Rugalmas állandók mérése

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Rugalmas állandók mérése"

Átírás

1 Rugalmas állandók mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/30/2011 Beadás ideje: 12/07/2011 1

2 1. A mérés rövid leírása Mérésem során különböző anyagok rugalmassági tulajdonságait kellett vizsgálnom. Két féle módszerrel mértem. Az egyikben egy hengeres rúd és egy téglatest Young-moduluszát kellett statikus módszerrel meghatároznom. Ezt úgy végeztem, hogy a rudak lehajlását vizsgáltam különböző terhelések esetében. A másikban egy torziós szál torziómoduluszát határoztam meg oly módon, hogy az ebből összeállított torziós inga periódusidejét mértem kis kitérésekre, különböző tehetetlenségi nyomatékok esetében. 2. Méréshez használt eszközök Kétkarú emelő V2 hengeres rézrúd és A5 alumínium téglatest minták Terhelősúlyok Torziós szálból készített torziós inga Elektronikus detektor periódusidő mérővel 7-es és 8-as tárcsa Tolómérce, csavarmikrométer, mérőszalag Analitikai mérleg 3. Rövid elméleti összefoglaló 3.1. Young-modulusz mérése a rúd lehajlásából A mérés elve azon alapszik, hogy minden merev test lehajlása esetén lesz egy úgy nevezett neutrális zóna, amelynek a hossza nem fog megváltozni. Az ettől különböző rétegek hossza nő vagy csökken. A neutrális rétegre felírhatjuk (a [1] könyvben részletesen levezetett) összefüggést: l 3 s = 1 48 EI F, ahol s a lehajlás nagysága, l a felfüggesztési pontok távolsága, F az előidéző erő, E a keresett Young-modulusz, I pedig a keresztmetszet másodrendű 2

3 nyomatéka. I definíció szerint: I = z 2 df. F Látható, hogy I-t a minta alakja fogja meghatározni, tehát az adott test formajellemzője. A gyakran előforduló formákra kiszámolva: Kör keresztmetszetű R sugarú rúd esetében: I rúd = R4 π 4. Cső esetén, ahol R a külső, r a belső sugár: I cső = π 4 ( R 4 r 4). Téglalap alak esetén, ahol a az alap, b a magasság: I tégla = ab Torziómodulusz mérése torziós ingával Belátható, hogy a T torziómodulusz és a toriziós inga T periódusideje között az alábbi összefüggés áll fent: G = K Θ T 2, ahol Θ a rendszer tehetetlenségi nyomatéka, K pedig a torziós szálat jellemző mennyiség: K = 8πl r. 4 Itt l a torziós szál hossza, r pedig a sugara. Mivel Θ nem ismert, ezért úgy kell eljárnunk, hogy az ingára szimmetrikusan két, Θ 1 és Θ 2 tárcsát helyezünk. Hogy szimmetrikus legyen a terhelés, ezért meg kell követelnünk, hogy m 1 m 2 és Θ 1 Θ 2 legyenek. A tárcsák távolsága a forgástengelytől legyen a. Ekkor írhatjuk a következőt: Θ = Θ ü + Θ 1 + Θ 2 + (m 1 + m 2 )a 2, ahol Θ ü az üres inga tehetetlenségi nyomatékát jelöli, az (m 1 + m 2 )a 2 -es tag pedig a Steiner-tételből származik. A fenti képletbe ezt visszaírva kapjuk: T 2 = K G (Θ ü + Θ 1 + Θ 2 ) + K(m 1 + m 2 ) a 2. G 3

4 A T 2 (a 2 ) pontpárokra egyenest illesztve, annak meredeksége: η = K G (m 1 + m 2 ), tengelymetszete pedig η 0 = K G Θ ü + Θ 1 + Θ 2. Az illesztett egyenes segítségével már meg tudjuk adni a rendszer torziómoduluszát: G = K m 1 + m 2 η és ennek segítségével már az üres inga tehetetlenségi nyomatékát is: Θ ü = Gη 0 K Θ 1 Θ 2. A tárcsák tehetetlenségi nyomatéka pedig a következő (mivel a tárcsák tömör korongok esetünkben): ahol R i a tárcsák sugara. Θ i = 1 2 m ir 2 i, 4. Mérési eredmények 4.1. Young-modulusz mérése Első mérésként a statikus mérést végeztem el. Itt két különböző rúd Youngmoduluszát kellett meghatároznom. A mérést egy kétkarú emelővel végeztem, olyan módon, hogy az emelő aljára helyeztem a mintát és két ponton alátámasztottam. Az alátámasztást igyekeztem szimmetrikusan beállítani, hogy a kiértékelés menete egyszerűbb legyen. A kétkarú emelőre különböző súlyokat akarsztottam, majd leolvastam a rúd meghajlását. Innen már az elméleti részben tárgyaltak alapján meg tudtam határozni az I hajlítási nyomatékot és az E Young-moduluszt. Először felvettem a minták geometriai adatait. Azért, hogy meggyőződjem arról, hogy a csavarmikrométerről leolvasott adatok helyesek, tolómérővel is megmértem a mintákat, ám ezeket az adatokat a számolásba nem vettem bele, mivel a tolómérő pontossága sokkal rosszabb. 4

5 V2 jelzésű hengeres rúd # 2r (mm) átlag 9.89 r (mm) 4.95 A5 jelzésű téglatest # a (mm) b (mm) átlag Itt (2r) = a = b = 0.01 mm. A megmért geometriai adatok segítségével meg tudtam határozni a minták lehajlási nyomatékát: I rúd = R4 π = 471 ± 1.9 mm 4, 4 I tégla1 = 1 12 ab3 = 1142 ± 4.3 mm 4, I tégla2 = 1 12 a3 b = 516 ± 2.2 mm 4. Ahol a hibákat a relatív hibaszámításos módszerrel kaptam. 5

6 Ezt követően behelyeztem a mintákat a kétkarú emelőbe. A rögzítés távolsága l = 36 ± 0.1 cm volt. A behelyezést követően elkezdtem a mintát terhelni. Minden mérési pontban ellenőriztem, hogy kis kitérítés hatására visszatér-e a mutató az előző állapotba és csak azokat az adatokat fogadtam el helyesnek, amelyekre ez teljesült. Ilyen mód a mért adatok a réz rúdra: Itt s = 0.01 mm. V2 jelzésű réz rúd m (kg) F (N) s (mm)

7 A mért pontokra egyenest illesztettem: 1,5 s (mm) 1,4 1,3 1,2 1,1 1,0 0,9 0,8 0,7 0,6 0,5 Mért pontok Illesztett egyenes Value Standard Error Intercept 0, ,00263 Slope 0, ,22207E F (N) Az illesztett egyenes meredeksége: tengelymetszete: 1. ábra. Réz minta s(f ) grafikonja m rúd = ± mm N, b rúd = ± mm. Innen a V2 réz rúd Young-modulusza: E rúd = 1 l 3 = 125 ± 2.1 GPa. 48 I rúd m rúd Itt a Young-modulusz hibáját az alábbi formulával számoltam: ( m E = E m + 3 l + I ). l I 7

8 Hasonlóan jártam el az alumínium téglatest esetében is, annyi különbséggel, hogy kétféleképp mértem. Először az a oldala volt a magasság és b az alap, majd fordítva. Az első esetben a mért adatok: A5 jelzésű alumínium rúd a magassággal m (kg) F (N) s (mm)

9 A mért pontokra illesztett egyenes: 1,8 1,6 1,4 Mért pontok Illesztett egyenes s (mm) 1,2 1,0 0,8 0,6 0,4 0,2 Value Standard Error Intercept 0, ,01059 Slope 0, ,08E F (N) 2. ábra. Alumínium minta s(f ) grafikonja a magassággal Az illesztett egyenes meredeksége: tengelymetszete: m tégla2 = ± mm N, b tégla2 = ± mm. Az adatok segítségével meghatároztam az A5 minta Young-moduluszát a magasság esetén: l 3 E tégla2 = 1 = 68 ± 1.6 GPa. 48 I tégla2 m tégla2 9

10 Megmértem az alumínium minta Young-moduluszát úgy is, hogy a b oldala volt a magassága. Az így mért adatok: A5 jelzésű alumínium rúd b magassággal m (kg) F (N) s (mm)

11 A mért pontokra illesztett egyenes: 1,1 1,0 0,9 Mért pontok Illesztett egyenes s (mm) 0,8 0,7 0,6 0,5 0,4 Value Standard Error Intercept 0, ,00917 Slope 0, ,529E F (N) 3. ábra. Alumínium minta s(f ) grafikonja b magassággal Az illesztett egyenes meredeksége: tengelymetszete: m tégla1 = ± mm N, b tégla1 = 0.29 ± mm. Az adatok segítségével meghatároztam az A5 minta Young-moduluszát b magasság esetén: l 3 E tégla1 = 1 = 63 ± 1.9 GPa. 48 I tégla1 m tégla1 11

12 Ezt követően megvizsgáltam, hogy a lehajlás hogyan függ az alátámasztás távolságától, azaz l-től. Mérésemet a réz rúddal végeztem. Minden hossznál két tömeg esetén mértem a lehajlást. Itt azt kellett kimutatnom, hogy s(l 3 ), ahol s = s 2 s 1 a két mért behajlás különbsége. Az s 1 behajlást minden esetben 2 kg terhelésnél, az s 2 -t minden esetben 7 kg-nál mértem. Az így mért adatok és az arra illesztett egyenes: Behajlás hosszfüggése l 2 l (m) l3 (m 3 ) s 1 (mm) s 2 (mm) s (mm) ,70 s (mm) 0,65 0,60 0,55 0,50 0,45 0,40 0,35 0,30 0,25 0,20 Transzformált pontok Illesztett egyenes Value Standard Error Intercept 0, ,01103 Slope 15, , ,010 0,015 0,020 0,025 0,030 0,035 0,040 l 3 (m 3 ) 4. ábra. s(l 3 ) függése a réz mintán 12

13 Az illesztett egyenes meredeksége: m = ± 0.43 mm m, 3 A meredekség ismeretében már meg tudjuk határozni, hogy mekkora a Youngmodulusz: E = 1 F = 136 ± 4.3 GPa. 48 Im Jól látható, hogy a két mérés eredménye hibahatáron belül egyezik, viszont az előbbi jóval pontosabb, ez abból is látszik, hogy annak a hibája körülbelül fele ekkora. Meg kellett még vizsgálnom továbbá egy üreges csövet is és megmondani, hogy mennyivel lenne ellenállóbb, ha tömör anyagből készült volna. Ezt abból tudjuk megmondani, hogy kiszámoljuk a csőnek az I lehajlási nyomatékát és ezt összevetjük a tömör hengerével. Az üreges cső adatai: R = 5.89 ± mm, r = 4.5 ± 0.05 mm. Innen a cső lehajlási nyomatéka: I cső = π ( R 4 r 4) = 623 ± 7 mm 4, 4 ha viszont tömör henger lenne, akkor: I rúd = R4 π = 945 ± 1 mm 4. 4 Látható tehát, hogy a tömör rúd közel 1.5-ször ellenállóbb a hosszra merőleges terhelésekkel szemben Torziómodulusz mérése A statikus mérések után egy dinamikus mérést végeztem el. Egy adott torziós szál torziómoduluszát mértem ki, olyan módon, hogy az ebből készített torziós inga periódusidejét mértem különböző tehetetlenségi nyomatékok esetében. A periódusidőt egy erre a célra készített elektronikus berendezés végezte, mely 10 periódust mért. Az elméleti részben ismertetettek alapján először meg kell a tárcsák tehtetlenségi nyomatékát határozni. Ehhez megmértem a tárcsák sugarát és tömegét: Tárcsák sugarai # 2R 7 (cm) 2R 8 (m) átlag

14 Itt (2R i ) = 0.1 mm. Tehát a tárcsák sugarai: R 7 = R 8 = 2.25 cm ± 0.05 mm. Tárcsák tömegei M 7 (g) M 8 (g) Ahol M i = g. Innen a két tárcsa tehetetlenségi nyomatéka: Θ i = 1 2 M ir 2 i, Θ 7 = ± kgm 2, Θ 8 = ± kgm 2, ahol a hibát az alábbi módon számoltam: Θ i = Θ i ( mi m i + 2 R i R i Ezt követően megmértem a torziós szál adatait is, melyből meg tudtam határozni, az azt jellemző K számot. Torziós szál sugara # 2r (mm) átlag Itt (2r) = 0.01 mm. Innen a torziós szál sugara: r = 0.25 ± mm. Továbbá a torziós szál hossza: l = 59.2 ± 0.1 cm. Innen K kiszámolható: ). K = 8πl r 4 = ± m 3. Itt K hibáját a következő módon számoltam: ( l K = K + 4 r ). l r Ezek ismeretében elkezdtem mérni a periódusidőket. Ahhoz, hogy hibát tudjak becsülni a = 4 cm távolságnál 3 mérést végeztem. 14

15 A mért adatok: Tárcsák helyzete és periódusidők a (cm) a 2 (cm 2 ) 10T (s) T (s) T 2 (s 2 ) Transzformálás után a pontokra egyenest illesztettem: Transzformált pontok Illesztett egyenes 120 T 2 (s 2 ) Value Standard Error Intercept Slope a 2 (cm 2 ) 5. ábra. Torziós inga T 2 (a 2 ) függése 15

16 Az illesztett egyenes paraméterei: η = ± s2 cm, 2 η 0 = ± 0.27 s 2, R = Itt η az egyenes meredeksége, η 0 a tengelymetszete és R a korrelációs együttható. Mivel R 1, így ezzel bizonyítottuk, hogy a Steiner-tétel teljesül. A kiszámított egyenes meredekségéből meghatároztam a torziómoduluszt: G = K M 7 + M 8 η = 80 ± 7 GPa, ahol: ( K G = G K + M 7 + M 8 + η ). M 7 + M 8 η A nagy hibáért elsősorban r mérési hibája felel, mivel az egy 4 -es szorzót hoz be. A tengelymetszet segítségével meg tudtam továbbá mondani az üres inga tehetetlenségi nyomatékát: Θ ü = Gη 0 K Θ 7 Θ 8 = (M 7 +M 8 ) η 0 η Θ 7 Θ 8 = ± kgm 2. Itt a hibát a fentiekhez hasonló módon számoltam. 5. Diszkusszió Érdemes diszkutálnunk az első mérés eredményeit. A Young-modulusz értékek egymáshoz képest mindkét mérés esetében hibahatáron kívül esnek. Ennek vélhetően az az oka, hogy a formulák, amikkel számltam csak közelítőek, továbbá a leolvasás sem pontos és a mérőeszközbe se tudtam könnyen behelyezni a mintákat. A réz Young-moduluszának táblázati értéke E Cu = 130 GPa. Ez körülbelül a két, általam mért érték számtani közepénél van. Alumínium esetében pedig E Al = 70 GPa, ehhez is nagyon közel vannak az általam mért eredmények. Hivatkozások [1] Havancsák Károly: Mérések a klasszikus fizika laboratóriumban, ELTE Eötvös kiadó, Budapest,

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése 2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának

Részletesebben

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv (-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása

Részletesebben

A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel

A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban

Részletesebben

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

Fényhullámhossz és diszperzió mérése

Fényhullámhossz és diszperzió mérése Fényhullámhossz és diszperzió mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/09/011 Beadás ideje: 11/16/011 1 1. A mérés rövid leírása

Részletesebben

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3) Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Fázisátalakulások vizsgálata Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/12/2011 Beadás ideje: 10/19/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

3. Hangfrekvenciás mechanikai rezgések vizsgálata

3. Hangfrekvenciás mechanikai rezgések vizsgálata 3. Hangfrekvenciás mechanikai rezgések vizsgálata Tóth Bence fizikus,. évfolyam 005.03.04. péntek délelőtt beadva: 005.03.. . A mérés első részében a megvastagított végű rúd (a D jelű) felharmonikusait

Részletesebben

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 7. Mágneses szuszceptibilitás mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 22. Leadás dátuma: 2008. 11. 05. 1 1. A mérési összeállítás A mérési összeállítás sematikus ábrája

Részletesebben

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv (-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalmas állandók mérése Tóth Bence fizikus,. évfolyam 00.0.. péntek délelőtt beadva: 00.03.04. . A mérés első felében fémrudak Young-moduluszát mérjük, pontosabban behajlást mérünk, és ebből számolunk

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely)

(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) (III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) Mérést végezte: Szalontai Gábor Mérőtárs neve: Nagy Dániel Mérés időpontja: 2012.11.22. Bevezető A hétköznapi és kézzelfogható

Részletesebben

Fajhő mérése. Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport

Fajhő mérése. Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Fajhő mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 0/05/20 Beadás ideje: 0/2/20 . A mérés rövid leírása Mérésem során egy alumínium (-es)

Részletesebben

Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok

Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/08/2012 Beadás ideje: 05/11/2012 Érdemjegy: 1 1. A mérés

Részletesebben

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy

Részletesebben

Mérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése

Mérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése Tanév, félév 2010-11 I. félév Tantárgy Áramlástan GEÁTAG01 Képzés főiskola (BSc) Mérés A Nap Hét A mérés dátuma 2010 Dátum Pontszám Megjegyzés Mérési jegyzőkönyv M1 számú mérés Testek ellenállástényezőjének

Részletesebben

2009/2010. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA I. kategória FELADATLAP. Valós rugalmas ütközés vizsgálata.

2009/2010. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA I. kategória FELADATLAP. Valós rugalmas ütközés vizsgálata. A versenyző kódszáma: 009/00. tanév Országos Középiskolai Tanulmányi Verseny FIZIKA I. kategória FELADATLAP Valós rugalmas ütközés vizsgálata. Feladat: a mérőhelyen található inga, valamint az inga és

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje:

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje: Fajhő mérése Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: 206. 0. 20. egyzőkönyv leadásának ideje: 206.. 0. Bevezetés Mérésem során az -es számú minta fajhőjét kellett megmérnem.

Részletesebben

Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír

Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/15/2012 Beadás ideje: 05/26/2012 Érdemjegy: 1 1. A mérés rövid

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

KERESZTMETSZETI JELLEMZŐK

KERESZTMETSZETI JELLEMZŐK web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,

Részletesebben

Mérési jegyzőkönyv. 3. mérés: Röntgen-cső, emissziós spektrumok, abszorpció

Mérési jegyzőkönyv. 3. mérés: Röntgen-cső, emissziós spektrumok, abszorpció Mérési jegyzőkönyv 3. mérés: Röntgen-cső, emissziós spektrumok, abszorpció A mérés helyszíne: Semmelweis Egyetem, Elméleti Orvostudományi Központ Biofizika laboratórium A mérés időpontja: 2013.02.27. A

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

. Számítsuk ki a megadott szög melletti befogó hosszát.

. Számítsuk ki a megadott szög melletti befogó hosszát. Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Homogén testnek nevezzük az olyan testet, amelynek minden része ugyanolyan tulajdonságú. ρ = m V.

Homogén testnek nevezzük az olyan testet, amelynek minden része ugyanolyan tulajdonságú. ρ = m V. SZILÁRD TESTEK SŰRŰSÉGÉNEK MÉRÉSE 1. Elméleti háttér Homogén testnek nevezzük az olyan testet, amelynek minden része ugyanolyan tulajdonságú anyagból áll. Homogén például az üveg, a fémek, a víz, a lufiba

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptbltás mérése PÁPICS PÉTER ISTVÁN csllagász, 3. évfolyam 5.9.. Beadva: 5.9.9. 1. A -ES MÉRHELYEN MÉRTEM. Elször a Hall-szondát kellett htelesítenem. Ehhez RI H -t konstans (bár a mérés

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Név:...EHA kód:... 2007. tavasz

Név:...EHA kód:... 2007. tavasz VIZSGA_FIZIKA II (VHNB062/210/V/4) A MŰSZAKI INFORMATIKA SZAK Név:...EHA kód:... 2007. tavasz 1. Egy 20 g tömegű testet 8 m/s sebességgel függőlegesen felfelé dobunk. Határozza meg, milyen magasra repül,

Részletesebben

5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 5. Fajhő mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 08. Leadás dátuma: 2008. 10. 15. 1 1. A mérési összeállítás A mérés során a 6-os számú minta fajhőjét akarjuk meghatározni.

Részletesebben

32. Hatvani István fizikaverseny Döntő. 1. kategória. 6. higanymilliméter 7. kalória 8. rőf 9. véka 10. arasz

32. Hatvani István fizikaverseny Döntő. 1. kategória. 6. higanymilliméter 7. kalória 8. rőf 9. véka 10. arasz 1. kategória 1.D.1. 1. mérföld 2. hektoliter 3. tonna 4. celsius 5. fertályóra 6. higanymilliméter 7. kalória 8. rőf 9. véka 10. arasz 1.D.2. Egy autókaraván állandó sebességgel egyenes úton halad az autópályán.

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Modern Fizika Laboratórium Fizika és Matematika BSc 14. Holográfia

Modern Fizika Laboratórium Fizika és Matematika BSc 14. Holográfia Modern Fizika Laboratórium Fizika és Matematika BSc 14. Holográfia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/06/2012 Beadás ideje: 05/22/2012 (javítás) Érdemjegy:

Részletesebben

Mőködési elv alapján. Alkalmazás szerint. Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık. Manométerek Barométerek Vákuummérık

Mőködési elv alapján. Alkalmazás szerint. Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık. Manométerek Barométerek Vákuummérık Nyomásm smérés Nyomásm smérés Mőködési elv alapján Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık Alkalmazás szerint Manométerek Barométerek Vákuummérık Nyomásm smérés Mérési módszer

Részletesebben

29. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika 2014. február 27 28. 9. osztály

29. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika 2014. február 27 28. 9. osztály 9. Nagy László Fizikaverseny 014. február 7 8. 1. feladat Adatok: H = 5 m, h = 0 m. A H magasságban elejtett test esési idejének (T 13 ) és a részidők (T 1, T 3 ) meghatározása: H g 13 13 = = =,36 s H

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Segédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15.

Segédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15. Segédlet: Kihajlás Készítette: Dr. Kossa ttila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2012. május 15. Jelen segédlet célja tömören összefoglalni a hosszú nyomott rudak kihajlásra történő ellenőrzését.

Részletesebben

Ajánlott szakmai jellegű feladatok

Ajánlott szakmai jellegű feladatok Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

Rugalmas tengelykapcsoló mérése

Rugalmas tengelykapcsoló mérése BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Budapesti Mőszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Jármőelemek és Hajtások Tanszék Jármőelemek és Hajtások Tanszék

Részletesebben

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Mag-mágneses rezonancia

Mag-mágneses rezonancia Mag-mágneses rezonancia jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csorba Ottó Mérés dátuma: 2010. március 25. Leadás dátuma: 2010. április 7. Mérés célja A labormérés célja a mag-mágneses

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM befogott tartó ÓE-A15 alap közepes haladó CATIA V5 CAD,

Részletesebben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 14. Határozzuk meg a nyírásból adódó csúsztatófeszültség

Részletesebben

Járműelemek. Rugók. 1 / 27 Fólia

Járműelemek. Rugók. 1 / 27 Fólia Rugók 1 / 27 Fólia 1. Rugók funkciója A rugók a gépeknek és szerkezeteknek olyan különleges elemei, amelyek nagy (ill. korlátozott) alakváltozás létrehozására alkalmasak. Az alakváltozás, szemben más szerkezeti

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja. ρ = m V.

Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja. ρ = m V. mérés Faminták sűrűségének meghatározása meg: Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja ρ = m V Az inhomogén szerkezetű faanyagok esetén ez az összefüggés az átlagsűrűséget

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

5. modul Térfogat és felszínszámítás 2

5. modul Térfogat és felszínszámítás 2 Matematika A 1. évfolyam 5. modul Térfogat és felszínszámítás Készítette: Vidra Gábor Matematika A 1. évfolyam 5. modul: TÉRFOGAT ÉS FELSZÍNSZÁMÍTÁS Tanári útmutató A modul célja Időkeret Ajánlott korosztály

Részletesebben

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés

Részletesebben

Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika Megoldandó feladatok: I.

Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika Megoldandó feladatok: I. Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika 1.5. Mennyi ideig esik le egy tárgy 10 cm magasról, és mekkora lesz a végsebessége?

Részletesebben

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

835 + 835 + 835 + 835 + 835 5

835 + 835 + 835 + 835 + 835 5 Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

Nyomott oszlopok számítása EC2 szerint (mintapéldák)

Nyomott oszlopok számítása EC2 szerint (mintapéldák) zéhenyi István Egyetem zerkezetépítési és Geotehnikai Tanszék yomott oszlopok számítása E szerint 1. Központosan nyomott oszlop Központosan nyomott az oszlop ha e = 0 (e : elsőrendű, vagy kezdeti külpontosság).

Részletesebben

Méréstechnika 5. Galla Jánosné 2014

Méréstechnika 5. Galla Jánosné 2014 Méréstechnika 5. Galla Jánosné 014 A mérési hiba (error) a mérendő mennyiség értékének és a mérendő mennyiség referencia értékének különbsége: ahol: H i = x i x ref H i - a mérési hiba; x i - a mért érték;

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek emelt szint 11 ÉRETTSÉGI VIZSGA 01. május 5. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók

Részletesebben

A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m

A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m Stata ZH-1. 215. 1. 14. A csoport 1. feladat Határozza meg az erőrendszer nyomatéát a F pontra! a = 3 m b = 4 m c = 4 m F 1 = 5 N F 2 = 1 N M = 5 Nm M = + 4 + 3 4 F 1 = 2 = + 12 16 + 9 + 16 3 + 4 F 2 =

Részletesebben

Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás

Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 04/24/2012 Beadás ideje: 04/29/2012 Érdemjegy: 1 1. A

Részletesebben

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek 1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.

Részletesebben

Vasbeton tartók méretezése hajlításra

Vasbeton tartók méretezése hajlításra Vasbeton tartók méretezése hajlításra Képlékenység-tani méretezés: A vasbeton keresztmetszet teherbírásának számításánál a III. feszültségi állapotot vesszük alapul, amelyre az jellemző, hogy a hajlításból

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 0. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám: Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi

Részletesebben

Toronymerevítık mechanikai szempontból

Toronymerevítık mechanikai szempontból Andó Mátyás: Toronymerevítık méretezése, 9 Gépész Tuning Kft. Toronymerevítık mechanikai szempontból Mint a neve is mutatja a toronymerevítık használatának célja az, hogy merevebbé tegye az autó karosszériáját

Részletesebben

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés.

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés. 9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. ktivitás mérés. MÉRÉS CÉLJ: Megismerkedni a radioaktív sugárzás jellemzésére szolgáló mértékegységekkel, és a sugárzás

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

MÉRÉSI JEGYZŐKÖNYV M4. számú mérés Testek ellenállástényezőjének mérése NPL típusú szélcsatornában

MÉRÉSI JEGYZŐKÖNYV M4. számú mérés Testek ellenállástényezőjének mérése NPL típusú szélcsatornában Tanév,félév 2010/2011 1. Tantárgy Áramlástan GEATAG01 Képzés egyetem x főiskola Mérés A B C Nap kedd 12-14 x Hét páros páratlan A mérés dátuma 2010.??.?? A MÉRÉSVEZETŐ OKTATÓ TÖLTI KI! DÁTUM PONTSZÁM MEGJEGYZÉS

Részletesebben

Méréstechnikai alapfogalmak

Méréstechnikai alapfogalmak Méréstechnikai alapfogalmak 1 Áttekintés Tulajdonság, mennyiség Mérés célja, feladata Metrológia fogalma Mérıeszközök Mérési hibák Mérımőszerek metrológiai jellemzıi Nemzetközi mértékegységrendszer Munka

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben