KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS"

Átírás

1 KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1

2 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2

3 PERIODICITÁS JELLEMZÉSE T = 1s Azon időtartam, mely alatt a test egy fordulatot megtesz Keringési idő (T), n = 1 1 s Megmutatja az 1s alatti fordulatok számát Fordulatszám (n), Kapcsolat: a keringési idő és a fordulatszám egymás reciproka: T = 1 n 3

4 KÖRMOZGÁS SEBESSÉGE IRÁNY Δt nagy v = r t Sebesség vektor iránya az elmozdulás vektor irányával egyezik meg folyamatosan változik Δt 0 Egyenletes körmozgás sebessége minden időpillanatban érintőirányú. Elnevezés: KERÜLETI SEBESSÉG (v k ) 4

5 KÖRMOZGÁS SEBESSÉGE NAGYSÁG Definíció alapján: v = s t ahol s = i v k = i t = const Ha Δt = T Δi = 2Rπ Tehát: v k = 2Rπ T = 2Rπn 5

6 SZÖGSEBESSÉG Δi mérése nehéz Új definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő középponti szöggel fordul el. i t = const φ Mivel Δi ~ Δφ t = const SZÖGSEBESSÉG ω = φ t φ = 1rad, ω = 1 1 s Ha Δt = T Δφ = 2π Tehát: ω = 2π 6 T = 2πn

7 SZÖGSEBESSÉG ÉS KERÜLETI SEBESSÉG KAPCSOLATA v k = 2Rπ T v k = Rω ω = 2π T 7

8 KÖRMOZGÁS GYORSULÁSA IRÁNY v k változik gyorsulás A gyorsulás iránya minden időpillanatban megegyezik a sebesség-változás vektor irányával. Ábra alapján: Egyenlőszárú háromszög β = Δφ (merőleges szárú szögek) Ha Δt 0 akkor Δφ = β 0 és α = 90 a = v t Gyorsulás iránya minden időpillanatban merőleges a mozgó test sebességének irányára pálya középpontja felé mutat (sugárirányú) Elnevezés: CENTRIPETÁLIS GYORSULÁS (a cp ) 8

9 KÖRMOZGÁS GYORSULÁSA NAGYSÁG a cp = v k 2 R v k = Rω a cp = Rω 2 9

10 CENTRIPETÁLIS GYORSULÁS CENTRIFUGÁBAN Centrifugákon általában a percenkénti fordulatszám (jele N vagy rpm = revolutions per minute) állítható be: a cp = Rω 2 ahol ω = 2πn a cp = R4π 2 n 2 a cp = 4π 2 N 60 2 R = 0,011N 2 R 10

11 RELATÍV GYORSULÁS (= relatív centrifugális erő, RCF = relative centrifugal force) a rel = a cp g Dimenzió nélküli szám Megadja, hogy a centrifugában fellépő gyorsulás hányszorosa a nehézségi gyorsulásnak Pl.: N = 3000, R = 10 cm 1000 g-t állít elő Ultracentrifuga 10 6 g-t állít elő 11

12 KÖRMOZGÁS DINAMIKÁJA ΣF = ma ok okozat Mivel a nagysága állandó iránya kör középpontja felé mutat ΣF nagysága állandó iránya kör középpontja felé mutat Elnevezése: ΣF = F cp centripetális erő Dinamikai feltétel: Testre ható erők eredője állandó nagyságú legyen, és iránya a kör középpontja felé mutasson F cp = ΣF = ma cp 12

13 EGYENLETESEN GYORSULÓ KÖRMOZGÁS Érintő irányban is hat erő gyorsuló körmozgás Jellemzése: Tangenciális gyorsulás: a t = v k t Szöggyorsulás: β = ω t, β = 1 1 s 2 Megmutatja a szögsebesség változási gyorsaságát 13

14 EGYENLETESEN GYORSULÓ KÖRMOZGÁS Eredő erő és eredő gyorsulás Szerkesztés: paralelogramma módszer Számítás: pitagorasz tétel 14

15 KÖRMOZGÁS ÖSSZEFOGLALÓ Periódusidő (T) T = 1 Fordulatszám (n) n Kerületi sebesség (v k ) irány: érintő nagyság: v k = 2Rπ T = 2Rπn Szögsebesség (ω) ω = 2π T = 2πn v k = Rω Centripetális gyorsulás (a cp ) Tangenciális gyorsulás (a t ) irány: sugár nagyság: a cp = v 2 k R = Rω2 irány: érintő nagyság: a t = v k t Szöggyorsulás (β) β = ω t 15

16 KÖRMOZGÁS FELADATOK 1) Egy test 12m/s állandó nagyságú sebességgel mozog. Mekkora a gyorsulása és mennyi idő alatt tesz meg 300 m-t, ha a) egyenes pályán mozog? b) 20 m sugarú körpályán mozog? 2) Egy körpályán mozgó test 2 s alatt 5 m hosszúságú félkörívet fut be állandó nagyságú sebességgel. a) Mekkora a kerületi sebessége és a szögsebessége? b) Mekkora a gyorsulása? 3) Egy centrifugában az anyagminta 3000-szer fordul körbe percenként, 15 cm sugarú körpályán. a) Mekkora a kerületi sebesség? b) Mekkora a centripetális gyorsulás? c) Mekkora a relatív gyorsulás? 16

17 HARMONIKUS REZGŐMOZGÁS A y(t) Definíció: A test egyenes mentén két szélső helyzet között periodikusan kitéréseket végez. y(t) pillanatnyi helyzetet megadó vektor, a kitérésvektor y(t) max = A (amplitúdó) 17

18 PERIODICITÁS JELLEMZŐI Rezgésidő (T), T = 1s Egy rezgés megtételéhez szükséges idő Rezgésszám frekvencia f, f Másodpercenkénti rezgések száma = 1 1 s 1Hz (hertz) Kapcsolat: a rezgésidő és a frekvencia egymás reciproka: T = 1 f 18

19 KITÉRÉS VIZSGÁLATA Kísérlet: Matematikai előállítás: körmozgás vetületeként Ábra alapján: Kitérés vektormennyiség: ahol 19

20 SEBESSÉG VIZSGÁLATA Ábra alapján: Tehát: ahol Megjegyzés: v max = Aω és v min = 0 v(t) = y (t) 20

21 GYORSULÁS VIZSGÁLATA Ábra alapján: Tehát: ahol Gyorsulás és kitérés ellentétes irányú Megjegyzés: a max = Aω 2, a min = 0 és a(t) = -ω 2 y(t) a(t) = v (t) = y (t) 21

22 REZGŐMOZGÁS DINAMIKÁJA Harmonikus erő: olyan erő, mely az általa okozott kitéréssel egyenesen arányos, de vele ellentétes irányú. F h F h y(t) = const F h y(t) Rugóerő harmonikus erő F r F r l = D F r l Dinamikai feltétel: testre ható erők eredője harmonikus legyen ΣF = ma ahol a = - ω 2 y(t) és F = Dy(t) Ezek alapján: Dy t = mω 2 y(t) 22

23 HARMONIKUS REZGÉS REZGÉSIDEJE Sejtés: T(m, D) Példa: T(m) m f = 1 2π D m 23

24 REZGŐMOZGÁS ÖSSZEFOGLALÓ Kitérés: y t = Asinωt Sebesség: v t = Aω cos ωt Gyorsulás: a t = Aω 2 sin ωt Rezgésidő: T r = 2π m D 24

25 REZGŐMOZGÁS FELADATOK 1) Rugóra függesztett testet függőlegesen 10 cm amplitúdóval hozunk rezgésbe. Mekkora a test kitérése az egyensúlyi helyzeten történő áthaladástól számított 0,1 s múlva ha T = 0,8 s? Mekkora a maximális sebesség? 2) Egy rezgő test rezgésszáma 2 1/s, amplitúdója 0,2 cm. Mekkora a kitérése és gyorsulása 0,125 s múlva? 3) Egy rugót 20 N erő 5 cm-rel nyújt meg. Erre a rugóra 4 kg tömegű testet akasztunk és rezgésbe hozzuk. Mekkora lesz a frekvencia? 25

26 MEREV TESTEK FORGÁSA Merev test Definíció: bármely két pontjának távolsága állandó Mozgástípusok Rögzített pontok száma szerint: 0 rögzített pont: forogva halad 1 rögzített pont: test pontjai a rögzített pont körüli gömbfelületen mozognak 2 rögzített pont: az általuk meghatározott tengely körüli forgás, a test pontjai körmozgást végeznek 3 rögzített pont: adott helyzet, nincs mozgás 26

27 FORGÓMOZGÁS DINAMIKAI VIZSGÁLATA Forgató hatás jellemzése: Függ: Erő (F) Erőkar (k): forgástengely és az erő hatásvonalának távolsága FORGATÓNYOMATÉK (M) M = Fk M = 1Nm ΣM β ok okozat 27

28 KAPCSOLAT A FORGATÓNYOMATÉK ÉS A SZÖGGYORSULÁS KÖZÖTT Kapcsolat: Egyenes arányosság Két mennyiség hányadosa állandó: M β = const = θ θ: tehetetlenségi nyomaték 28

29 FORGÓMOZGÁS ALAPEGYENLETE θ: tehetetlenségi nyomaték=forgási tehetetlenség θ = m i r i 2 i θ = 1kgm 2 Példák: Henger: θ = 1 2 mr2 Alapegyenlet: ΣM = θβ Gömb: θ = 2 5 mr2 next=1&list=pl9296a42aedca

30 ANALÓGIA A HALADÓ ÉS FORGÓMOZGÁS KÖZÖTT FORGÓMOZGÁS ÖSSZEFOGLALÓ Megtett út: s Sebesség: Gyorsulás: Tömeg: m Erő: F Haladó v = s t a = v t Alapegyenlet: F=ma Forgó Szögelfordulás: Szögsebesség: Szöggyorsulás: φ ω = φ t β = ω t Tehetetlenségi nyomaték: Forgatónyomaték: M Alapegyenlet: ΣM = θβ θ Lendület: I=mv Perdület: N = θω 30

31 FORGÓMOZGÁS FELADATOK 1. Mekkora fordulatszámra gyorsul fel a 0,3 kg tömegű 2 cm sugarú gömb, ha rá 5 s-ig 2 Nm forgatónyomaték hat? 2. Mekkora perdületre tesz szert az 1 kg tömegű, 6 cm sugarú henger, ha egy kerületi pontjára 5 N erő hat 2 s-ig? 31

32 KÖSZÖNÖM A FIGYELMET! 32

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

ÁLTALÁNOS JÁRMŰGÉPTAN

ÁLTALÁNOS JÁRMŰGÉPTAN ÁLTALÁNOS JÁRMŰGÉPTAN ELLENŐRZŐ KÉRDÉSEK 3. GÉPEK MECHANIKAI FOLYAMATAI 1. Definiálja a térbeli pont helyvektorát! r helyvektor előáll ortogonális (a 3 tengely egymásra merőleges) koordinátarendszer koordinátairányú

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

MECHANIKA. Mechanika összefoglaló BalaTom 1

MECHANIKA. Mechanika összefoglaló BalaTom 1 MECHANIKA 1. Egyenes vonalú mozgások 1.1. Fizikai mennyiségek, mérés, mértékegységek 1.2. Helymeghatározás 1.3. Egyenes vonalú mozgás 1.4. Átlagsebesség, sebesség-idő grafikon, megtett út kiszámítása 1.5.

Részletesebben

Fizika alapok. Az előadás témája

Fizika alapok. Az előadás témája Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális

Részletesebben

Gyakorló feladatok Feladatok, merev test dinamikája

Gyakorló feladatok Feladatok, merev test dinamikája Gyakorló feladatok Feladatok, merev test dinamikája 4.5.1. Feladat Határozza meg egy súlytalannak tekinthető súlypontját. 2 m hosszú rúd két végén lévő 2 kg és 3 kg tömegek Feltéve, hogy a súlypont a 2

Részletesebben

1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések

1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések K1A labor 1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglakoztunk

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

Speciális mozgásfajták

Speciális mozgásfajták DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális

Részletesebben

5. Körmozgás. Alapfeladatok

5. Körmozgás. Alapfeladatok 5. Körmozgás Alapfeladatok Kinematika, elemi dinamika 1. Egy 810 km/h sebességu repülogép 10 km sugarú körön halad. a) Mennyi a repülogép gyorsulása? b) Mennyi ido alatt tesz meg egy félkört? 2. Egy centrifugában

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

FIZIKA ZÁRÓVIZSGA 2015

FIZIKA ZÁRÓVIZSGA 2015 FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni

Részletesebben

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek. Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések

2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések 2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglalkoztunk velük.

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

Javítási útmutató Fizika felmérő 2015

Javítási útmutató Fizika felmérő 2015 Javítási útmutató Fizika felmérő 2015 A tesztkérdésre csak 2 vagy 0 pont adható. Ha a fehér négyzetben megadott választ a hallgató áthúzza és mellette egyértelműen megadja a módosított (jó) válaszát a

Részletesebben

Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra.

Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Tisztelt Hallgatók! Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Az, hogy valaki egy korábbi vizsga megoldását

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Fizikai olimpiász. 52. évfolyam. 2010/2011-es tanév. B kategória

Fizikai olimpiász. 52. évfolyam. 2010/2011-es tanév. B kategória Fizikai olimpiász 52. évfolyam 2010/2011-es tanév B kategória A kerületi forduló feladatai (további információk a http://fpv.uniza.sk/fo honlapokon találhatók) 1. A Föld mágneses pajzsa Ivo Čáp A Napból

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához Ismétlés Erőhatás a testek mechanikai kölcsönhatásának mértékét és irányát megadó vektormennyiség. jele: mértékegysége: 1 newton: erőhatás következménye: 1N 1kg

Részletesebben

Mechanikai rezgések = 1 (1)

Mechanikai rezgések = 1 (1) 1. Jellemző fizikai mennyiségek Mechanikai rezgések Mivel a harmonikus rezgőmozgást végző test leírható egy egyenletes körmozgást végző test vetületével, a rezgőmozgást jellemző mennyiségek megegyeznek

Részletesebben

Mérnöki alapok 1. előadás

Mérnöki alapok 1. előadás Mérnöki alapok 1. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2 Rezgéstani alapok Diagnosztika 03 --- 1 A szinusz függvény π 3,14 3π 4,71 π 1,57 π 6,8 periódus : π 6,8 A szinusz függvény periódusának változása Diagnosztika 03 --- π sin t sin t π π sin 3t sin t π 3

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

Merev testek mechanikája. Szécsi László

Merev testek mechanikája. Szécsi László Merev testek mechanikája Szécsi László Animáció időfüggés a virtuális világmodellünkben bármely érték lehet időben változó legjellemzőbb: a modell transzformáció időfüggése mozgó tárgyak módszerek az időfüggés

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül. 01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj

Részletesebben

FIZIKA FELVÉTELI MINTA

FIZIKA FELVÉTELI MINTA Idő: 90 perc Maximális pon: 100 Használhaó: függvényábláza, kalkuláor FIZIKA FELVÉTELI MINTA Az alábbi kérdésekre ado válaszok közül minden eseben ponosan egy jó. Írja be a helyesnek aro válasz beűjelé

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra

Részletesebben

Elméleti kérdések és válaszok

Elméleti kérdések és válaszok Elméleti kérdések és válaszok Folyamatosan bővül 9. évfolyam Tartalom 1. Értelmezd a következő fogalmakat: megfigyelés, kísérlet, modell!... 3 2. Mit nevezünk koordináta rendszernek és mit vonatkoztatási

Részletesebben

Körmozgás és forgómozgás (Vázlat)

Körmozgás és forgómozgás (Vázlat) Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen

Részletesebben

GYIK mechanikából. (sűrűségmérés: - tömeg+térfogatmérés (akár Arkhimédész-törvény segítségével 5)

GYIK mechanikából. (sűrűségmérés: - tömeg+térfogatmérés (akár Arkhimédész-törvény segítségével 5) GYIK mechanikából 1.1.1. kölcsönhatás: két test vagy mező egymásra való, kölcsönös hatása mozgásállapot: testek azon állapota, melynek során helyük megváltozik (itt fontos a mozgó test tömege is!) tömegmérések:

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

Mérnöki alapok 10. előadás

Mérnöki alapok 10. előadás Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Kerék gördüléséről. A feladat

Kerék gördüléséről. A feladat 1 Kerék gördüléséről Nemrégen egy órán szóba került a címbeli téma, középiskolások előtt. Úgy látszott, nem nagyon értik, miről van szó. Persze, lehet, hogy még nem tartottak ott, vagy csak aludtak a fizika

Részletesebben

Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő:

Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót erőmérőnek

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Fizika feladatok november 24.

Fizika feladatok november 24. Fizika feladatok 2014. november 24. Ez a feladatgyűjtemény a villamosmérnök hallgatók korábbi jogos igényének megfelelve, nagy hiányt pótol. A kitűzött feladatok az I. féléves fizika tárgyának anyagához

Részletesebben

1. A hang, mint akusztikus jel

1. A hang, mint akusztikus jel 1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem

Részletesebben

Biliárd ötkor. Játék és fizika 60 percben. Sasvári László ELTE Komplex Rendszerek Fizikája Tanszék. Az atomoktól a csillagokig 2014.

Biliárd ötkor. Játék és fizika 60 percben. Sasvári László ELTE Komplex Rendszerek Fizikája Tanszék. Az atomoktól a csillagokig 2014. Biliárd ötkor Játék és fizika 60 percben Sasvári László ELTE Komplex Rendszerek Fizikája Tanszék Az atomoktól a csillagokig 2014. február 27 Adalék az előadás címéhez Heinrich Böll (1917-1985) Irodalmi

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév)

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) Dinamika Pontszám 1. A mechanikai mozgás fogalma (1) 2. Az anyagi pont pályája (1) 3. A mozgástörvény

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 1/14. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA Javítási-értékelési útmutató 1.) Vízszintes, súrlódásmentes (légpárnás) felületen, egyik lapjára

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából FIZIKA I.

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából FIZIKA I. Oktatási Hivatal A 014/015. tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából FIZIKA I. KATEGÓRIA Javítási-értékelési útmutató 1.) Egy szabályos háromszög

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

A testek tehetetlensége

A testek tehetetlensége DINAMIKA - ERŐTAN 1 A testek tehetetlensége Mozgásállapot változás: Egy test mozgásállapota akkor változik meg, ha a sebesség nagysága, iránya, vagy egyszerre mindkettő megváltozik. Testek tehetetlensége:

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben

A Maxwell - kerékről. Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is!

A Maxwell - kerékről. Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is! 1 A Maxwell - kerékről Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is! 1. ábra forrása: [ 1 ] Itt azt láthatjuk, hogy egy r sugarú kis hengerre felerősítettek

Részletesebben

Rezgő testek. 48 C A biciklitől a világűrig

Rezgő testek. 48 C A biciklitől a világűrig 48 C A biciklitől a világűrig Anjuli Ahooja Corina Toma Damjan Štrus Dionysis Konstantinou Maria Dobkowska Miroslaw Los Učenca: Nandor Licker és Jagoda Bednarek C Rezgő testek A biciklitől a Length világűrig

Részletesebben

11. Laboratóriumi gyakorlat GYORSULÁS MÉRŐK

11. Laboratóriumi gyakorlat GYORSULÁS MÉRŐK 11. Laboratóriumi gyakorlat GYORSULÁS MÉRŐK 1. A gyakorlat célja Az ADXL10 integrált gyorsulás mérő felépitése, működése és használatának bemutatása. Centrifugális gyorsulás kimutatása, mérése és számitása

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 015/016. tanévi Országos Középiskolai Tanulmányi Verseny első forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útmutató 1. feladat: A képzeletbeli OKTV/016 csillag körül körpályán keringő,

Részletesebben

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA 1. A kinematika és a dinamika tárgya. Egyenes onalú egyenletes mozgás a) Kísérlet és a belőle leont köetkeztetés b) A mozgás jellemző grafikonjai

Részletesebben

Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig

Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása 2015. április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig Egyetlen tömegpont: 3 adat (3 szabadsági fok ) Példa:

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:

Részletesebben

Gyakorló feladatok Tömegpont kinematikája

Gyakorló feladatok Tömegpont kinematikája Gyakorló feladatok Tömegpont kinematikája 2.3.1. Feladat Egy részecske helyzetének időfüggését az x ( t) = 3t 3 [m], t[s] pályagörbe írja le, amint a = indulva a pozitív x -tengely mentén mozog. Határozza

Részletesebben

BEMUTATÓ FELADATOK (2) ÁLTALÁNOS GÉPTAN tárgyból

BEMUTATÓ FELADATOK (2) ÁLTALÁNOS GÉPTAN tárgyból BEMUTATÓ FELADATOK () 1/() Egy mozdony vízszintes 600 m-es pályaszakaszon 150 kn állandó húzóer t fejt ki. A vonat sebessége 36 km/h-ról 54 km/h-ra növekszik. A vonat tömege 1000 Mg. a.) Mekkora a mozgási

Részletesebben

DIONYSIS KONSTANTINOU ANDREAS MEIER ZBIGNIEW TRZMIEL MARADJON A LEVEGŐBEN

DIONYSIS KONSTANTINOU ANDREAS MEIER ZBIGNIEW TRZMIEL MARADJON A LEVEGŐBEN 46 DIONYSIS KONSTANTINOU ANDREAS MEIER ZBIGNIEW TRZMIEL MARADJON A LEVEGŐBEN MARADJON A LEVEGŐBEN 47 mozgás, forgás, gördülés, a transzlációs mozgás kinetikus energiája, forgási kinetikus energia, súrlódás

Részletesebben

Fizika feladatok - 2. gyakorlat

Fizika feladatok - 2. gyakorlat Fizika feladatok - 2. gyakorlat 2014. október 9. 0.1. Feladat: Órai kidolgozásra: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel s 1 utat, második szakaszában

Részletesebben

Testek mozgása. Készítette: Kós Réka

Testek mozgása. Készítette: Kós Réka Testek mozgása Készítette: Kós Réka Fizikai mennyiségek, átváltások ismétlése az általános iskolából, SI Nemzetközi Mértékegység Rendszer 1. óra Mérés A mérés a fizikus alapvető módszere. Mérőeszközre,

Részletesebben

18. Kerületi szög, középponti szög, látószög

18. Kerületi szög, középponti szög, látószög 18. Kerületi szög, középponti szög, látószög Középponti szög fogalma: A körben a középponti szög csúcsa a kör középpontja, két szára a kör két sugara, illetve azok félegyenese. Egy középponti szög (ω)

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29. A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /

Részletesebben

SCM 012-130 motor. Típus

SCM 012-130 motor. Típus SCM 012-130 motor HU SAE A Sunfab SCM robusztus axiáldugattyús motorcsalád, amely különösen alkalmas mobil hidraulikus rendszerekhez. A Sunfab SCM könyökös tengelyes, gömbdugattyús típus. A kialakítás

Részletesebben

Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő:

Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő: Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót

Részletesebben

SCM 012-130 motor. Típus

SCM 012-130 motor. Típus SCM 012-130 motor HU ISO A Sunfab SCM robusztus axiáldugattyús motorcsalád, amely különösen alkalmas mobil hidraulikus rendszerekhez. A Sunfab SCM könyökös tengelyes, gömbdugattyús típus. A kialakítás

Részletesebben

Adatok: fénysebesség; a Föld sugara; a Nap-Föld távolság; a Föld-Hold távolság; a Föld és a Hold keringési ideje.

Adatok: fénysebesség; a Föld sugara; a Nap-Föld távolság; a Föld-Hold távolság; a Föld és a Hold keringési ideje. ELMÉLET Az SI rendszer alapmennyiségei. Síkszög, térszög. Prefixumok. Adatok: fénysebesség; a Föld sugara; a Nap-Föld távolság; a Föld-Hold távolság; a Föld és a Hold keringési ideje. Fogalmak, definíciók:

Részletesebben

Tartalom. Fizika 1,

Tartalom. Fizika 1, Fizika 1, 2011-09-25 Tartalom Fizikai mennyiségek... 3 Skalármennyiségek... 3 Mérőszám, mértékegység... 3 mértékegység... 3 mérőszám... 4 hiba:... 4 Mértékegység rendszerek... 4 Történelmi mértékegység

Részletesebben

Fizika feladatok október 19.

Fizika feladatok október 19. Fizika feladatok 2014. október 19. Ez a feladatgyűjtemény a villamosmérnök hallgatók korábbi jogos igényének megfelelve, nagy hiányt pótol. A kitűzött feladatok az I. féléves fizika tárgyának anyagához

Részletesebben

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat)

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat) I. Pontszerű test 1. Pontszerű test modellje. Pontszerű test egyensúlya 3. Pontszerű test mozgása a) Egyenes vonalú egyenletes

Részletesebben

Elméleti kérdések és válaszok

Elméleti kérdések és válaszok Elméleti kérdések és válaszok Folyamatosan bővül 9. évfolyam Tartalom 1. Értelmezd a következő fogalmakat: megfigyelés, kísérlet, modell!... 4 2. Mit nevezünk koordináta rendszernek és mit vonatkoztatási

Részletesebben

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

32. Hatvani István fizikaverseny Döntő. 1. kategória. 6. higanymilliméter 7. kalória 8. rőf 9. véka 10. arasz

32. Hatvani István fizikaverseny Döntő. 1. kategória. 6. higanymilliméter 7. kalória 8. rőf 9. véka 10. arasz 1. kategória 1.D.1. 1. mérföld 2. hektoliter 3. tonna 4. celsius 5. fertályóra 6. higanymilliméter 7. kalória 8. rőf 9. véka 10. arasz 1.D.2. Egy autókaraván állandó sebességgel egyenes úton halad az autópályán.

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

Mondatkiegészítések megoldások

Mondatkiegészítések megoldások Mondatkiegészítések megoldások 2014. július 2. Az alábbi típusú mondatkiegészítések jelentik az elméleti feladatok egy részét. A tapasztalat szerint ezek megoldásához a tárgyi tudás mellett szükség van

Részletesebben