7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
|
|
- Lőrinc Gál
- 1 évvel ezelőtt
- Látták:
Átírás
1 7. Mágneses szuszceptibilitás mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2 1. A mérési összeállítás A mérési összeállítás sematikus ábrája látható az 1. ábrán. A mágneses teret egy elektromágnessel hozzuk létre, aminek a tápegységgel változtatható az árama, tehát változtatható a mágneses tér nagysága. A mágneses térbe egy Hall-szondát erősítettünk melynek az árama beállítható, és mérjük rajta a Hallfeszültséget. A Hall-szonda hitelesítéséhez a Leybold-típusú fluxusmérőt használjuk. A minta szuszceptibilitásának meghatározásához az analitikai mérlegre akasztjuk a mintát, és mérjük mennyit változik a tömege, vagyis mekkora erő hat rá a mágneses tér hatására. 1. ábra. Szuszceptibilitás mérése Gouy-módszerrel 2. A mérés ismertetése Az első része a mérésnek a Hall-szonda hitelesítése. A fluxusmérő tekercset behelyezzük a mágnespofák közé. Beállítjuk a Hall-áramot. A fluxusmérő méréshatárát ra állítjuk. Kompenzáljuk az offset feszültséget az Auto Comp gomb megnyomásával. A mérési mód választót átkapcsoljuk Vs állásba és a potenciométerrel megállítjuk a kijelzőn megjelenő érték kúszását. Ezután a Reset 1
3 móddal nullázzuk az integrátort. Visszakapcsoljuk a Vs módot és a mérőtekercset lassan kihúzzuk a mágneses térből. A nullázást és a mérőtekercs kihúzását megismételjük különböző áramerősségek esetén, és minden esetben felírjuk a kijelzőn megjelenő fluxusváltozást. A második részben minden egyes mintának kell meghatározni a szuszceptibilitását. Az áramot kikapcsoljuk, mintát a mérlegre akasztjuk, és feltesszük az elektromágnes fedőlapját. Tárazzuk a mérleget, hogy a kijelző nullázódjon. Beállítjuk a Hall-áramot. Ezután a különböző áramok esetén felírjuk a mintára ható erőt (illetve az F/g értékeket), és a Hall-feszültséget. Ugyanezeket megismételjük minden minta esetében, illetve megmérjük minden minta geometriai adatait. Végül a Hall-szonda RH d állandóját ellenőrizzük úgy, hogy állandó B indukcióérték mellett mérjük a különböző I H Hall-áramokhoz tartozó U H Hallfeszültséget. 3. A Hall-szonda hitelesítése A 2. mérőhelyen mértem, ahol a mérőtekercs adatai: r k = (4, 80 ± 0, 05)mm, r b = (3, 15 ± 0, 05)mm, n = 194. Ezekből az adatokból a mágneses tér kiszámolható adott fluxus esetén: B = φ nf ahol F az átlagos menetfelület, amit az alábbi összefüggés határoz meg: F = π 3 (r2 k + r k r b + r 2 b) Az 1. táblázatban feltüntettük a gerjesztő áramot (I), a mért Hall-feszültséget (U H ), a mért fluxusváltozást (φ), illetve a fluxusváltozásból számolt mágneses indukciót (B). I(A) U H (mv ) φ(mv s) B(T) 0,0-1,4 0,09 0,0092 0,5 15,7 1,05 0,1075 1,0 33,3 2,05 0,2099 1,5 51,4 3,09 0,3163 2,0 68,9 4,06 0,4156 2,5 87,1 5,07 0,5190 3,0 104,1 6,10 0,6245 3,5 120,0 7,00 0,7166 4,0 134,2 7,71 0, táblázat. A Hall-szonda hitelesítési adatai A táblázat adataiból ábrázolhatjuk az adott I H = 5mA Hall-áram melletti B U H egyenest. Az adatpontok és az illesztett egyenes a 2. ábrán látható. 2
4 B(T) U H (mv ) 2. ábra. A Hall-szonda hitelesítési egyenese 5 ma-es Hall-áram esetén Az illesztett egyenes meredeksége: m = (5, 79 ± 0, 02) 10 3 T mv, tengelymetszete: b = (0, 017 ± 0, 002)T Tehát a hitelesítési egyenes egyenlete, amibe ezentúl behelyettesíthetjük az U H értékeket: B = 5, 79U H + 0, 017 Ebből az egyenesből meghatározható a Hall-szondára jellemző RH d következő képlet alapján: U H = R H d I HB állandó a Tehát ez alapján a mérés alapján RH d = (34, 5 ± 0, 3) V AT. Ugyanezt az állandót meghatározhatjuk úgy is, hogy állandó B mágneses indukció mellett az I H Hall-áram változtatásával mérjük az U H Hall-feszültséget. A mért adatokra illesztett egyenes meredekségéből az előző képlet alapján meghatározható az RH d állandó. Az állandó mágneses indukciót, I = 2A gerjesztő árammal hozzuk létre, ami az 1. táblázat alapján B = 0, 4156T mágneses indukciónak felel meg. Az összetartozó Hall-áram és Hall-feszültség párokat a 2. táblázatban rögzítettük: I H (ma) U H (mv ) I H (ma) U H (mv ) 3,5 48,6 5,5 76,8 4,0 55,6 6,0 83,8 4,5 62,6 6,5 90,1 5,0 69,8 7,0 95,3 2. táblázat. A Hall-szonda összetartozó árama és feszültsége 3
5 Az adatpontokat ábrázolva és egyenest illesztve rájuk a 3. ábrához jutunk. Az illesztett egyenes meredekségéből a Hall-szonda állandója: R H d = (33, 93 ± 0, 07) V AT Ez jó összhangban van az előző részben kiszámolt értékkel UH(mV ) I H (ma) 3. ábra. A Hall-szonda összetartozó árama és feszültsége 4. A minták szuszceptibilitásának meghatározása A szuszceptibilitás kiszámítására minden minta esetében a következő képletet használjuk, ahol A a minta keresztmetszete, κ 0 = 3, a levegő szuszceptibilitása és µ 0 = 4π 10 7 a vákuum permeabilitása. F = (κ κ 0)A 2µ 0 B 2 A képlet alapján az F B 2 adatpárokra egyenest illesztve, az egyenes m meredekségéből a minta mágneses szuszceptibilitása a következőképpen számolható: κ = κ 0 + 2µ 0m A A kapott érték hibáját a hibaterjedés szabályainak megfelelően a következőképpen számolhatjuk: κ κ = m m + A A A 12-es számú alumínium minta átmérője: d = (7, 74 ± 0, 01)mm, ebből a keresztmetszete: A = (47, 05±0, 06) 10 6 m 2. A szuszceptibilitás mérés adatait 4
6 F I(A) U H (mv ) g (mg) B(T) B2 (T 2 ) F(µN) táblázat. A 12-es számú minta szuszceptibilitás mérésének adatai és a 3. táblázatben rögzítettük. A B indukciót az U H Hall-feszültség hitelesítési egyenletbe való behelyettesítésével számoltuk. Az F B 2 adatpontok és a rájuk illesztett egyenes látható a 4. ábrán. Az illesztett egyenes meredeksége: m = (232, 7 ± 0, 5) 10 6 N T F(10 6 N) B 2 (T 2 ) 4. ábra. A 12-es számú minta szuszceptibilitásának mérése Behelyettesítés után a 12-es számú alumínium minta mágneses szuszceptibilitása: κ 12 = (1, 281 ± 0, 004) 10 5 A 19-es számú réz minta átmérője: d = (7, 965 ±0, 066)mm, ebből a keresztmetszete: A = (49, 8 ± 0, 8) 10 6 m 2. A szuszceptibilitás mérés adatait és a 4. táblázatben rögzítettük. Az F B 2 adatpontok és a rájuk illesztett egyenes látható a 5. ábrán. Az illesztett egyenes meredeksége: m = ( 161, 9 ± 0, 5) 10 6 N T 2. 5
7 F I(A) U H (mv ) g (mg) B(T) B2 (T 2 ) F(µN) táblázat. A 19-es számú minta szuszceptibilitás mérésének adatai F(10 6 N) B 2 (T 2 ) 5. ábra. A 19-es számú minta szuszceptibilitásának mérése Behelyettesítés után a 19-es számú réz minta mágneses szuszceptibilitása: κ 19 = ( 7, 79 ± 0, 15) 10 6 Az utolsó minta egy kissé ferromágneses anyagból készült cső. Ennek a csőnek a belső átmérője: r b = (5, 10 ± 0, 07)mm, a külső átmérője: r k = (7, 961 ± 0, 004)mm, és ezekből a keresztmetszete: A = (29, 35 ± 0, 31) 10 6 m 2 A szuszceptibilitás mérés adatait és a 5. táblázatben rögzítettük. Az F B 2 adatpontok és a rájuk illesztett egyenes látható a 6. ábrán. Az illesztett egyenes meredeksége: m = (36906, 6 ± 69, 95) 10 6 N T 2. Behelyettesítés után a cső alakú minta mágneses szuszceptibilitása: κ cso = (3, 16 ± 0, 04)
8 F I(A) U H (mv ) g (mg) B(T) B2 (T 2 ) F(µN) táblázat. A cső alakú minta szuszceptibilitás mérésének adatai F(10 6 N) B 2 (T 2 ) 6. ábra. A cső alakú minta szuszceptibilitásának mérése Mindhárom mérés eredménye visszaadta a várható értékeket, mégpedig azt, hogy az alumínium paramágneses, a réz diamágneses és a harmadik minta kis mértékben ferromágneses. 7
Mágneses szuszceptibilitás mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az
Mágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az
7. Mágneses szuszceptibilitás mérése
7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer
Mágneses szuszceptibilitás mérése
Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása
2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű
Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)
Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz
7. Mágneses szuszceptibilitás mérése
7. Mágneses szuszceptbltás mérése PÁPICS PÉTER ISTVÁN csllagász, 3. évfolyam 5.9.. Beadva: 5.9.9. 1. A -ES MÉRHELYEN MÉRTEM. Elször a Hall-szondát kellett htelesítenem. Ehhez RI H -t konstans (bár a mérés
3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc. Mérés dátuma: 28... Leadás dátuma: 28.. 8. . Mérések ismertetése A Peltier-elemek az. ábrán látható módon vannak elhelyezve
5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
5. Fajhő mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 08. Leadás dátuma: 2008. 10. 15. 1 1. A mérési összeállítás A mérés során a 6-os számú minta fajhőjét akarjuk meghatározni.
Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv
(-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk
Rugalmas állandók mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Félvezetk vizsgálata
Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak
(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely)
(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) Mérést végezte: Szalontai Gábor Mérőtárs neve: Nagy Dániel Mérés időpontja: 2012.11.22. Bevezető A hétköznapi és kézzelfogható
Mag-mágneses rezonancia
Mag-mágneses rezonancia jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csorba Ottó Mérés dátuma: 2010. március 25. Leadás dátuma: 2010. április 7. Mérés célja A labormérés célja a mag-mágneses
Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)
Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag
Mikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
2. Rugalmas állandók mérése
2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
Rugalmas állandók mérése
Rugalmas állandók mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/30/2011 Beadás ideje: 12/07/2011 1 1. A mérés rövid leírása Mérésem
8. Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése jegyzőkönyv
8. Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 11. 05. Leadás dátuma: 2008. 11. 19. 1 1. Mikroszkóp
= Φ B(t = t) Φ B (t = 0) t
4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy
MÁGNESES TÉR, INDUKCIÓ
Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses
Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben
Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
Folyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
MÁGNESESSÉG. Türmer Kata
MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak
Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.
A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység
Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II.
Oktatási Hivatal A 8/9. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja FIZIKÁBÓL II. kategóriában Feladat a Fizika Országos Középiskolai Tanulmányi Verseny harmadik fordulójára.
71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:
Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati
Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:
Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével
Mérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése
Tanév, félév 2010-11 I. félév Tantárgy Áramlástan GEÁTAG01 Képzés főiskola (BSc) Mérés A Nap Hét A mérés dátuma 2010 Dátum Pontszám Megjegyzés Mérési jegyzőkönyv M1 számú mérés Testek ellenállástényezőjének
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az
Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.
Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.
Kiegészítő tudnivalók a fizikai mérésekhez
Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók
Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv
(-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát
Atomi er mikroszkópia jegyz könyv
Atomi er mikroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc III. Mérés vezet je: Szabó Bálint Mérés dátuma: 2010. október 7. Leadás dátuma: 2010. október 20. 1. Mérés leírása A laboratóriumi mérés
Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:
Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása
A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.
MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -
3. Hangfrekvenciás mechanikai rezgések vizsgálata
3. Hangfrekvenciás mechanikai rezgések vizsgálata Tóth Bence fizikus,. évfolyam 005.03.04. péntek délelőtt beadva: 005.03.. . A mérés első részében a megvastagított végű rúd (a D jelű) felharmonikusait
1. Gauss-eloszlás, természetes szórás
1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális
Analóg-digitál átalakítók (A/D konverterek)
9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
EHA kód:...2009-2010-1f. As,
MŰSZAKI FIZIKA I. RMINB135/22/v/4 1. ZH A csoport Név:... Mérnök Informatikus EHA kód:...29-21-1f ε 1 As = 9 4π 9 Vm µ = 4π1 7 Vs Am 1) Két ± Q = 3µC nagyságú töltés közti távolság d = 2 cm. Határozza
Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013
Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)
A gravitáció összetett erőtér
A gravitáció összetett erőtér /Az indukált gravitációs erőtér című írás (hu.scribd.com/doc/95337681/indukaltgravitacios-terer) 19. fejezetének bizonyítása az alábbiakban./ A gravitációs erőtér felbontható
A II. kategória Fizika OKTV mérési feladatainak megoldása
Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett
NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok
Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves
Transzformátorok tervezése
Transzformátorok tervezése Többféle céllal használhatunk transzformátorokat, pl. a hálózati feszültség csökken-tésére, invertereknél a feszültség növelésére, ellenállás illesztésre, mérőműszerek méréshatárának
Napelem E2. 2.0 Bevezetés. Ebben a mérésben használt eszközök a 2.1 ábrán láthatóak.
2.0 Bevezetés Ebben a mérésben használt eszközök a 2.1 ábrán láthatóak. 2.1 ábra Az E2 mérésben használt eszközök. Az eszközök listája (lásd: 2.1 ábra): A: napelem B: napelem C: doboz rekeszekkel, melyekbe
4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára
4. feladat Géprajz-Gépelemek (GEGET4B) c. tárgyból a űszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TOKOS TENGELYKAPCSOLÓ méretezése és szerkesztése útmutató segítségével 1. Villamos motorról
Fizika 1 Elektrodinamika belépő kérdések
Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció
TARTALOM ÓVINTÉZKEDÉSEK 4 FELÉPÍTÉS 5 NYOMÓGOMBOK 6 MŰVELETEK 7. 1. Normál mérés 7. 2. Mérés tárával 7. 3. Instabil tömeg mérése 8
TELECOM TARTALOM ÓVINTÉZKEDÉSEK 4 FELÉPÍTÉS 5 NYOMÓGOMBOK 6 MŰVELETEK 7 1. Normál mérés 7 2. Mérés tárával 7 3. Instabil tömeg mérése 8 Automatikus kikapcsolás 8 MELLÉKELET 9 Az elem 9 Hibaüzenetek 9
EGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
Homogén testnek nevezzük az olyan testet, amelynek minden része ugyanolyan tulajdonságú. ρ = m V.
SZILÁRD TESTEK SŰRŰSÉGÉNEK MÉRÉSE 1. Elméleti háttér Homogén testnek nevezzük az olyan testet, amelynek minden része ugyanolyan tulajdonságú anyagból áll. Homogén például az üveg, a fémek, a víz, a lufiba
Kompenzációs kör vizsgálata. LabVIEW 7.1 4. előadás
Kompenzációs kör vizsgálata LabVIEW 7.1 4. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-4/1 Mágneses hiszterézis mérése előírt kimeneti jel mellett DAQ Rn Un etalon ellenállás etalon ellenállás
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint ÉETTSÉGI VIZSGA. május. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ NEMZETI EŐOÁS MINISZTÉIM Egyszerű, rövid feladatok
EPS-1-60 és EPS-1-120 HASZNÁLATI ÚTMUTATÓ
EPS-1-60 és EPS-1-120 HASZNÁLATI ÚTMUTATÓ BILLENTYŰZET 1) ON/OFF gomb: a mérleg ki- és bekapcsolása 2) TARE gomb: tárázás/nullázás 3) MODE gomb: mértékegység váltás MŰSZAKI PARAMÉTEREK 1) Méréshatár: 60.00kg
Modern fizika laboratórium
Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid
Peltier-elemek vizsgálata
Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre
Mágneses mező jellemzése
pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 4 ÉETTSÉGI VIZSGA 04. október. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ EMEI EŐFOÁSOK MINISZTÉIMA Egyszerű, rövid feladatok
V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3
5. gyakorlat. Tömegmérés, térfogatmérés, pipettázás gyakorlása tömegméréssel kombinálva. A mérési eredmények megadása. Sóoldat sőrőségének meghatározása, koncentrációjának megadása a mért sőrőség alapján.
Jelgenerálás virtuális eszközökkel. LabVIEW 7.1
Jelgenerálás virtuális eszközökkel (mágneses hiszterézis mérése) LabVIEW 7.1 3. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-3/1 Folytonos idejű jelek diszkrét idejű mérése A mintavételezési
Logaritmikus erősítő tanulmányozása
13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek emelt szint ÉETTSÉG VZSGA 0. október 5. ELEKTONKA ALAPSMEETEK EMELT SZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladatok Maximális
MIB02 Elektronika 1. Passzív áramköri elemek
MIB02 Elektronika 1. Passzív áramköri elemek ELLENÁLLÁSOK -állandóértékű ellenállások - változtatható ellenállások - speciális ellenállások (PTK, NTK, VDR) Állandó értékű ellenállás Felépítés: szigetelő
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése
Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés
E23 laboratóriumi mérés Fizikai Tanszék
E23 laboratóriumi mérés Fizikai Tanszék Kondenzátor kisütő áramának időbeli változása 1. A mérés célja, elve A kondenzátorok és tekercsek az egyenáramú hálózatokban triviálisan működnek (a kondenzátor
EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
SZÁMÍTÁSI FELADATOK I.
SZÁMÍTÁSI FELADATOK I. A feladatokat figyelmesen olvassa el! A válaszokat a feladatban előírt módon adja meg! A számítást igénylő feladatoknál minden esetben először írja fel a megfelelő összefüggést (képletet),
2010/2011. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA II. kategória FELADATLAP ÉS MEGOLDÁS
Oktatási Hiatal 2010/2011. tané Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. kategória FELAATLAP MEGOLÁ Feladatok: Mérések függőleges alumínium, illete sárgaréz csőben eső mágnessel.
3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára
3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TENGELYVÉG CSAPÁGYAZÁSA, útmutató segítségével d. A táblázatban szereplő adatok alapján
Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált
Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték
Szakítógép használata
Szakítógép használata A gép adatai Modell: Tira test 2300 Gyártási év: 2009 Tápfeszültség: 400 V; 50 60 Hz Méréshatár: ± 100 kn Sebesség tartomány: 0,01-600 mm/min A gép fontosabb részei Kezelő Befogó
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.
El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza
Mérés: Millikan olajcsepp-kísérlete
Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat
E1 laboratóriumi mérés Fizikai Tanszék
E1 laboratóriumi mérés Fizikai Tanszék Konduktív ellenállás és fémszálas izzó feszültségáram karakterisztikája 1. A mérés célja, elve Az izzólámpa fajlagos ellenállása működés közben nagy mértékben függ
ELEKTRONIKAI ALAPISMERETEK
ÉETTSÉGI VIZSGA 2016. október 17. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI VIZSGA 2016. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBEI EŐFOÁSOK
Elektromos egyenáramú alapmérések
Elektromos egyenáramú alapmérések A mérés időpontja: 8.. 5. hétf ő,.-4. Készítették: 5.mérőpár - Lele István (CYZH7) - Nagy Péter (HQLOXW) A mérések során elektromos egyenáramú köröket vizsgálunk feszültség-
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
Elektrotechnika 9. évfolyam
Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.
29. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika 2014. február 27 28. 9. osztály
9. Nagy László Fizikaverseny 014. február 7 8. 1. feladat Adatok: H = 5 m, h = 0 m. A H magasságban elejtett test esési idejének (T 13 ) és a részidők (T 1, T 3 ) meghatározása: H g 13 13 = = =,36 s H
Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.
El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.
2.11. Feladatok megoldásai
Elektrotechnikai alaismeretek.. Feladatok megoldásai. feladat: Egy szinuszosan változó áram a olaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T 4 t 4 4µ s f,5 Hz 5 khz
N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:
N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.
Fizika A2 Alapkérdések
Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések
ö ö ü ü ű ö Í ö ö ö ű Í ü ű ö ö ö ü ű ö ö ö ö ö Í ű ű ü ü Ó ű ö ö É ü ö ö ö ü ü É ö ü ö Á ü Á ű ü ű ű ű ű Í ÍÁ ü ö ö ö ü ü ü É ü ü Á ö ü ü ö ö ű ü ö ü ü ü ö ü ü ü ö ü ü ü ö ö ü ű ö ű ü ö ü ü ö ű ü Í ü
Í ű Á Á ű ü ü ü ű Í ü ü ü ü Í ű ű ü ü ű ü ü ű ü Í Í É Á Á Á É Á Ö Á Á Á ü É Ó Á Á Á Á É É Á ű É É Á ű ű Á Í Á Í É Á Á Á Á Á Á Ó Á ű ű ü ű ű ű ű ű ü ű Ó ü ű ü ü ű ü ű Í Í ü ű ü ü ü ü ü ű ü ű ü ü ü ü ü ű
ó ö ó Í Í Ó Í Á Í Í Í Ó Ú ó Í Ó ó Ó ó Í Ó Ó Ó Ó Ó Ó Ó ó Á Ó Ó ó ö ó Ú Í Í Ó Ó Ó Í Ó Ú É Í Í Í Ú Ó ő Í Í Ó Ó Ú Ó Ó ó Í ó Á Ó Ó Ó ó ó Í Ó Ó Ó Ó Ó Í Ú Í Í É ö Ó Ó Í Ó Ú Ó Ú Ó Ö Í Í Ú Ó Ó ó Ű Ó Ó Ó Ó Ó Ó Ó
Szupravezető alapjelenségek
Szupravezető alapjelenségek A méréseket összeállította és az útmutatót írta: Balázs Zoltán 1. Meissner effektus bemutatása: Mérési összeállítás: 1. A csipesszel helyezze a polisztirol hab csészébe a szupravezető
Fizika A2 Alapkérdések
Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük
Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.
evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles
Mérések állítható hajlásszögű lejtőn
A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra
Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér
Bevezetés az analóg és digitális elektronikába III. Villamos és mágneses tér Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009.04.27. A mérés száma és címe: 12, Folyadékáramlás 2D-ben, Kármán örvényút Értékelés: A beadás dátuma: A mérést végezte: Meszéna Balázs, Tüzes Dániel
A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai és megoldásai fizikából I.
Oktatási Hivatal A 0/0 tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai és megoldásai fizikából I kategória A dolgozatok elkészítéséhez minden segédeszköz használható