Peltier-elemek vizsgálata

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Peltier-elemek vizsgálata"

Átírás

1 Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: :00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre jellemző seebeck együttható pontos ismerete nagyon fontos, ugyanis belőle származtatható a Peltier-együttható és a jósági tényező is. A Seebeck együttható közvetlen kimérésének egyik módja az, hogy a Peltier-elem két oldalán különbséget hozunk létre, amellyel arányos termofeszültséget tudunk mérni (vagyis lényegében termoelemként működtetjük az eszközt). Az arányossági tényező lesz a keresett Seebeck együttható. A méréshez Vankó Péter tanár úrtól kapott mérőeszközt használtuk, amelyben a meleg oldal ét egy fűtőellenállással tudtuk beállítani, a hideg oldalát pedig vízhűtéssel közel egyenletes en tartottuk. A eket Lucsányi Dávid tulajdonában lévő interface-szekkel mértük, melyek pontossága vitatott, a hibája T=0,1 K-nek becsülhető. A legfőbb hibaforrás azonban a multiméter, amelynek pontossága ismét csak becsülhető, U=5 mv. A mért adatokat táblázatba foglaltuk: feszültsé g (mv) felső ( C) alsó ( C) T( C) 35,3 20,7 14,6 6, ,8 14, ,5 14,9 10, ,1 11, ,2 12, ,5 13, ,7 14, ,9 15, ,2 15, ,5 16, ,7 17, ,4 18, ,7 19, ,4 20,6

2 ,6 21, ,9 22, ,1 23, ,5 25, ,7 26, ,5 20,3 28, ,4 28, ,5 29, , , ,5 21,4 31, ,6 31, ,8 32, ,2 32, ,5 33, ,8 34, ,2 34, ,5 35, ,9 36,1 Ábrázolva, a mérési leírástól egy előjellel eltérve: A Seebeck együttható így:

3 A kapott eredmény hibáját itt az egyenes illesztés hibájával becsültem. A későbbiekben, mivel módunkban áll a Seebeck együtthatót másképpen is meghatározni, ezért az eredményünket ellenőrizni fogjuk. II. Minimális áram meghatározása, Seebeck-együttható ellenőrzése A Peltier-elemeknél fontos tisztázni, hogy a külső től és a rajtuk átfolyó áramtól a hideg oldal e hogyan függ. Ez a függvény egy minimummal bíró polinomiális függvény, amely azt jelenti, hogy adott külső hez mindig tartozik egy olyan áram, amely mellett a meleg és hideg oldal között kialakuló különbség maximális. A mérési elrendezésben a Peltier-elemet egy alulról manuálisan szabályozható vízhűtésű alumínium kockával szabályoztuk (meleg oldal) és nagy pontossággal állandó en tartottuk, a hideg oldalra pedig egy jól hőszigetelt szintén alumínium kockát helyeztünk. Így a hideg oldalról elvonandó hőt a kocka lehűtése, illetve a nem ideális szigetelés miatti hőáram jelenléte okozta. Kivárva a közel stacioner állapotot leolvastuk a Peltier-elemen átfolyó áramot és az ahhoz tartozó hideg oldali et. A mért adataink: felső ( C) felső (K) alsó ( C) I (A) U (V) 29,6 302,8 40,1 0,99 1,7 18,8 292,0 40,1 2 3,3 9,9 283,1 40,3 3,01 4, ,2 40,2 4 6,2 0,2 273,4 40 4,51 6, ,2 40 4,75 7,2-1,8 271,4 40,4 5 7,5-2,3 270,9 42,5 5,5 8,3 Az utolsó mérési pontot kivéve ábrázoltam az adatokat és egy negyedfokú függvényt illesztettem rájuk.

4 Az illesztett függvény: Ennek a függvénynek a minimuma, amelyhez tartozó minimum. Megjegyzendő, hogy azzal hogy nem mértünk a számított minimális áram környékén egyfajta elvi hibát vétettünk, mert szükség lett volna az illesztéshez még néhány mérés pontra. Technikai okokból azonban erre nem volt lehetőségünk, mert nem tudtuk a meleg oldal ét azonos értéken tartani nagy teljesítmények esetén (a vízhűtés az átfolyó víz kis keresztmetszete miatt nem bizonyult elég jónak). Az alábbi függvényt felhasználva ellenőrizhetjük (nem kellően nagy pontossággal) a Seebeck-együttható értékét is: A Peltier-elem ellenállásnak pontos ismeretéhez felhasználjuk a gyártó által közzétett ellenállásértékeket, amelyet a Peltier meleg oldalának függvényében adtak meg: R( = 25 C) = 1,08 Ω R( = 50 C) = 1,24 Ω Mivel az általunk vizsgált tartomány nem nagy (< 100 C), ezért feltételezhetjük, hogy az ellenállás függése lineáris. Ezzel a közelítéssel az adott meleg oldali hez tartozó ellenállás képlete:

5 Az ellenállás hibáját -val becsüljük, a mért ek hibája. Az innen számított Seebeck-együttható: A kapott eredmény láthatóan nagyságrendileg megegyezik a mért értékkel, az eltérés is mindössze 5%. Az eltérés oka az ellenállás hibája lehet (5%-os tűrés esetén - amely ilyesfajta félvezetőknél, illetve ilyen kis ellenállásnál teljesen normális - máris a közvetlenül mért értéket kapjuk hibahatáron belül). A további számításokban természetesen az első feladatban mért együttható értéket fogjuk használni, annak nagyobb pontossága miatt. III. A jósági szám kiszámítása A mérési leírásban levezett összefüggések alapján ezt az alábbi képlettel tudjuk megadni, amelyben immár minden tényezőt ismerünk: Ebből z-t expliciten kifejezve: A kapott eredmény egyezik nagyságrendileg az irodalmi értékkel ( becsülni. ), hibáját nem tudtam IV. Peltier együttható kiszámítása A bevezetőben láttuk, hogy a Peltier együtthatót megadó összefüggés a következő:

6 V. Hővezetési tényező kiszámítása Szükségünk lesz a további számításokhoz a Peltier-elem hővezetési tényezőjének kiszámítására ( ) is, amely kifejezhető az alábbi képletből: Az eredmény kicsit nagy, mert ilyen jó hővezetési tényezője a réznek van ( ), de nagyságrendileg stimmel a számításunk. Tehát a hővezetése a Peltier-elemeknek igen nagy, ami nem meglepő tény, hiszen csak így képesek hatékony hőszivattyúként funkcionálni. A jósági szám hibáját a hibaszámításban z = 0,00001-nek vettem.

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

A Peltier-termoelem jellemzőinek mérése

A Peltier-termoelem jellemzőinek mérése A Peltier-termoelem jellemzőinek mérése Készítette: Németh Balázs Tartalomjegyzék: A PELTIER-ELEM TÖRTÉNETE... 2 A PELTIER-ELEM MŰKÖDÉSE... 3 Seebeck-effektus... 3 Peltier-effektus... 3 Juole-hő... 3 Thomson-effektus...

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát! Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

Nagyteljesítményű LEDek fénytechnikai és elektromos tulajdonságai valós működési körülmények között

Nagyteljesítményű LEDek fénytechnikai és elektromos tulajdonságai valós működési körülmények között tulajdonságai valós működési körülmények között 2012.02. 07 MEE-VTT 3. LED konferencia Előadó: SZEGULJA, Márton (M.Eng) 1 a) c) b) d) 1. Ábra: Mérőhelyek és mérőberendezések: a) LED mérőhely FH-Hannover;

Részletesebben

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA Három követelményszint: az épületek összesített energetikai jellemzője E p = összesített energetikai jellemző a geometriai viszonyok függvénye (kwh/m

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

A mérési feladat (1) A fotoellenállás R ellenállása függ a megvilágítás erősségétől (E), amely viszont arányos az izzószál teljesítmény-sűrűségével:

A mérési feladat (1) A fotoellenállás R ellenállása függ a megvilágítás erősségétől (E), amely viszont arányos az izzószál teljesítmény-sűrűségével: A mérési feladat 1900-ban Planck felvetett egy új hipotézist, miszerint a fény kibocsátása hv nagyságú energiakvantumokban történik. 1905-ben Einstein kiegészítette ezt a feltevést: a fény a kibocsátás

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Segédlet az ADCA szabályzó szelepekhez

Segédlet az ADCA szabályzó szelepekhez Segédlet az ADCA szabályzó szelepekhez Gőz, kondenzszerelvények és berendezések A SZELEP MÉRETEZÉSE A szelepek méretezése a Kv érték számítása alapján történik. A Kv érték azt a vízmennyiséget jelenti

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Szabályozói tőkeköltség-számítás a távközlési piacon 2014. december 31-re vonatkozóan

Szabályozói tőkeköltség-számítás a távközlési piacon 2014. december 31-re vonatkozóan Szabályozói tőkeköltség-számítás a távközlési piacon 2014. december 31-re vonatkozóan VEZETŐI ÖSSZEFOGLALÓ 2015. MÁJUS 14. 1 Vezetői Összefoglaló A dokumentum háttere és célja 1.1 A Deloitte Üzletviteli

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

Előadó: Érseki Csaba http://ersekicsaba.hu

Előadó: Érseki Csaba http://ersekicsaba.hu Előadó: Érseki Csaba http://ersekicsaba.hu Extruder szerszámok fajtái: Csőszerszámok Lemezszerszámok Profilszerszámok Az extruder szerszámok funkciója: Egyenletes áramlási sebességgel kilépő megfelelő

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

III. LED konferencia Lambert Miklós

III. LED konferencia Lambert Miklós III. LED konferencia Lambert Miklós lambert@milambi.hu A LED mint világítóeszköz Fizikai folyamat: A pn átmenetben folyó áram fotonokat gerjeszt A világításcélú LED látható fényt emittál Nincs ultraibolya

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése Szegény Zsigmond WESSLING Közhasznú Nonprofit Kft., Jártassági Vizsgálati Osztály szegeny.zsigmond@qualcoduna.hu 2014.01.21. 2013.

Részletesebben

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Autovalidálási folyamatok Lókiné Farkas Katalin Az autovalidálás elméleti alapjai Az előző eredménnyel való összehasonlítás

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója 1.) Általános tudnivalók: A segédtábla két méretben készül, 10, és 50 sort lehet kitölteni. A tábla megnevezéséből amit

Részletesebben

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN.

ELLENÁLLÁSMÉRÉS. A mérés célja. Biztonságtechnikai útmutató. Mérési módszerek ANALÓG UNIVERZÁLIS MŰSZER (MULTIMÉTER) ELLENÁLLÁSMÉRŐ MÓDBAN. ELLENÁLLÁSMÉRÉS A mérés célja Az egyenáramú hidakkal, az ellenállásmérő műszerekkel, az ellenállásmérő módban is használható univerzális műszerekkel végzett ellenállásmérés módszereinek, alkalmazási sajátosságainak

Részletesebben

Átszámítások különböző alapfelületek koordinátái között

Átszámítások különböző alapfelületek koordinátái között Átszámítások különböző alapfelületek koordinátái között A különböző időpontokban, különböző körülmények között rögzített pontok földi koordinátái különböző alapfelületekre (ellipszoidokra geodéziai dátumokra)

Részletesebben

Hőszivattyús földhőszondák méretezésének aktuális kérdései.

Hőszivattyús földhőszondák méretezésének aktuális kérdései. Magyar Épületgépészek Szövetsége - Magyar Épületgépészeti Koordinációs Szövetség Középpontban a megújuló energiák és az energiahatékonyság CONSTRUMA - ENEO 2010. április 15. Hőszivattyús földhőszondák

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

RPS-1 ph/rx. Felhasználói leírás

RPS-1 ph/rx. Felhasználói leírás RPS-1 ph/rx Felhasználói leírás Ring Elektronika Ipari és Elektronika Kft. Budapest 1031 Pákász u. 7. Tel/Fax:+3612420718, Mobil: 06209390155 e-mail: ring.elektronika@mail.datanet.hu web: www.ringel.hu

Részletesebben

SZIGETELŐANYAGOK VIZSGÁLATA

SZIGETELŐANYAGOK VIZSGÁLATA SZIGETELŐANYAGOK VIZSGÁLATA Szigetelési ellenállás mérése A villamos szigetelőanyagok és szigetelések egyik legfontosabb jellemzője a szigetelési ellenállás. Szigetelési ellenálláson az anyagra kapcsolt

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Sörkollektor 2012.08.

Sörkollektor 2012.08. Sörkollektor 2012.08. 1. Sörösdoboz rudak A dobozok felső részét köszörüléssel az alját pedig egy bútorlapba süllyesztve rögzített sarokcsiszolóval távolítottuk el. A lemez sorja egy éles késsel illetve

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 1. A gyakorlat célja: Az inkrementális adók működésének megismerése. Számítások és szoftverfejlesztés az inkrementális adók katalógusadatainak feldolgozására

Részletesebben

4. Pneumatikus útszelepek működése

4. Pneumatikus útszelepek működése 4. Pneumatikus útszelepek működése Elektromos, direkt vezérlésű szelepek működése A közvetlen, vagy direkt vezérlésű útszelepek szerkezeti kialakításuk szerint - jellemzően - ülékes szelepek, ahol a szeleptányér

Részletesebben

Cseppfolyós halmazállapotú közegek. hőtranszport-jellemzőinek számítása. Gergely Dániel Zoltán

Cseppfolyós halmazállapotú közegek. hőtranszport-jellemzőinek számítása. Gergely Dániel Zoltán Cseppfolyós halmazállapotú közegek hőtranszport-jellemzőinek számítása Gergely Dániel Zoltán Bevezetés Ez a segédlet elsősorban a Pécsi Tudományegyetem Pollack Mihály Műszaki és Informatikai kar Gépészmérnök

Részletesebben

Gyártási termelési folyamat és a Microsoft Dynamics AX 2012 R2 logisztikai szolgáltatások

Gyártási termelési folyamat és a Microsoft Dynamics AX 2012 R2 logisztikai szolgáltatások Gyártási termelési folyamat és a Microsoft Dynamics AX 2012 R2 logisztikai szolgáltatások Ez a dokumentum gépi fordítással készült, emberi beavatkozás nélkül. A szöveget adott állapotában bocsátjuk rendelkezésre,

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. május 13. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. május 13. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Nyári gyakorlat teljesítésének igazolása Hiányzások

Nyári gyakorlat teljesítésének igazolása Hiányzások Nyári gyakorlat teljesítésének igazolása Hiányzások - - Az összefüggő szakmai gyakorlatról hiányozni nem lehet. Rendkívüli, nem tervezhető esemény esetén az igazgatóhelyettest kell értesíteni. - A tanulók

Részletesebben

Kéziműszerek. 4-állású kézikapcsoló: V AC / V DC / DC A / Ω. DC árammérés: Pontosság feszültség: ±(1,2%+10d)

Kéziműszerek. 4-állású kézikapcsoló: V AC / V DC / DC A / Ω. DC árammérés: Pontosság feszültség: ±(1,2%+10d) A zsebméretű multiméter egy es kijelzővel rendelkező univerzális mérőműszer, amely forgókapcsolóval és 4-állású kézikapcsolóval rendelkezik. Alkalmas feszültség, ellenállás, egyenáram, dióda és folytonosság

Részletesebben

FIT-jelentés :: 2013. Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. OM azonosító: 036611 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2013. Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. OM azonosító: 036611 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Szabályozói tőkeköltség-számítás a távközlési piacon 2011. december 31-re vonatkozóan

Szabályozói tőkeköltség-számítás a távközlési piacon 2011. december 31-re vonatkozóan Szabályozói tőkeköltség-számítás a távközlési piacon 2011. december 31-re vonatkozóan VEZETŐI ÖSSZEFOGLALÓ 2012. MÁJUS 7. 1 Vezetői Összefoglaló A dokumentum háttere és célja 1.1 A Deloitte Üzletviteli

Részletesebben

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Bulgárföldi Általános és Magyar - Angol Két Tanítási Nyelvű Iskola 3534 Miskolc, Fazola H u. 2. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: 2013. Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: 035252 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2013. Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: 035252 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 10. évfolyam :: 4 évfolyamos gimnázium Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban a 10.

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Dr Lakatos Mária BME Pénzügyek Tanszék. Lakatos Mária

Dr Lakatos Mária BME Pénzügyek Tanszék. Lakatos Mária Dr BME Pénzügyek Tanszék Általában az adó- illetve társadalombiztosítási elvonási rendszer két külön, egymástól független rendszerként jelenik meg, kettőjük kölcsönhatását alig, vagy nem elemezték eddig

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

Intelligens Rendszerek Elmélete. Technikai érzékelők

Intelligens Rendszerek Elmélete. Technikai érzékelők Intelligens Rendszerek Elmélete Dr. Kutor László Technikai érzékelők http://mobil.nik.bmf.hu/tantargyak/ire.html Login: ire jelszó: IRE07 IRE 3/1 Mitől okos (intelligens?) egy technika? 1. Érzékelés (érzékszervek)

Részletesebben

Kalibráló készülékek. Height Master Oldal 343. Check Master Oldal 347. Kalibráló eszközök Oldal 352

Kalibráló készülékek. Height Master Oldal 343. Check Master Oldal 347. Kalibráló eszközök Oldal 352 Kalibráló készülékek Height Master Oldal 343 Check Master Oldal 347 Kalibráló eszközök Oldal 352 342 Digitális Height Master Funkciók ZERO/ABS DATA / HOLD Auto kikapcsolás (< 20 perc) Riasztás alacsony

Részletesebben

FIT-jelentés :: 2012. Erzsébet Utcai Általános Iskola 1043 Budapest, Erzsébet u. 31. OM azonosító: 034862 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Erzsébet Utcai Általános Iskola 1043 Budapest, Erzsébet u. 31. OM azonosító: 034862 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Erzsébet Utcai Általános Iskola 1043 Budapest, Erzsébet u. 31. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon

Részletesebben

A HATÉKONYSÁG. Ecodesign-irányelvek a nagyobb környezettudatosság érdekében

A HATÉKONYSÁG. Ecodesign-irányelvek a nagyobb környezettudatosság érdekében HTÉKONYSÁG NYER Ecodesign-irányelvek a nagyobb környezettudatosság érdekében 20%... több megújuló energia... kevesebb elsődleges energiafelhasználás... kisebb CO 2 -kibocsátás z Európai Unió magas célokat

Részletesebben

Készletgazdálkodás. TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor

Készletgazdálkodás. TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor Készletgazdálkodás TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor KÉSZLET A készlet az üzletben lévı áruk értékének összessége. A vállalkozás

Részletesebben

Height Master Oldal 345. Check Master Oldal 349. Kalibráló eszközök Oldal 354

Height Master Oldal 345. Check Master Oldal 349. Kalibráló eszközök Oldal 354 Kalibráló készülékek Height Master Oldal 345 Check Master Oldal 349 Kalibráló eszközök Oldal 354 344 Digitális Height Master Funkciók ZERO/ABS DATA / HOLD Auto kikapcsolás (< 20 perc) Riasztás alacsony

Részletesebben

FIT-jelentés :: 2012. Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a OM azonosító: 027445 Telephely kódja: 001

FIT-jelentés :: 2012. Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a OM azonosító: 027445 Telephely kódja: 001 FIT-jelentés :: 2012 10. évfolyam :: Szakiskola Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a Létszámadatok A telephely létszámadatai a szakiskolai képzéstípusban

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

Távhőszolgáltatás és fogyasztóközeli megújuló energiaforrások

Távhőszolgáltatás és fogyasztóközeli megújuló energiaforrások szolgáltatás és fogyasztóközeli megújuló energiaforrások Pécs, 2010. szeptember 14. Győri Csaba műszaki igazgatóhelyettes Németh András üzemviteli mérnök helyett/mellett megújuló energia Megújuló Energia

Részletesebben

FIT-jelentés :: 2013. Jókai Mór Általános Iskola 7622 Pécs, Jókai Mór u. 49. OM azonosító: 027249 Telephely kódja: 006. Telephelyi jelentés

FIT-jelentés :: 2013. Jókai Mór Általános Iskola 7622 Pécs, Jókai Mór u. 49. OM azonosító: 027249 Telephely kódja: 006. Telephelyi jelentés FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Jókai Mór Általános Iskola 7622 Pécs, Jókai Mór u. 49. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon Tanulók

Részletesebben

FIT-jelentés :: 2012. Krúdy Gyula Általános Iskola 1037 Budapest, Gyógyszergyár u. 22-24. OM azonosító: 035361 Telephely kódja: 001

FIT-jelentés :: 2012. Krúdy Gyula Általános Iskola 1037 Budapest, Gyógyszergyár u. 22-24. OM azonosító: 035361 Telephely kódja: 001 FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Krúdy Gyula Általános Iskola 1037 Budapest, Gyógyszergyár u. 22-24. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6.

Részletesebben

FIT-jelentés :: 2014. Dabasi II. Rákóczi Ferenc Általános Iskola 2371 Dabas, Rákóczi Ferenc utca 2. OM azonosító: 037749 Telephely kódja: 001

FIT-jelentés :: 2014. Dabasi II. Rákóczi Ferenc Általános Iskola 2371 Dabas, Rákóczi Ferenc utca 2. OM azonosító: 037749 Telephely kódja: 001 FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Dabasi II. Rákóczi Ferenc Általános Iskola 2371 Dabas, Rákóczi Ferenc utca 2. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

FIT-jelentés :: 2012. Ady Endre Általános Iskola 2360 Gyál, Ady Endre u. 20. OM azonosító: 032478 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Ady Endre Általános Iskola 2360 Gyál, Ady Endre u. 20. OM azonosító: 032478 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Ady Endre Általános Iskola 2360 Gyál, Ady Endre u. 20. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon Tanulók

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

FIT-jelentés :: 2012. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2012. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2012 10. évfolyam :: Szakközépiskola Sághy Mihály Szakképző Iskola, Középiskola és Kollégium, a Csongrádi Oktatási Központ, Gimnázium, Szakképző Iskola és Kollégium Tagintézménye 6640 Csongrád,

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Termisztor és termoelem jelleggörbéjének felvétele

Termisztor és termoelem jelleggörbéjének felvétele ermisztor és termoelem jelleggörbéjének felvétele Hımérıként használható bármely fizikai jelenség, pl. kereszteffektus (ismert pontosságú) Gázhımérı: térfogati hıtágulási együttható Folyadékhımérı: vonalmenti

Részletesebben

FIT-jelentés :: 2012. Epreskerti Általános Iskola 4030 Debrecen, Epreskert u. 80. OM azonosító: 200020 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Epreskerti Általános Iskola 4030 Debrecen, Epreskert u. 80. OM azonosító: 200020 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Epreskerti Általános Iskola 4030 Debrecen, Epreskert u. 80. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 6. évfolyamon

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Fáy András Református Általános Iskola és Alapfokú Művészeti Iskola 2217 Gomba, Iskola utca 2. Létszámadatok A telephely létszámadatai az általános

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

RPS-1 ph/cl. Felhasználói leírás

RPS-1 ph/cl. Felhasználói leírás RPS-1 ph/cl Felhasználói leírás Ring Elektronika Ipari és Elektronika Kft. Budapest 1031 Pákász u. 7. Tel/Fax:+3612420718, Mobil: 06209390155 e-mail: ring.elektronika@mail.datanet.hu web: www.ringel.hu

Részletesebben

FIT-jelentés :: 2014. Esztergomi Babits Mihály Általános Iskola 2500 Esztergom, Sugár út 24. OM azonosító: 031815 Telephely kódja: 001

FIT-jelentés :: 2014. Esztergomi Babits Mihály Általános Iskola 2500 Esztergom, Sugár út 24. OM azonosító: 031815 Telephely kódja: 001 FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Esztergomi Babits Mihály Általános Iskola 2500 Esztergom, Sugár út 24. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Dunabogdányi Általános Iskola és Alapfokú Művészeti Iskola 2023 Dunabogdány, Hegyalja utca 9-11. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2014. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2014 6. évfolyam :: Általános iskola Grassalkovich Antal Német Nemzetiségi és Kétnyelvű Általános Iskola 2220 Vecsés, Fő utca 90-92. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: 2013 Telephelyi jelentés 6. évfolyam :: Általános iskola Herman Ottó Általános Iskola és Budaörsi Logopédiai Intézet

FIT-jelentés :: 2013 Telephelyi jelentés 6. évfolyam :: Általános iskola Herman Ottó Általános Iskola és Budaörsi Logopédiai Intézet FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Herman Ottó Általános Iskola és Budaörsi Logopédiai Intézet 2040 Budaörs, Ifjúság u. 6. Létszámadatok A telephely létszámadatai az általános iskolai

Részletesebben

Passzív házak. Ni-How Kft. 8200 Veszprém Rozmaring u.1/1. Tel.: 3670-253-8749 nyilaszarocentrum.com@gmail.com www.nyilaszaro-centrum.

Passzív házak. Ni-How Kft. 8200 Veszprém Rozmaring u.1/1. Tel.: 3670-253-8749 nyilaszarocentrum.com@gmail.com www.nyilaszaro-centrum. Passzív házak Ni-How Kft. 8200 Veszprém Rozmaring u.1/1. Tel.: 3670-253-8749 nyilaszarocentrum.com@gmail.com www.nyilaszaro-centrum.com 2014.08.12. 1 Passzív ház Olyan épület, amelyben a kényelmes hőmérséklet

Részletesebben

PC-Kismester verseny második forduló feladatai. Beküldési határidő: 2014. február 22.

PC-Kismester verseny második forduló feladatai. Beküldési határidő: 2014. február 22. PC-Kismester XVII. informatikai verseny feladatok 1. oldal, összesen: 7 5-8. osztály PC-Kismester verseny második forduló feladatai Beküldési határidő: 2014. február 22. Informatikai alapismeretek 1. Egy

Részletesebben

FIT-jelentés :: 2014. Szentendrei Református Gimnázium 2000 Szentendre, Áprily tér 5. OM azonosító: 101433 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2014. Szentendrei Református Gimnázium 2000 Szentendre, Áprily tér 5. OM azonosító: 101433 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2014 6. évfolyam :: 8 évfolyamos gimnázium Szentendrei Református Gimnázium 2000 Szentendre, Áprily tér 5. Létszámadatok A telephely létszámadatai a 8 évfolyamos gimnáziumi képzéstípusban

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére

Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére Csepeli Zsolt Bereczki Péter Kardos Ibolya Verő Balázs Workshop Miskolc, 2013.09.06. Előadás vázlata Bevezetés Vizsgálat célja,

Részletesebben

FIT-jelentés :: 2013. Telephelyi jelentés. 6. évfolyam :: Általános iskola

FIT-jelentés :: 2013. Telephelyi jelentés. 6. évfolyam :: Általános iskola FIT-jelentés :: 2013 6. évfolyam :: Általános iskola Vörösmarty Mihály Általános Iskola, Gimnázium és Alapfokú Művészetoktatási Intézmény 2475 Kápolnásnyék, Gárdonyi u. 29. Létszámadatok A telephely létszámadatai

Részletesebben

FIT-jelentés :: 2012. Balassi Bálint Általános Iskola és Előkészítő Szakiskola 3300 Eger, Malomárok utca 1. OM azonosító: 031462 Telephely kódja: 004

FIT-jelentés :: 2012. Balassi Bálint Általános Iskola és Előkészítő Szakiskola 3300 Eger, Malomárok utca 1. OM azonosító: 031462 Telephely kódja: 004 FIT-jelentés :: 2012 6. évfolyam :: Általános iskola Balassi Bálint Általános Iskola és Előkészítő Szakiskola 3300 Eger, Malomárok utca 1. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

H I R D E T M É N Y - LAKOSSÁGI HITELEK

H I R D E T M É N Y - LAKOSSÁGI HITELEK Tiszavasvári Takarékszövetkezet 4440 Tiszavasvári, Kossuth L. út 1. H I R D E T M É N Y - LAKOSSÁGI HITELEK 2011. augusztus 01-től Kiegészítő Kamattámogatásos építési és új lakásvásárlási hitel 2008. november

Részletesebben

VM KÖZÉP-MAGYARORSZÁGI AGRÁR- SZAKKÉPZŐ KÖZPONT, BERCSÉNYI MIKLÓS ÉLELMISZERIPARI SZAKKÉPZŐ ISKOLA, KOLLÉGIUM ÉS VM

VM KÖZÉP-MAGYARORSZÁGI AGRÁR- SZAKKÉPZŐ KÖZPONT, BERCSÉNYI MIKLÓS ÉLELMISZERIPARI SZAKKÉPZŐ ISKOLA, KOLLÉGIUM ÉS VM FIT-jelentés :: 2013 VM KÖZÉP-MAGYARORSZÁGI AGRÁR- SZAKKÉPZŐ KÖZPONT, BERCSÉNYI MIKLÓS ÉLELMISZERIPARI SZAKKÉPZŐ ISKOLA, KOLLÉGIUM ÉS VM GYAKORLÓISKOLA, BUDAPEST 1106 Budapest, Maglódi út 4/b Az intézmény

Részletesebben

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége LINEÁRIS VEKTORTÉR Kiegészítő anyag (Bércesné Noák Ágnes előadása) Vektorok függetlensége, függősége Vektortér V 0 Halmaz T test : + ; + ; Abel csoport V elemeit ektoroknak neezzük. Abel - csoport Abel

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Százalék, ötvözet, keverék számolás

Százalék, ötvözet, keverék számolás Százalék, ötvözet, keverék számolás 1) Egy pár cipő ára 270 Lei. Mivel nagyon fogyott, megemelték az árát 20%-kal. De így már nem fogyott annyira és úgy döntöttek, hogy leszállítják az árát 20%-kal. Mennyi

Részletesebben