Mit nevezünk nehézségi erőnek?
|
|
- Liliána Lilla Kissné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g
2 Mi a súly? Azt az erőt, amellyel a test nyomja az alátámasztást vagy húzza a felfüggesztést a test súlyerőnek (röviden súlynak) nevezzük. jele: G A nyugalomban lévő vagy egyenletesen mozgó test súlyának kiszámítása: G = m g
3 Hogyan határozhatjuk meg a gyorsuló testek súlyát? Ha a test felfelé gyorsul, akkor a test súlya: G = m (g+a) ha 0<a (gyorsul) G nő ha a<0 (lassul) G csökken Ha a test lefelé gyorsul, akkor a test súlya: G = m (g-a) ha 0<a (gyorsul) G csökken ha a<0 (lassul) G nő
4 Mit nevezünk súlytalanságnak és hogyan valósul meg? Ha egy testre a gravitációs erőn kívül nem hat más erő, tehát a test szabadon esik, akkor nincs súlya (tehát nem nyomja az alátámasztást és nem húzza a felfüggesztést) vagyis a súlytalanság állapotában van. Ilyenkor a = g G = m (g-a)= m (g-g)= 0
5 Rugóállandó A rugóra ható erő (F) és az annak hatására történő hosszúságváltozás ( l) hányadosaként értelmezett fizikai mennyiséget nevezzük rugóállandónak (direkciós erőnek). D = F l A rugóállandó mértékegysége: D = N m A rugóállandó megmutatja, hogy mekkora erő hatására változik meg a rugó hossza 1 m-rel.
6 Lineáris erőtörvény vagy Hooke törvény A rugó által kifejtett rugalmas erő (F r ) egyenesen arányos a rugó hosszúságának megváltozásával, iránya pedig mindig azzal ellentétes. F r = D l
7 A test tehetetlen ill. súlyos tömege Egy test gyorsítása során fellépő tehetetlenség mértékét tehetetlen tömeggel (m t ) szokás jellemezni. A kis tehetetlen tömegű test sokkal gyorsabban változtatja mozgásállapotát, mint a nagy tehetetlen tömegű. A gravitációs kölcsönhatásban egy testet jellemző tömeget súlyos tömegnek (m s ) nevezzük. Azonos gravitációs térben a kisebb súlyos tömegű testre kisebb erő hat, mint a nagyobbra.
8 Tömegmérési módszerek dinamikai módszer: (a tehetetlen tömeget méri) Két test kölcsönhatása közben bekövetkező sebességváltozások nagysága fordítottan arányos a testek tömegével. (Gravitációs mezőtől függetlenül mérhető. Pl.: súlytalanságban)
9 Tömegmérési módszerek sztatikai módszer 1. (kétkarú mérleggel) A súlyos tömeget méri. Egyik serpenyőbe (bal) az ismeretlen tömegű (m 1 ) testet helyezzük, a másikba (jobb) az ismert tömegű testeket (m 2 ) teszünk úgy, hogy a mérleg az eredeti egyensúlyba visszaálljon. Egyensúly esetén: m 1 = m 2 (Gravitációs mezőtől függetlenül mérhető. Pl.: súlytalanságban)
10 Tömegmérési módszerek sztatikai módszer 2. (rugós erőmérővel) A súlyos tömeget méri. Ha a rugó függőleges tengelyű és egy testet akasztunk rá, akkor minden tömegnek megfeleltethető egy bizonyos mértékű rugómegnyúlás, amely a tömeggel egyenes arányosságban van. Így lehet tömeget összehasonlítani a rugós erőmérővel, tömegmérésre pedig az után használható, hogy egy etalonnal kalibráltuk. Eötvös Lóránd mérései nagy pontossággal igazolták a kétféle tömeg egyenértékűségét.
11 A súrlódási erő A súrlódás oka a felületek egyenetlensége. A felületek egymáson való elmozdulásakor a recék egymásba akadnak, és így akadályozzák a mozgást. A súrlódás gyakran hasznos, pl. járáskor, járművek gyorsításakor, vagy amikor krétával írunk a táblára.
12 De tapasztaljuk a súrlódás káros hatását is, pl. a fék kopása, gumiabroncs kopása, forgó alkatrészek egymáson való csúszása. Az utóbbi esetben a súrlódás csökkentésére kenőanyagot használnak. Fajtái: tapadási súrlódási erő jele F t csúszási súrlódási erő jele F s gördülési súrlódási erő jele F g
13 Tapadási súrlódási erő A tapadási súrlódási erő maximális értéke (F t ) egyenesen arányos a felületeket merőlegesen összenyomó erővel (F ny ), az arányossági tényező az érintkező felületek minőségére jellemző tapadási súrlódási együttható (µ t ). A tapadási súrlódási erő maximális értéke megegyezik annak a húzóerőnek az ellenerejével, amelynél a test még éppen nyugalomban van. F t = µ t F ny
14 Csúszási súrlódási erő A csúszási súrlódási erő (F s ) egyenesen arányos a felületeket merőlegesen összenyomó erővel (F ny ), az arányossági tényező az érintkező felületek minőségére jellemző csúszási súrlódási együttható (µ s ). F s = µ s F ny
15 Gördülési súrlódási erő A gördülési súrlódási erő (F g ) egyenesen arányos a felületeket merőlegesen összenyomó erővel (F ny ), az arányossági tényező az érintkező felületek minőségére jellemző gördülési súrlódási együttható (µ g ). F g = µ g F ny Mivel µ g < µ s < µ t, ezért F g < F s < F t
16 Közegellenállási erő Ha a közegben egy test mozog, akkor a közeg egy olyan erőt fejt ki rá, ami csökkenti a testnek a közeghez viszonyított sebességét. Ez a hatás a közegellenállás, amelyet a közegellenállási (F k ) erővel jellemzünk.
17 A közegellenállási erő egyenesen arányos a közeg sűrűségével (ρ), a homlokfelület nagyságával (A) és a közeg és a test egymáshoz viszonyított sebességének négyzetével (v 2 ), és függ a test alakjától, melyet a közegellenállási tényezővel jellemzünk ( c ). A közegellenállási erő kiszámítása: F k = 1 2 c ρ A v2
18 A pontrendszerekben ható erők Egymással kölcsönhatásban lévő pontszerű testekből álló rendszert pontrendszernek nevezünk. Ilyen pl.: két biliárdgolyó ütközése egymással kapcsolatban lévő vasúti kocsik A pontrendszer tagjaira ható erők lehetnek: Külső erők (F 1, F 2 ) Belső erők (F 21, F 12 ) a rendszer tagjai között működő erők. A belső erők eredője Newton III. törvényéből adódóan mindig nulla.
19 Általában a körmozgásról A körmozgás az időben ismétlődő periodikus mozgások közé tartozik. A mozgás pályája egy kör. A mozgás egy periódusa az a pályaszakasz, amelyet a test akkor fut be, ha a körkerület egy pontjából elindul, megtesz egy teljes körívet, és visszatér a kiindulási pontba. fajtái: egyenletes körmozgás (a sebesség nagysága állandó, iránya változó) egyenletesen változó körmozgás (a sebesség nagysága és iránya is változik)
20 A körmozgás jellemzői Periódusidő: Egy periódus megtételéhez szükséges idő. Jele: T, mértékegysége [T] = s Fordulatszám: Egy másodperc alatt megtett periódusok száma. Jele: n, mértékegysége [n] = 1 s Kapcsolat a két mennyiség között: n = 1 T
21 Kerületi sebesség: Jele v k, mértékegysége [v k ] = m s Iránya minden pillanatban érintőirányú. Nagyságát megkapjuk, ha az ívet osztjuk az ív megtételéhez szükséges idővel. v k = s t = 2 r π T = 2 r π n
22 A síkszög mértékegységei Fok - szögperc - szögmásodperc teljesszög = = 60' ; 1' = 60". Radián: Síkszögek mérésére használt SI-mértékegység. Jele rad 1 radián annak a szögnek a nagysága, amely egy olyan körcikk középpontjában van, amelynek kerülete azonos hosszúságú a kör sugarával (ívmérték). α rad = i r
23 Átváltás a szög mértékegységei között Mivel: α = α rad = π α 180 = α rad π α = α rad π 180 α rad = α 180 π
24 Szögsebesség: jele ω Megkapjuk, ha a radiánban kifejezett szögelfordulást osztjuk a szögelforduláshoz szükséges idővel. ω = α rad t = 2π T = 2 π n mértékegysége: [ω] = 1 s Kapcsolat a kerületi sebesség és a szögsebesség között: v k = ω r
25 centripetális gyorsulás: jele a cp (a sebesség irányának változásából adódik) (film) a cp = v k 2 r = ω2 r = v k ω
26 centripetális erő: jele F cp A centripetális erő iránya a kör középpontja felé mutat. Az egyenletes körmozgást tehát akkor végez egy test, ha a rá ható erők eredője egy pont felé mutat és egyenlő a centripetális erővel. F cp = m a cp = m v k 2 r = m ω 2 r = m v k ω
Elméleti kérdések és válaszok
Elméleti kérdések és válaszok Folyamatosan bővül 9. évfolyam Tartalom 1. Értelmezd a következő fogalmakat: megfigyelés, kísérlet, modell!... 3 2. Mit nevezünk koordináta rendszernek és mit vonatkoztatási
Komplex természettudomány 3.
Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott
DINAMIKA ALAPJAI. Tömeg és az erő
DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban
Elméleti kérdések és válaszok
Elméleti kérdések és válaszok Folyamatosan bővül 9. évfolyam Tartalom 1. Értelmezd a következő fogalmakat: megfigyelés, kísérlet, modell!... 4 2. Mit nevezünk koordináta rendszernek és mit vonatkoztatási
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
Newton törvények, erők
Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső
TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor
gészítsd ki a mondatot! egyenes vonalú egyensúlyban erő hatások mozgást 1. 2:57 Normál Ha a testet érő... kiegyenlítik egymást, azt mondjuk, hogy a test... van. z egyensúlyban lévő test vagy nyugalomban
TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor
gészítsd ki a mondatokat Válasz lehetőségek: (1) a föld középpontja felé mutató erőhatást 1. fejt ki., (2) az alátámasztásra vagy a felfüggesztésre hat., (3) két 4:15 Normál különböző erő., (4) nyomja
Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
PÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
Munka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő
Mechanika. Kinematika
Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat
Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
Newton törvények és a gravitációs kölcsönhatás (Vázlat)
Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások
A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata.
A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata. Eszközszükséglet: Mechanika I. készletből: kiskocsi, erőmérő, súlyok A/4-es írólap, smirgli papír gyurma
Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő:
Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót
Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő:
Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót erőmérőnek
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
3. fizika előadás-dinamika. A tömeg nem azonos a súllyal!!! A súlytalanság állapotában is van tömegünk!
3. fizika előadás-dinamika A tömeg a testek tehetetlenségének mértéke. (kilogramm (SI), gramm, dekagramm, tonna, métermázsa, stb.) Annak a testnek nagyobb a tehetetlensége/tömege, amelynek nehezebb megváltoztatni
Mérések állítható hajlásszögű lejtőn
A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.
Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Newton törvények, erők
Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső
Körmozgás és forgómozgás (Vázlat)
Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen
A testek tehetetlensége
DINAMIKA - ERŐTAN 1 A testek tehetetlensége Mozgásállapot változás: Egy test mozgásállapota akkor változik meg, ha a sebesség nagysága, iránya, vagy egyszerre mindkettő megváltozik. Testek tehetetlensége:
Newton törvények, lendület, sűrűség
Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja
Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények
Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periódikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó
A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.
Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.
Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
Rezgőmozgás, lengőmozgás
Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást
Tehetetlenség, tömeg, sűrűség, erők fajtái
Tehetetlenség, tömeg, sűrűség, erők fajtái Newton I. törvénye (tankönyv 44-45.o.): Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete
1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa
1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)
Speciális mozgásfajták
DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Mérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Fizika alapok. Az előadás témája
Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális
Newton törvények, erők
Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső
Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Erők fajtái, lendület Példák
Erők fajtái, lendület Rugalmas erő (tankönyv 53-54. o.): A rugalmas tárgy alakváltozása (pl. rugó megnyúlása) egyenesen arányos a rugalmas erő nagyságával. Ezért lehet pl. a rugót erőmérőnek használni.
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18
rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika
Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó
Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?
Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye
Irányításelmélet és technika I.
Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010
Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó
Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:
3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:
1. A mellékelt táblázat a Naphoz legközelebbi 4 bolygó keringési időit és pályagörbéik félnagytengelyeinek hosszát (a) mutatja. (A félnagytengelyek Nap- Föld távolságegységben vannak megadva.) a) Ábrázolja
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
2.3 Newton törvények, mozgás lejtőn, pontrendszerek
Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat
Rezgések és hullámok
Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő
Dinamika, Newton törvények, erők
Dinamika, Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg
Erők fajtái. Fajtái: Irányuk, funkciójuk alapján: húzóerő, tolóerő, tartóerő, nyomóerő
Erők fajtái Az erőhatást az erő vektorral jellemezzük. (van nagysága és iránya) Az erő támadáspontja az a pont, ahol az erő a testet éri. Az erő hatásvonala az az egyenes, amely átmegy a támadásponton
Mérnöki alapok 1. előadás
Mérnöki alapok 1. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
A nyomás. IV. fejezet Összefoglalás
A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező
Tömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
GYIK mechanikából. (sűrűségmérés: - tömeg+térfogatmérés (akár Arkhimédész-törvény segítségével 5)
GYIK mechanikából 1.1.1. kölcsönhatás: két test vagy mező egymásra való, kölcsönös hatása mozgásállapot: testek azon állapota, melynek során helyük megváltozik (itt fontos a mozgó test tömege is!) tömegmérések:
Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Hidrosztatika. Folyadékok fizikai tulajdonságai
Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p
Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,
Erők fajtái, lendület, bolygómozgás Példák
Erők fajtái, lendület, bolygómozgás Rugalmas erő: A rugalmas tárgy alakváltozása (pl. rugó megnyúlása) egyenesen arányos a rugalmas erő nagyságával. Ezért lehet pl. a rugót erőmérőnek használni. (rugós
Mozgástan (kinematika)
FIZIKA 10. évfolyam Mozgástan (kinematika) A fizika helye a tudományágak között: A természettudományok egyik tagja, amely az élettelen világ jelenségeivel és törvényszerűségeivel foglalkozik. A megismerés
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
A klasszikus mechanika alapjai
A klasszikus mechanika alapjai FIZIKA 9. Mozgások, állapotváltozások 2017. október 27. Tartalomjegyzék 1 Az SI egységek Az SI alapegységei Az SI előtagok Az SI származtatott mennyiségei 2 i alapfogalmak
Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...
Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár
A gravitációról és a nehézségi erőről, a tehetetlen és súlyos tömeg azonosságáról
A gravitációról és a nehézségi erőről, a tehetetlen és súlyos tömeg azonosságáról Mindennapi tapasztalatunk az, hogy sok fizikai jelenségben szerepet játszik a testek anyagmennyisége. A testek tömegét
FIZIKA ZÁRÓVIZSGA 2015
FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni
Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ 2014. április 26. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár
Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre
Mérés: Millikan olajcsepp-kísérlete
Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat
1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői. 2. A gyorsulás
1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői Kísérlet: Határozza meg a Mikola féle csőben mozgó buborék mozgásának sebességét! Eszközök: Mikola féle cső, stopper, alátámasztó
Fizika 1i, 2018 őszi félév, 4. gyakorlat
Fizika 1i, 018 őszi félév, 4. gyakorlat Szükséges előismeretek: erőtörvények: rugóerő, gravitációs erő, közegellenállási erő, csúszási és tapadási súrlódás; kényszerfeltételek: kötél, állócsiga, mozgócsiga,
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
A II. kategória Fizika OKTV mérési feladatainak megoldása
Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett
38. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló március óra A verseny hivatalos támogatói
38. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2019. március 19. 14-17 óra A verseny hivatalos támogatói Oktatási Hivatal, Pedagógiai Oktatási Központok I. kategória, Gimnázium 9.
28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály
1. feladat a) A négyzet alakú vetítővászon egy oldalának hossza 1,2 m. Ahhoz, hogy a legnagyobb nagyításban is ráférjen a diafilm-kocka képe a vászonra, és teljes egészében látható legyen, ahhoz a 36 milliméteres
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Felvételi, 2017 július -Alapképzés, fizika vizsga-
Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. január 30. Tapasztalatok az erővel kapcsolatban: elhajított kő, kilőtt nyílvessző, ásás, favágás Aristoteles: az erő a mozgás fenntartója Galilei: a mozgás
Bevezető fizika (VBK) zh1 tesztkérdések Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2
Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2 Mi a csúszási súrlódási együttható mértékegysége? NY) kg TY) N GY) N/kg LY) Egyik sem. Mi a csúszási súrlódási együttható mértékegysége?
Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3
36. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló március óra A verseny hivatalos támogatói
36. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2017. március 21. 14-17 óra A verseny hivatalos támogatói Oktatási Hivatal, Pedagógiai Oktatási Központok I. kategória, Gimnázium 9.
Az úszás biomechanikája
Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható
Gravitációs mező (Vázlat)
Gravitációs mező (Vázlat) 1. Gravitációs mező. Gravitációs mező jellemző tulajdonságai 3. Newton-féle gravitációs törvény 4. A gravitációs állandó meghatározása 5. A gravitációs térerősség és potenciál
DÖNTŐ 2013. április 20. 7. évfolyam
Bor Pál Fizikaverseny 2012/2013-as tanév DÖNTŐ 2013. április 20. 7. évfolyam Versenyző neve:.. Figyelj arra, hogy ezen kívül még két helyen (a belső lapokon erre kijelölt téglalapokban) fel kell írnod
29. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika 2014. február 27 28. 9. osztály
9. Nagy László Fizikaverseny 014. február 7 8. 1. feladat Adatok: H = 5 m, h = 0 m. A H magasságban elejtett test esési idejének (T 13 ) és a részidők (T 1, T 3 ) meghatározása: H g 13 13 = = =,36 s H
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Kinematika. A mozgás matematikai leírása, a mozgást kiváltó ok feltárása nélkül.
Kinematika A mozgás matematikai leírása, a mozgást kiváltó ok feltárása nélkül. Helyvektor és elmozdulás Egy test helyzetét és helyzetváltozását csak más testekhez viszonyítva írhatjuk le. Ezért először
A mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
Mérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
BEMUTATÓ FELADATOK (2) ÁLTALÁNOS GÉPTAN tárgyból
BEMUTATÓ FELADATOK () 1/() Egy mozdony vízszintes 600 m-es pályaszakaszon 150 kn állandó húzóer t fejt ki. A vonat sebessége 36 km/h-ról 54 km/h-ra növekszik. A vonat tömege 1000 Mg. a.) Mekkora a mozgási