinbacher Imre Nemes András - 1 - Fedélszerkezeti elemek gyártás előkészítése Fedélszerkezet kivitelezésének feltétele, hogy a fed élszerkezet alkotó elemeit

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 06. OKTÓBER VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 06. OKTÓBER. tétel Anyagvizsgálatok gyakorlat I. Viszkozitás mérése Höppler-féle viszkoziméterrel A mérés megkezdése

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás

Részletesebben

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

1.3. Oldható és különleges tengelykapcsolók.

1.3. Oldható és különleges tengelykapcsolók. 1.3. Oldható és ülönleges tengelyapcsoló. Tevéenység: Olvassa el a jegyzet 29-44 oldalain található tananyagát! Tanulmányozza át a segédlet 8.4. fejezetében lévı idolgozott feladatait, valamint oldja meg

Részletesebben

Tájékoztató. Értékelés Összesen: 100 pont

Tájékoztató. Értékelés Összesen: 100 pont A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Nyári gyakorlat teljesítésének igazolása Hiányzások

Nyári gyakorlat teljesítésének igazolása Hiányzások Nyári gyakorlat teljesítésének igazolása Hiányzások - - Az összefüggő szakmai gyakorlatról hiányozni nem lehet. Rendkívüli, nem tervezhető esemény esetén az igazgatóhelyettest kell értesíteni. - A tanulók

Részletesebben

ÉKSZÍJTÁRCSA KIALAKÍTÁSOK

ÉKSZÍJTÁRCSA KIALAKÍTÁSOK ÉKSZÍJTÁRCSA KIALAKÍTÁSOK 1 típus 2 típus 3 típus 4 típus 5 típus 6 típus 7 típus 8 típus 70 KÚPOS SZORÍTÓS ÉKSZÍJTÁRCSÁK Kód Típus Ékpályák száma SPZ / 2 P O Típus Szorító max. furat E F J K L M N ZT00502

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Mechatronikai technikus szakma gyakorlati oktatásához OKJ száma: 54 523 04 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma: Tanulók

Részletesebben

Akkreditált kalibráló és vizsgáló laboratórium

Akkreditált kalibráló és vizsgáló laboratórium A Kalibra59 Bt akkreditált kalibráló és vizsgáló laboratóriuma a kalibrálásokat az Önök igényei szerint végezheti akár laboratóriumban, Címünk: 2151. Fót, Béke u. 72 Nyitva tartás: munkanapokon 8-17 óráig

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán

Mozgásvizsgálatok. Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Mérnökgeodézia II. Ágfalvi Mihály - Tóth Zoltán Célja: Várható elmozdulások előrejelzése (erőhatások alatt, Siógemenci árvízkapu) Már bekövetkezett mozgások okainak vizsgálata (Pl. kulcsi löszpart) Laboratóriumi

Részletesebben

Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján

Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján Lövedékálló védőmellény megfelelőségének elemzése lenyomatmélységek (traumahatás) alapján Eur.Ing. Frank György c. docens az SzVMSzK Szakmai Kollégium elnöke SzVMSzK mérnök szakértő (B5) A lövedékálló

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

1. A komplex számok ábrázolása

1. A komplex számok ábrázolása 1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az

Részletesebben

7. Koordináta méréstechnika

7. Koordináta méréstechnika 7. Koordináta méréstechnika Coordinate Measuring Machine: CMM, 3D-s mérőgép Egyiptomi piramis kövek mérése i.e. 1440 Egyiptomi mérővonalzó, Amenphotep fáraó (i.e. 1550) alkarjának hossza: 524mm A koordináta

Részletesebben

RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ

RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ Referencia útmutató laboratórium és műhely részére Magyar KIADÁS lr i = kiértékelési hossz Profilok és szűrők (EN ISO 4287 és EN ISO 16610-21) 01 A tényleges

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Tűrés. szóródás terjedelme

Tűrés. szóródás terjedelme GE2FB 1 Lektorálás előtti, nem végleges anyag Csatlakozó alkatrészek tűrésezése, tűrésláncok. ISO illesztési rendszer. Felületi érdesség fogalma és megadása. Felületi érdesség és tűrés összefüggése. /

Részletesebben

4. mérés Kúpszög mérése

4. mérés Kúpszög mérése Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Mechatronika, Optika és Gépészeti Informatika Tanszék 4. mérés Kúpszög mérése Segédlet a Méréstechnika (BMEGEMIAMG1) Mérés, jelfeldolgozás,

Részletesebben