A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell"

Átírás

1 A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez.

2 Mérési hiba A mérési eredmény és a valóság között mindig tapasztalható eltérés, ez a mérési hiba. Okok: mérési eszközök pontatlansága az alkalmazott mérési módszer hibája általunk nem ismert külső fizikai behatások Cél: Megkeressük a mérendő fizikai mennység adott körülmények mellett elérhető legpontosabb becsült értékét.

3 Definíciók A helyes érték (x h ) a mérendő mennyiség valódi értékének adott körülmények melletti legpontosabb közelítése. Ez lehet pl. egy etalon (méterrúd Párizsban), vagy egy reprodukálható referenciaérték. A helyes érték legfontosabb tulajdonsága, hogy a valódi értékhez viszonyítva az eltérés elhanyagolhatóan kicsi.

4 A mérés hibája H = x m - x h A mérés hibája tehát a mért érték és a helyes érték különbsége. Ez egy el jeles mennyiség, és Ez egy előjeles mennyiség, és mértékegysége megegyezik a mérendő mennyiség mértékegységével. A mérés hibája más néven az abszolút hiba.

5 Korrekció A mérési hiba negatív előjellel vett értéke a korrekció (K). A helyes érték tehát: X h = x m + K Ez azt jelenti, hogy a mérési eredményhez az előre meghatározott és ismert korrekciót hozzáadva megkapjuk a mérés helyes értékét.

6 Relatív hiba Ha a mérési hibát elosztjuk a mért értékkel, akkor megkapjuk az ún. relatív hibát. Ez jellemzőbb adat, mivel a mérendő mennyiséghez viszonyítjuk a hiba nagyságát: h m = H m / x m Más szóval az abszolút hibát el kell osztani a mért értékkel, hogy hozzájussunk a relatív hibához. Szokásos a százalékos megadás is: h m [%] = (H m / x m ) * 100%

7 A gyakorlatban A valóságban nem ismerjük a hiba pontos értékét, sőt, a valódi értéket sem. Hiszen akkor nem kellene megmérnünk! A valóságban arra törekszünk, hogy a hiba nagyságát egy előző, megbízható mérésből, vagy a mérést terhelő ismert hibákból határozzuk meg. Majd ezután a kapott hibát ellentétes előjellel hozzáadjuk a mérési eredményhez.

8 Gyakorlati tanácsok DVM esetén az utolsó digit csak becsült Használjuk ki a műszer méréshatárait! Analóg alapműszernél mindig a skála utolsó harmadában mérünk! Analóg műszernél felléphet a parallaxis hiba (honnan nézzük) Műszerek belső ellenállása Ideális áram- és feszültségmérő?

9 A hibák forrásai A hibák két nagy csoportra oszthatóak természetükből adódóan: rendszeres hibák véletlen hibák Elvben minden hiba felbontható erre a két összetevőre, tehát mindkét fajta hiba adja az adott hibaérték eredőjét.

10 Rendszeres hibák Előre látható és kiszámítható hiba érték. A gyakorlatban egy sok egyedi mérésből felépülő mérési sorozatban a mérési eredmények átlagának és a mérendő mennyiség valódi értékének különbsége. Okai: műszerek energiafelvétele a mérendő áramkörből méréshatárváltás hibája interpolációs hiba (két skálaosztás között áll meg a mutató) hőmérsékleti hibák külső környezeti hatások okozta hibák mérési módszerből adódó hibák

11 Véletlen hibák Előre nem látható mértékű és így pontosan meg nem határozható értékű hiba. Az ilyen típusú hiba a fent említett mérési sorozat eredményeiből képzett átlag és az adott mérési eredmény különbsége. Okai: A véletlen hibáknak is vannak okai, akár az előzőek közül bármelyik. Csak éppen ennek nem vagyunk tudatában, nem ismerjük a hiba okát.

12 Műszerek pontossági osztályai Precíziós műszerek Üzemi műszerek 0,1 osztály 1,0 osztály 0,2 osztály 1,5 osztály 0,5 osztály 2,5 osztály 5,0 osztály

13 Feladat Mekkora egy 1,5 osztályú műszer maximális mérési hibája, ha a végkitérése 300 V, a mért feszültség pedig 230 V?

14 Megoldás A 300 V 1,5 %-a ±4,5 V A tényleges feszültség tehát 225,5 V és 234,5 V közé esik. A százalékos mérési hiba ezáltal megnövekszik: 4,5V/ 230V = 1,95 %. (relatív hiba!)

15 Mi következik ebből? Minél kisebb értéket mérünk, annál pontatlanabbak vagyunk az adott mérési tartományban Igyekezzünk tehát a méréshatárok felső Igyekezzünk tehát a méréshatárok felső harmadában mérni, minimalizálva ezzel a mérés relatív hibáját!

16 Mértékegység előtagok (prefixum)

17 Feladat

Elektronikai alapgyakorlatok

Elektronikai alapgyakorlatok Elektronikai alapgyakorlatok Mőszerismertetés Bevezetés a szinuszos váltakozó feszültség témakörébe Alkalmazott mőszerek Stabilizált ikertápegység Digitális multiméter Kétsugaras oszcilloszkóp Hanggenerátor

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Méréstechnikai alapfogalmak

Méréstechnikai alapfogalmak Méréstechnikai alapfogalmak 1 Áttekintés Tulajdonság, mennyiség Mérés célja, feladata Metrológia fogalma Mérıeszközök Mérési hibák Mérımőszerek metrológiai jellemzıi Nemzetközi mértékegységrendszer Munka

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011. Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő

Részletesebben

Mérési hibák. 2008.03.03. Méréstechnika VM, GM, MM 1

Mérési hibák. 2008.03.03. Méréstechnika VM, GM, MM 1 Mérési hibák 2008.03.03. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség általánosított

Részletesebben

MUNKAANYAG. Juhász Róbert. Méréstechnika alapjai. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása

MUNKAANYAG. Juhász Róbert. Méréstechnika alapjai. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása Juhász Róbert Méréstechnika alapjai A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja: SzT-021-50

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata MÉRÉSI JEGYZŐKÖNYV A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata A mérés helye: Irinyi János Szakközépiskola és Kollégium

Részletesebben

KÍSÉRLET, MÉRÉS, MŰSZERES MÉRÉS

KÍSÉRLET, MÉRÉS, MŰSZERES MÉRÉS KÍSÉRLET, MÉRÉS, MŰSZERES MÉRÉS Kísérlet, mérés, modellalkotás Modell: olyan fizikai vagy szellemi (tudati) alkotás, amely egy adott jelenség lefolyását vagy egy rendszer viselkedését részben vagy egészen

Részletesebben

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4 33 522 04 0100 21 01 Kábelszerelő Villanyszerelő 4

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4 33 522 04 0100 21 01 Kábelszerelő Villanyszerelő 4 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Méréstechnika GM, VI BSc 1

Méréstechnika GM, VI BSc 1 Mérési hibák 1 Mérés jel- és rendszerelméleti modellje Mérési hibák/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség általánosított

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ ÖSSZEÁLLÍTOTTA: DEÁK KRISZTIÁN 2013 Az SPM BearingChecker

Részletesebben

Digitális hőmérő Modell DM-300

Digitális hőmérő Modell DM-300 Digitális hőmérő Modell DM-300 Használati útmutató Ennek a használati útmutatónak a másolásához, terjesztéséhez, a Transfer Multisort Elektronik cég írásbeli hozzájárulása szükséges. Bevezetés Ez a készülék

Részletesebben

Házi Feladat. Méréstechnika 1-3.

Házi Feladat. Méréstechnika 1-3. Házi Feladat Méréstechnika 1-3. Tantárgy: Méréstechnika Tanár neve: Tényi V. Gusztáv Készítette: Fazekas István AKYBRR 45. csoport 2010-09-18 1/1. Ismertesse a villamos jelek felosztását, és az egyes csoportokban

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

Mérés és modellezés 1

Mérés és modellezés 1 Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell

Részletesebben

Elektromos egyenáramú alapmérések

Elektromos egyenáramú alapmérések Elektromos egyenáramú alapmérések A mérés időpontja: 8.. 5. hétf ő,.-4. Készítették: 5.mérőpár - Lele István (CYZH7) - Nagy Péter (HQLOXW) A mérések során elektromos egyenáramú köröket vizsgálunk feszültség-

Részletesebben

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési

Részletesebben

Digitális multiméterek

Digitális multiméterek PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Fizikai mérési gyakorlatok Digitális multiméterek Segédlet környezettudományi és kémia szakos hallgatók fizika laboratóriumi mérési gyakorlataihoz)

Részletesebben

INFRA HŐMÉRŐ (PIROMÉTER) AX-6520. Használati útmutató

INFRA HŐMÉRŐ (PIROMÉTER) AX-6520. Használati útmutató INFRA HŐMÉRŐ (PIROMÉTER) AX-6520 Használati útmutató TARTALOMJEGYZÉK 1. Biztonsági szabályok... 3 2. Megjegyzések... 3 3. A mérőműszer leírása... 3 4. LCD kijelző leírása... 4 5. Mérési mód...4 6. A pirométer

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

2. rész PC alapú mérőrendszer esetén hogyan történhet az adatok kezelése? Írjon pár 2-2 jellemző is az egyes esetekhez.

2. rész PC alapú mérőrendszer esetén hogyan történhet az adatok kezelése? Írjon pár 2-2 jellemző is az egyes esetekhez. Méréselmélet és mérőrendszerek (levelező) Kérdések - 2. előadás 1. rész Írja fel a hiba fogalmát és hogyan számítjuk ki? Hogyan számítjuk ki a relatív hibát? Mit tud a rendszeres hibákról és mi az okozója

Részletesebben

A hőmérséklet kalibrálás gyakorlata

A hőmérséklet kalibrálás gyakorlata A hőmérséklet kalibrálás gyakorlata A vezérlőelem lehet egy szelep, ami nyit, vagy zár, hogy több gőzt engedjen a fűtő folyamatba, vagy több tüzelőanyagot az égőbe. A két legáltalánosabban elterjedt érzékelő

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 5. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 5. óra Verzió: 1.1 Utolsó frissítés: 2011. április 12. 1/20 Tartalom I 1 Demók 2 Digitális multiméterek

Részletesebben

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában Minőségi indikátorok az analitikai szakaszban Dr. Kocsis Ibolya Semmelweis Egyetem Laboratóriumi Medicina Intézet Központi Laboratórium

Részletesebben

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN.

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN. ELLENÁLLÁSMÉRÉS A mérés célja Az egyenáramú hidakkal, az ellenállásmérő műszerekkel, az ellenállásmérő módban is használható univerzális műszerekkel végzett ellenállásmérés módszereinek, alkalmazási sajátosságainak

Részletesebben

Gingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek

Gingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek Gingl Zoltán, Szeged, 05. 05.09.9. 9:4 Elektronika - Hálózatszámítási módszerek 05.09.9. 9:4 Elektronika - Alapok 4 A G 5 3 3 B C 4 G Áramköri elemek vezetékekkel összekötve Csomópontok Ágak (szomszédos

Részletesebben

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió Mérés és adatgyűjtés - Kérdések 2.0 verzió Megjegyzés: ezek a kérdések a felkészülést szolgálják, nem ezek lesznek a vizsgán. Ha valaki a felkészülése alapján önállóan válaszolni tud ezekre a kérdésekre,

Részletesebben

Balatoni albedó(?)mérések

Balatoni albedó(?)mérések Környezettudományi Doktori Iskolák Konferenciája Budapest, 2012. augusztus 30-31 PE Georgikon Kar menyhart-l@georgikon.hu Eredeti célkitűzés Balaton albedójának napi és éves menete Albedó paraméterezése

Részletesebben

JELENTKEZÉSI ŰRLAP orvostechnikai eszközök felülvizsgálatára 4/2009. (III. 17.) EüM rendelet 17. -a és 13. Melléklete szerint

JELENTKEZÉSI ŰRLAP orvostechnikai eszközök felülvizsgálatára 4/2009. (III. 17.) EüM rendelet 17. -a és 13. Melléklete szerint Címzett: Egészségügyi Nyilvántartási és Képzési Központ ORVOSTECHNIKAI FŐOSZTÁLY H-1054 Budapest, Zrínyi u. 3. 1380 Budapest, Pf. 1188. JELENTKEZÉSI ŰRLAP orvostechnikai eszközök felülvizsgálatára 4/2009.

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

E1 laboratóriumi mérés Fizikai Tanszék

E1 laboratóriumi mérés Fizikai Tanszék E1 laboratóriumi mérés Fizikai Tanszék Konduktív ellenállás és fémszálas izzó feszültségáram karakterisztikája 1. A mérés célja, elve Az izzólámpa fajlagos ellenállása működés közben nagy mértékben függ

Részletesebben

JELENTKEZÉSI ŰRLAP orvostechnikai eszközök felülvizsgálatára 4/2009. (III. 17.) EüM rendelet 27. -a és 13. Melléklete szerint

JELENTKEZÉSI ŰRLAP orvostechnikai eszközök felülvizsgálatára 4/2009. (III. 17.) EüM rendelet 27. -a és 13. Melléklete szerint Címzett: Egészségügyi Engedélyezési és Közigazgatási Hivatal ORVOSTECHNIKAI FŐOSZTÁLY H-1051 Budapest, Zrínyi u. 3. Budapest, 1380 Pf. 1188. JELENTKEZÉSI ŰRLAP orvostechnikai eszközök felülvizsgálatára

Részletesebben

Felhasználói útmutató a KVDH370 típusú hőmérőhöz

Felhasználói útmutató a KVDH370 típusú hőmérőhöz Kvalifik Kft. Felhasználói útmutató a KVDH370 típusú hőmérőhöz 1. oldal, összesen: 5 Felhasználói útmutató a KVDH370 típusú hőmérőhöz 1. Technikai adatok: Numerikus kijelző: 4 számjegyű folyadékkristályos

Részletesebben

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Hőelem kalibrátor. Model AX-C830. Használati útmutató

Hőelem kalibrátor. Model AX-C830. Használati útmutató Hőelem kalibrátor Model AX-C830 Használati útmutató A biztonsággal kapcsolatos információk Ahhoz, hogy elkerülje az áramütést vagy a személyi sérülést: - Soha ne kapcsoljon 30V-nál nagyobb feszültséget

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Méréstechnika. Hőmérséklet mérése

Méréstechnika. Hőmérséklet mérése Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység

Részletesebben

PCS-1000I Szigetelt kimenetű nagy pontosságú áram sönt mérő

PCS-1000I Szigetelt kimenetű nagy pontosságú áram sönt mérő GW Instek PCS-1000I Szigetelt kimenetű nagy pontosságú áram sönt mérő Új termék bejelentése A precízen elvégzett mérések nem hibáznak GW Instek kibocsátja az új PCS-1000I szigetelt kimenetű nagypontosságú

Részletesebben

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1 MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi

Részletesebben

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje:

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje: Fajhő mérése Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: 206. 0. 20. egyzőkönyv leadásának ideje: 206.. 0. Bevezetés Mérésem során az -es számú minta fajhőjét kellett megmérnem.

Részletesebben

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

Zárt mágneskörű induktív átalakítók

Zárt mágneskörű induktív átalakítók árt mágneskörű induktív átalakítók zárt mágneskörű átalakítók felépítésükből következően kis elmozdulások mérésére használhatók megfelelő érzékenységgel. zárt mágneskörű induktív átalakítók mágnesköre

Részletesebben

1. Az előlap bemutatása

1. Az előlap bemutatása AX-T2200 1. Az előlap bemutatása 1, 2, 3, 4. Feszültségválasztó kapcsolók (AC750V/500V/250V/1000V) 5. ellenállás tartomány kiválasztása (RANGE) 6. Főkapcsoló: auto-lock főkapcsoló (POWER) 7. Magasfeszültség

Részletesebben

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat

Részletesebben

3. Hangfrekvenciás mechanikai rezgések vizsgálata

3. Hangfrekvenciás mechanikai rezgések vizsgálata 3. Hangfrekvenciás mechanikai rezgések vizsgálata Tóth Bence fizikus,. évfolyam 005.03.04. péntek délelőtt beadva: 005.03.. . A mérés első részében a megvastagított végű rúd (a D jelű) felharmonikusait

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 2. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-2/1 Ellenállás mérés és adatbeolvasás Rn ismert

Részletesebben

Elektronikus fekete doboz vizsgálata

Elektronikus fekete doboz vizsgálata Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

írásbeli vizsgatevékenység

írásbeli vizsgatevékenység Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 0896-06 Villanyszerelési munka előkészítése, dokumentálása Vizsgarészhez rendelt vizsgafeladat száma, megnevezése: 0896-06/3 Mérési feladat

Részletesebben

Előrejelzett szélsebesség alapján számított teljesítménybecslés statisztikai korrekciójának lehetőségei

Előrejelzett szélsebesség alapján számított teljesítménybecslés statisztikai korrekciójának lehetőségei Előrejelzett szélsebesség alapján számított teljesítménybecslés statisztikai korrekciójának lehetőségei Brajnovits Brigitta brajnovits.b@met.hu Országos Meteorológiai Szolgálat, Informatikai és Módszertani

Részletesebben

Mérési hibák Méréselmélet PE MIK MI, VI BSc 1

Mérési hibák Méréselmélet PE MIK MI, VI BSc 1 Mérési hibák 2008.03.10. Méréselmélet PE MIK MI, VI BSc 1 Mérés jel- és rendszerelméleti modellje Mérési hibák/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális

Részletesebben

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! 1 Óbudai Egyetem 2 TARTALOMJEGYZÉK I. Bevezetés 3 I-A. Beüzemelés.................................. 4 I-B. Változtatható ellenállások...........................

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

KVDP470 hőmérséklet- és relatív páratartalom-mérő. Kezelési útmutató

KVDP470 hőmérséklet- és relatív páratartalom-mérő. Kezelési útmutató KVDP470 hőmérséklet- és relatív páratartalom-mérő Kezelési útmutató Tartalom 1. Kezelés 1.1. Általános tanácsok 1.2. Kezelés 1.3. Be/ki kapcsolás 1.4. Funkciók 1.4.1. C/ F mértékegység váltás 1.4.2. %rh/td

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő

Műveleti erősítők. 1. Felépítése. a. Rajzjele. b. Belső felépítés (tömbvázlat) c. Differenciálerősítő Műveleti erősítők A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A u ', R be ', stb. külső elemek csatlakoztatásával széles határok

Részletesebben

Felhasználói kézikönyv 33D Digitális multiméter

Felhasználói kézikönyv 33D Digitális multiméter HoldPeak Felhasználói kézikönyv 33D Digitális multiméter TARTALOMJEGYZÉK 1. BEVEZETÉS... 2 2. ELŐLAP ÉS KEZELŐSZERVEK... 2 3. BIZTONSÁGI INFORMÁCIÓK... 3 4. SPECIÁLIS HASZNÁLATI FIGYELMEZTETÉSEK... 3 5.

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

3.15. Műszerek és mérések. 3.15.1. A mérés fogalma

3.15. Műszerek és mérések. 3.15.1. A mérés fogalma 3.15. Műszerek és mérések 3.15.1. A mérés fogalma Hagyományos értelmezés szerint a mérés egy fizikai mennyiség nagyságának meghatározása a választott mértékegységben kifejezett számértékével. A mérési

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

DIGITÁLIS, FÉNYERŐSSÉGET MÉRŐ MŰSZER. Model AX-L230. Használati útmutató

DIGITÁLIS, FÉNYERŐSSÉGET MÉRŐ MŰSZER. Model AX-L230. Használati útmutató DIGITÁLIS, FÉNYERŐSSÉGET MÉRŐ MŰSZER Model AX-L230 Használati útmutató I.HASZNÁLATI ÚTMUTATÓ Fényerősséget mérő digitális mérőműszer precíziós készülék, amely méri a környezet fényerősségét (lux, lábgyertyafény).

Részletesebben

Mikrokontrollerek és alkalmazásaik Beadandó feladat

Mikrokontrollerek és alkalmazásaik Beadandó feladat Mikrokontrollerek és alkalmazásaik Beadandó feladat Digitális hőmérősor Sándor Máté Csaba, SAMPAT.ELTE A tantárgy félév végi feladataként egy önálló projekt elkészítését kaptuk feladatul. Én egy olyan

Részletesebben

TANULÓI KÍSÉRLET (2 * 30 perc) Mérések alapjai SNI tananyag. m = 5 kg

TANULÓI KÍSÉRLET (2 * 30 perc) Mérések alapjai SNI tananyag. m = 5 kg TANULÓI KÍSÉRLET (2 * 30 perc) A kísérlet, mérés megnevezése, célkitűzései : A mérés: A mérés során tervszerűen a természet jelenségiről szerzünk ismereteket. amelyek valamely fizikai, kémiai, csillagászati,

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 850D Digitális Lakatfogó Multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Biztonsági figyelmeztetés... 2 3. Előlap és kezelőszervek... 2 4. Műszaki jellemzők... 3 5. Mérési jellemzők...

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 760A Digitális multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Előlap és kezelőszervek... 2 3. Általános tulajdonságok... 3 4. Mérési tulajdonságok... 3 5. A Multiméter használata...

Részletesebben

Robotika. Relatív helymeghatározás Odometria

Robotika. Relatív helymeghatározás Odometria Robotika Relatív helymeghatározás Odometria Differenciális hajtás c m =πd n /nc e c m D n C e n = hány mm-t tesz meg a robot egy jeladó impulzusra = névleges kerék átmérő = jeladó fölbontása (impulzus/ford.)

Részletesebben

A biztonsággal kapcsolatos információk. Model AX-C850. Használati útmutató

A biztonsággal kapcsolatos információk. Model AX-C850. Használati útmutató A biztonsággal kapcsolatos információk Model AX-C850 Használati útmutató Áramütés vagy testi sérülések elkerülése érdekében: Sosem csatlakoztasson két bemeneti csatlakozó aljzatra vagy tetszőleges bemeneti

Részletesebben

Pataky István Fővárosi Gyakorló Híradásipari és Informatikai Szakközépiskola. GVT-417B AC voltmérő

Pataky István Fővárosi Gyakorló Híradásipari és Informatikai Szakközépiskola. GVT-417B AC voltmérő Pataky István Fővárosi Gyakorló Híradásipari és Informatikai Szakközépiskola Elektronikus anyag a gyakorlati képzéshez GVT-417B AC voltmérő magyar nyelvű használati útmutatója 2010. Budapest Tartalomjegyzék

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

3.15. Műszerek és mérések. 3.15.1. A mérés fogalma

3.15. Műszerek és mérések. 3.15.1. A mérés fogalma 3.15. Műszerek és mérések 3.15.1. A mérés fogalma Hagyományos értelmezés szerint a mérés egy fizikai mennyiség nagyságának meghatározása a választott mértékegységben kifejezett számértékével. A mérési

Részletesebben

Digitális mérések PTE Fizikai Intézet

Digitális mérések PTE Fizikai Intézet Digitális mérések PTE Fizikai Intézet 1 1. A digitális mérés elve A számolás legősibb "segédeszköze" az ember tíz ujja. A tízes számrendszer kialakulása is ehhez köthető. A "digitális" kifejezés a latin

Részletesebben

OP-300 MŰSZAKI ADATOK

OP-300 MŰSZAKI ADATOK OP-300 Félautomata, mikrokontrolleres vezérlésű, hálózati táplálású, asztali készülék fóliatasztatúrával 40 karakter, alfanumerikus LCD, háttérvilágítással i tartományok Felbontás ph 0,000... 14,000 ph

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

Ismeretlen négypólus jellemzése

Ismeretlen négypólus jellemzése Feladatlap Ismeretlen négypólus jellemzése Először olvassa végig ezt a feladatlapot, s csak azután kezdjen munkához! Kiadott eszközök: - 1 db műanyag doboz (a mérés objektuma) - 2 db MASTECH M-830B típusú

Részletesebben

Kontrol kártyák használata a laboratóriumi gyakorlatban

Kontrol kártyák használata a laboratóriumi gyakorlatban Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak

Részletesebben

Ultrahangos távolságmérő. Modell: JT-811. Használati útmutató

Ultrahangos távolságmérő. Modell: JT-811. Használati útmutató Ultrahangos távolságmérő Modell: JT-811 Használati útmutató I. Funkciók 1) A mérés angolszász/metrikus mértékegységekben 2) Lehetőség van a kezdeti mérési pont kiválasztására 3) Adatrögzítés/adatok előhívása

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 760C Digitális multiméter TARTALOMJEGYZÉK 1. Bevezetés... 2 2. Előlap és kezelőszervek... 2 3. Általános tulajdonságok... 3 4. Mérési tulajdonságok... 3 5. A Multiméter használata...

Részletesebben

Országos Szakiskolai Közismereti Tanulmányi Verseny 2008/2009 MATEMATIKA FIZIKA

Országos Szakiskolai Közismereti Tanulmányi Verseny 2008/2009 MATEMATIKA FIZIKA Országos Szakiskolai Közismereti Tanulmányi Verseny 2008/2009 MATEMATIKA FIZIKA III. (országos) forduló 2009. április 17. Kecskeméti Humán Középiskola, Szakiskola és Kollégium Széchenyi István Idegenforgalmi

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben