Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó
|
|
- Gabi Gulyásné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik: - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó okokat; - Dinamikára: a testek mozgását tanulmányozza, figyelembe véve a kiváltó okokat; - Sztatika: a testek mechanikai egyensúlyának feltételeit tanulmányozza; 1. Mozgás és nyugalom Bevezető fogalmak: Mikor mozog egy test? A kérdésre csak akkor tudunk pontos választ adni, ha van egy vonatkoztatási rendszerünk (a vonatkoztatási vagy viszonyítási test az, melyhez képest megadjuk a tanulmányozott test helyzetét). Szükséges eszközök: méteres és időmérő. Együtt vonatkoztatási rendszert alkotnak. Ha a test helyzete a vonatkoztatási rendszerhez képest időben változik, akkor azt mondjuk, hogy hozzá képest mozgásban van. Grafikusan egy test mozgását gyakran Descartes féle derékszögű koordináta-rendszerben adjuk meg. A helyzetvektor olyan vektor melynek kezdőpontja a koordináta-rendszer origója, csúcsa (végpontja) pedig az anyagi ponton van (lásd ábra). (anyagi pont: a testek mozgása során, gyakran elhanyagolhatóak a test méreteit, a testet pontnak tekintjük melyek tömege a test tömegével egyenlő). A helyzetvektornak a három tengely szerint három vetülete van. A vetületek kifejezhetőek a koordináták egységvektorai és a vetületek nagyságainak segítségével:, vagy az egységvektorokat felhasználva: (egységvektor = nagysága 1 egység, iránya, irányítása megegyezik az egyik koordináta irányával illetve irányításával.) Mozgáskor a test által érintett pontok összességét a mozgás pályájának nevezzük. Egy test mozgását egy vonatkoztatási rendszerhez képest (ezután Mechanika Kinematika 1
2 VR) leírhatjuk a megtett úttal (a pályán mért távolság, s) vagy az elmozdulásvektorral (elmozdulásvektor = a test két helyzetének megfelelő helyzetvektor különbsége: ). A megtett út (s) és az elmozdulásvektor ( ) nem egyenértékűek! A megtett út skaláris mennyiség az elmozdulásvektor vektoriális. Nagyságuk is általában különbözik (lásd ábra). A mozgástörvény meghatározza a test helyzetét az idő függvényében. Általános alakja: Az első vektoriális a második skaláris alak. 2. A sebesség A testek mozgásának jellemzésére használt alapvető fizikai mennyiség. A középsebesség az egységnyi idő alatt megtett utat jelenti. Mértékegysége SI-ben (SI System International = Nemzetközi Mértékrendszer) m/s. A középsebesség nem tartalmaz csak a sebesség nagyságára vonatkozó információt, hiányzik az irány és irányítás. Ezért bevezetjük a középsebesség-vektort, mely az elmozdulásvektor és időtartam hányadosa. Az ábrán is látható, hogy a középsebesség-vektor iránya és irányítása megegyezik az elmozdulásvektor irányával és irányításával. A pillanatnyi sebességvektort akkor kapjuk, ha az időintervallumot zéró felé közelítjük ( ). A pillanatnyi sebesség a test sebességét jelenti egy adott pillanatban, iránya érintőleges a pályához. 3. A gyorsulás A sebesség időbeli változását a gyorsulás jellemzi. Jele: a. Képlete: mértékegysége a m/s 2. Mechanika Kinematika 2
3 Az ábrán látható, hogy a középgyorsulás vektor egyenlő a sebességváltozás-vektor és időtartam hányadosával, iránya és irányítása a sebességváltozás-vektor irányával és irányításával megegyező. Pillanatnyi gyorsulásról beszélünk, ha az időintervallumot zéró felé szűkítjük. A gyorsulást fel szokás bontani két egymásra merőleges összetevőre: a tangenciális vagy (pályához-) érintőleges gyorsulásra és normális vagy centripetális gyorsulásra (az érintő irányára merőleges). A tangenciális gyorsulás a sebesség nagyságának változását jellemzi, a normális gyorsulás pedig a sebesség irányának változását. A mozgásokat gyakran a gyorsulás összetevői szerint osztályozzuk. Az alábbi táblázat ezt a felosztási módot tükrözi: Egyenes vonalú mozgás a n =0 Görbe vonalú mozgás an 0 A MOZGÁSOK OSZTÁLYOZÁSA a gyorsulás összetevőinek függvényében egyenletes a t =0 egyenletesen változó a>0 gyorsuló a t =állandó a<0 lassuló változó a állandó R=állandó körmozgás egyenletes körmozgás a n =állandó, a t =0 egyenletesen változó körmozgás a n =állandó, a t - állandó R=változó görbe vonalú mozgás változó körmozgás a n =állandó, a t - változó 4. Egyenes vonalú egyenletes mozgás Ebben az esetben nincs gyorsulás, tehát a sebességvektor állandó. Ebből következik, hogy a pálya egyenes, a sebesség iránya megegyezik a pálya irányával. A mozgás leírásához elégséges egyetlen koordinátát használni, legyen ez az Ox tengely. A mellékelt ábrán O az origó, vagy a VR kezdőpontja, t 0 a kezdeti időpont, x 0 a test kezdeti távolsága a kezdőponthoz Mechanika Kinematika 3
4 képest, t a végső időpont melynek megfelel az x végső távolság. A sebesség kifejezése a fenti jelöléseket használva: Mivel a sebesség nem változik, ezért a középsebesség egyenlő a pillanatnyi sebességgel. A (8)-as egyenletből kifejezve az x végső helyzetnek megfelelő távolságot: összefüggést kapjuk, mely az egyenes vonalú egyenletes mozgást végző test mozgástörvénye. Ha az időt akkor kezdjük mérni, amikor a test az x 0 pontban van, akkor t 0 =0 és ha a VR kezdőpontját pont az x 0 pontban választjuk, akkor x 0 =0 és a (9)-es összefüggés leegyszerűsödik: A mozgás grafikus ábrázolását az alábbi v=v(t) és x=x(t) grafikon szemlélteti: A sebesség grafikon alatti terület nagysága egyenlő a megtett úttal (téglalap melynek oldalai v és t-t 0 ). Az út-idő grafikon iránytényezője tanα, pont a sebességgel egyenlő: 5. Egyenes vonalú egyenletesen változó mozgás Ebben az esetben a normális gyorsulás zéró, tehát egyenes vonalú mozgásról van szó, viszont a tangenciális gyorsulás zérótól különböző és állandó. Tehát a mozgás pályája egyenes, a sebesség nagysága pedig egyenlő időközökben egyenlő értékkel változik. Az egyenes vonalú egyenletes mozgás törvényei: Mechanika Kinematika 4
5 a) Sebességtörvény A középgyorsulás (7)-es kifejezéséből kapjuk: A (12)-es kifejezésből a végső sebességet kifejezve, kapjuk: A (13)-as kifejezést sebességtörvénynek nevezzük. Ha a kezdeti időpillanat zéró, akkor: b) Mozgástörvény (úttörvény) A középsebesség (5)-ös kifejezéséből: ahonnan, kifejezve x-et: Mivel a sebességváltozás egyenletes, a középsebesség kiszámítható, mint a kezdősebesség és végsősebesség számtani középarányosa: Behelyettesítve a 17-es kifejezést a 16-os egyenletbe és rendezve azt, megkapjuk a mozgástörvényt: Ha a kezdeti időpillanatot zérónak tekintjük, a 18-as egyenlet egyszerűbb alakját kapjuk: Ha a test kezdeti helyzete egybeesik az origóval (x 0 =0): c) Galilei képlete A 14-es egyenletből az időt kifejezve és a 20-as egyenletbe helyettesítve kapjuk: Mechanika Kinematika 5
6 A műveleteket elvégezve és rendezve kapjuk: A 21-es egyenlőséget Galilei képletének nevezzük. Az egyenes vonalú egyenletes mozgás esetén az a=a(t), v=v(t) és x=x(t) függvények ábrái a következők: Megjegyzések: a gyorsulás grafikonból kiolvasható, hogy a gyorsulás állandó és a grafikon alatti terület egyenlő a t-t 0 időintervallumban bekövetkezett sebességváltozással. A sebesség grafikon egy egyenes, ami azt jelenti, hogy a sebesség változása egyenesen arányos az idővel (egyenletesen változik). A grafikon és vízszintes közötti szög tangense pedig egyenlő a gyorsulás mértékével. Az út grafikonja egy parabola, mivel az út az idő másodfokú függvénye. 6. Szabadesés, függőleges hajítás Szabadeséskor és függőleges hajításkor a testre egyetlen erő hat, a gravitációs vonzóerő a Föld részéről, a súrlódási erőt elhanyagoljuk és a gravitációs erőt állandónak tekintjük. Ezen feltételek teljesülésekor a test mozgása egyenes vonalú és egyenletesen változó lesz. A gyorsulás egyenlő a gravitációs gyorsulással, a megtett utat gyakran magasságként említjük (jele: h). Ha a testet szabadon elengedjük (v 0 =0) és az origót pont a mozgás kezdőpontjában veszszük fel, akkor a mozgástörvény: a test pillanatnyi sebességét pedig a: Mechanika Kinematika 6
7 összefüggés adja meg. Függőleges hajítás esetén figyelembe kell venni, hogy a test felfele mozog, gyorsulása pedig ellentétes, ezért a mozgástörvény: A sebesség változását adó sebességtörvény a következő: A test lassuló mozgást végez, sebessége csökken, míg eléri pályájának maximális értékét, majd szabadeséssel visszaesik. A fenti összefüggéseket alkalmazva, az esés ideje szabadeséskor: A legnagyobb magasság v 0 kezdősebességű függőleges hajításkor: Bizonyítható, hogy az emelkedés és esés ideje egyenlő. 7. Mozgás függőleges síkban, gravitációs térben (ferde hajítás) A hajítás ebben az esetben a vízszintessel tól eltérő szögben történik. A súrlódást ezentúl is elhanyagoljuk, és feltételezzük, hogy a testre csak a gravitációs erő hat. A mozgás leírásához két koordináta szükséges (a mozgás síkban történik), legyen ez az Ox és Oy tengely. A mozgás egy görbe vonalú pályán történik, melynek megszerkesztjük a vetületét az Ox és Oy tengelyre. Mechanika Kinematika 7
8 Az Ox tengely (vízszintes) irányában nem hat erő, tehát egyenes vonalú egyenletes a mozgás állandó v x0 sebességgel. Az Oy tengely irányában a súlyerő hat. A mozgás hasonló egy függőleges hajításhoz, ahol a kezdősebesség v y0. A test által elért legnagyobb magasságot az Oy tengely menti mozgásból számítjuk ki feltételezve, hogy a v y sebességkomponens a legnagyobb magasságon zéró: Az emelkedési idő a 25-ös egyenletből: A teljes hajítás ideje pont kétszer akkora, mint az emelkedési idő. Időközben az Ox tengely mentén megtett út: 8. Egyenletes körmozgás Ebben az esetben a test mozgásának pályája egy kör, sebességének nagysága pedig állandó. Ebből következik, hogy normális gyorsulása állandó, tangenciális gyorsulása pedig zéró. A mellékelt ábrán az egyenletes körmozgást végző test az A pontból a B pontba kerül. A sebességvektorok a két pontban merőlegesek a sugárra (érintők a körhöz). Azért, hogy megkapjuk a sebesség változását az A pontból párhuzamosan eltoljuk a sebességvektort a B pontba. Figyelembe véve, hogy az OAB és BCD háromszögek hasonlóak, írhatjuk: A 31-esben s a megtett út, R a körmozgás sugara. Figyelembe véve, hogy a megtett út, a 31- es egyenletből kiszámítható a gyorsulás nagysága: A körmozgást jellemző egyéb fizikai mennyiségek: a) Periódus Mechanika Kinematika 8
9 Az idő, amely alatt a test egy teljes kört ír le. Jele: T, mértékegysége: s (szekundum). b) Frekvencia Az időegység alatt leírt körök számával egyenlő. Jele: ν, mértékegysége: Hz(hertz). Ha az időegységet osztjuk a frekvenciával (a leírt körök számával) megkapjuk az egy kör leírásához szükséges időt, vagyis a periódust: c) Szögsebesség A sugár által, egységnyi idő alatt leírt középponti szög. Jele: ω, mértékegysége: rad/s (radián/szekundum). A radián szögmérték, egy teljes körnek (360 0 ) megfelel 2π radián. Mivel egy teljes kört (2π radián) pont egy periódus alatt tesz meg, ezért a szögsebesség: Az egyenes vonalú egyenletes mozgásnál tanult 9-es mozgástörvény megfelelője körmozgás esetén a megtett szög kifejezése az idő függvényében. A szögsebesség meghatározásából vagy a 34-es egyenletből következik: Egyéb összefüggések: Mechanika Kinematika 9
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
RészletesebbenMechanika. Kinematika
Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat
RészletesebbenKinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
Részletesebbenrnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika
Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó
RészletesebbenHaladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Részletesebben1 2. Az anyagi pont kinematikája
1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni
RészletesebbenMechanikai rezgések = 1 (1)
1. Jellemző fizikai mennyiségek Mechanikai rezgések Mivel a harmonikus rezgőmozgást végző test leírható egy egyenletes körmozgást végző test vetületével, a rezgőmozgást jellemző mennyiségek megegyeznek
RészletesebbenMit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
RészletesebbenPálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Részletesebben1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa
1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)
RészletesebbenHely, idő, haladó mozgások (sebesség, gyorsulás)
Hely, idő, haladó mozgások (sebesség, gyorsulás) Térben és időben élünk. A tér és idő végtelen, nincs kezdete és vége. Minden tárgy, esemény, vagy jelenség helyét és idejét a térben és időben valamihez
RészletesebbenMozgástan (kinematika)
FIZIKA 10. évfolyam Mozgástan (kinematika) A fizika helye a tudományágak között: A természettudományok egyik tagja, amely az élettelen világ jelenségeivel és törvényszerűségeivel foglalkozik. A megismerés
RészletesebbenOsztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
Részletesebben1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
RészletesebbenFüggvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
RészletesebbenPálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
RészletesebbenFizika feladatok - 2. gyakorlat
Fizika feladatok - 2. gyakorlat 2014. szeptember 18. 0.1. Feladat: Órai kidolgozásra: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel s 1 utat, második szakaszában
RészletesebbenKinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.
01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj
RészletesebbenKOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes
RészletesebbenExponenciális és logaritmusos kifejezések, egyenletek
Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.
RészletesebbenPálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
RészletesebbenMatematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.
Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
RészletesebbenMechanika - Versenyfeladatok
Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az
RészletesebbenFIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
RészletesebbenMechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenFizika példák a döntőben
Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén
Részletesebben1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Részletesebben10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
RészletesebbenKÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
RészletesebbenGépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
RészletesebbenSzámítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
RészletesebbenA klasszikus mechanika alapjai
A klasszikus mechanika alapjai FIZIKA 9. Mozgások, állapotváltozások 2017. október 27. Tartalomjegyzék 1 Az SI egységek Az SI alapegységei Az SI előtagok Az SI származtatott mennyiségei 2 i alapfogalmak
RészletesebbenA test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.
Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.
RészletesebbenA mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.
A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /
RészletesebbenMérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
RészletesebbenW = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
RészletesebbenMérnöki alapok 1. előadás
Mérnöki alapok 1. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
RészletesebbenÖsszeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
RészletesebbenTovábbi adalékok a merőleges axonometriához
1 További adalékok a merőleges axonometriához Egy szép összefoglaló munkát [ 1 ] találtunk az interneten, melynek előző dolgoza - tunkhoz csatlakozó részeit itt dolgozzuk fel. Előző dolgozatunk címe: Kiegészítés
RészletesebbenSpeciális mozgásfajták
DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális
RészletesebbenA bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
RészletesebbenEgyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet. old.. feladat a. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés:
RészletesebbenSíkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
RészletesebbenA mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
RészletesebbenNULLADIK MATEMATIKA szeptember 13.
A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenLendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
RészletesebbenKéplet levezetése :F=m a = m Δv/Δt = ΔI/Δt
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
Részletesebben3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
RészletesebbenEgy nyíllövéses feladat
1 Egy nyíllövéses feladat Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. 1. ábra forrása: [ 1 / 1 ] Igencsak tanulságos, ezért részletesen bemutatjuk a megoldását. A feladat Egy sportíjjal nyilat
RészletesebbenDinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.
Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test
RészletesebbenMérések állítható hajlásszögű lejtőn
A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra
RészletesebbenÉrettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
RészletesebbenEGY ABLAK - GEOMETRIAI PROBLÉMA
EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az
RészletesebbenÉrettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
RészletesebbenTárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
RészletesebbenOktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
RészletesebbenGyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
RészletesebbenFelvételi, 2018 szeptember - Alapképzés, fizika vizsga -
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre
RészletesebbenEgy kinematikai feladat
1 Egy kinematikai feladat Valami geometriai dologról ötlött eszembe az alábbi feladat 1. ábra. 1. ábra Adott az a és b egyenes, melyek α szöget zárnak be egymással. A b egyenesre ráfektetünk egy d hosszúságú
RészletesebbenKosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.
osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét
RészletesebbenFizika alapok. Az előadás témája
Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenNewton törvények és a gravitációs kölcsönhatás (Vázlat)
Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
RészletesebbenEgy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
RészletesebbenRezgőmozgás, lengőmozgás
Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást
RészletesebbenHely, idő, haladó mozgások (sebesség, gyorsulás)
Hely, idő, haladó mozgások (sebesség, gyorsulás) Térben és időben élünk. A tér és idő végtelen, nincs kezdete és vége. Minden tárgy, esemény, vagy jelenség helyét és idejét a térben és időben valamihez
RészletesebbenSzámítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
RészletesebbenGyakorló feladatok Egyenletes mozgások
Gyakorló feladatok Egyenletes mozgások 1. Egy hajó 18 km-t halad északra 36 km/h állandó sebességgel, majd 24 km-t nyugatra 54 km/h állandó sebességgel. Mekkora az elmozdulás, a megtett út, és az egész
RészletesebbenMunka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő
RészletesebbenAdatok: fénysebesség, Föld sugara, Nap Föld távolság, Föld Hold távolság, a Föld és a Hold keringési és forgási ideje.
FOGALMAK, DEFINÍCIÓK Az SI rendszer alapmenniségei. Síkszög, térszög. Prefixumok. Adatok: fénsebesség, Föld sugara, Nap Föld távolság, Föld Hold távolság, a Föld és a Hold keringési és forgási ideje. Fogalmak,
RészletesebbenElméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
RészletesebbenTér, idő, hely, mozgás (sebesség, gyorsulás)
Tér, idő, hely, mozgás (sebesség, gyorsulás) Térben és időben élünk. A tér és idő végtelen, nincs kezdete és vége. Minden tárgy, esemény, vagy jelenség helyét és idejét a térben és időben valamihez képest,
RészletesebbenPÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
RészletesebbenHELYI TANTERV. Mechanika
HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze
RészletesebbenVektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
RészletesebbenEgy sík és a koordinátasíkok metszésvonalainak meghatározása
1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -
Részletesebben1. feladat. 2. feladat
1. feladat Jelölje θ az inga kitérési szögét az ábrán látható módon! Abban a pillanatban amikor az inga éppen hozzáér a kondenzátor lemezéhez teljesül az l sin θ = d/2 összefüggés. Ezen felül, mivel a
RészletesebbenTestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor
gészítsd ki a mondatot! egyenes vonalú egyensúlyban erő hatások mozgást 1. 2:57 Normál Ha a testet érő... kiegyenlítik egymást, azt mondjuk, hogy a test... van. z egyensúlyban lévő test vagy nyugalomban
RészletesebbenTestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor
gészítsd ki a mondatokat Válasz lehetőségek: (1) a föld középpontja felé mutató erőhatást 1. fejt ki., (2) az alátámasztásra vagy a felfüggesztésre hat., (3) két 4:15 Normál különböző erő., (4) nyomja
RészletesebbenFelvételi, 2017 július -Alapképzés, fizika vizsga-
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott
RészletesebbenKoordinátageometria Megoldások
005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának
Részletesebben9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
RészletesebbenÉrettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
RészletesebbenVektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
RészletesebbenEGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA
EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA 1. A kinematika és a dinamika tárgya. Egyenes onalú egyenletes mozgás a) Kísérlet és a belőle leont köetkeztetés b) A mozgás jellemző grafikonjai
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű
RészletesebbenTrigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
RészletesebbenVektoralgebra. 1.) Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s 2?
Vektoralgebra Elmélet: http://digitus.itk.ppke.hu/~b_novak/dmat/vektorfolcop.pdf Mikor érdemes más, nem ortonormált bázist alkalmazni? Fizikában a ferde hajításoknál megéri úgynevezett ferdeszögű koordináta-rendszert
RészletesebbenTömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
RészletesebbenFizika feladatok megoldása Tanszéki, Munkaközösség, Pannon Egyetem Fizika és Mechatronika Intézet
Fizika feladatok megoldása Tanszéki Munkaközösség Pannon Egyetem Fizika és Mechatronika Intézet Created by XMLmind XSL-FO Converter Fizika feladatok megoldása írta Tanszéki Munkaközösség Publication date
Részletesebben6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
RészletesebbenForogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.
1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton
RészletesebbenFeladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y
Részletesebben