A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása."

Átírás

1 A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag, szögmérő stopper mágnesek (hangszóró) 1. ábra Kísérleti eszközeink A mérés elméleti háttere Hosszú, vékony fonalra akasszunk egy kis testet, majd függőleges egyensúlyi helyzetéből kimozdítva engedjük el! A test egy köríven, két szélső helyzete között periodikus mozgást, ingamozgást végez. Ha a test kisméretű a fonal hosszához képest, a fonal tömege pedig elhanyagolható az ingatest tömegéhez viszonyítva, akkor matematikai vagy fonalingáról beszélünk. 2. ábra Matematikai inga A test a rá ható erők hatására egy köríven fog mozogni. A matematikai inga lengésideje 1. feladat Vegyél egy l = 1 m hosszúságú ingát és egy m = 50 g tömegű testet! Mérd meg az inga lengésidejét először úgy, hogy a testet csak kicsit téríted ki az egyensúlyi helyzetből, majd növeld a 1. oldal

2 kezdeti kitérítés α szögét! (Egyszerű matematikai számításokkal meghatározható, hogy különböző kitérési szögekhez mekkora kitérés tartozik. Így kikerülhető a szögmérő használata.) Az időmérés hibája úgy csökkenthető, hogy nem egy lengésidőt mérünk meg, hanem 10-et. Így a mérési hiba nem egy, hanem 10 mérésre oszlik szét. Töltsd ki az 1. táblázatot! α (fok) A (cm) 2 3,5 4, T (s) 1. táblázat Hogyan változik a lengésidő a kitérés függvényében? A mérési eredmények azt mutatják, hogy kis kitérések esetén (kb. 5 -ig) az inga lengésideje.. változik lényegesen, nagyobb kitérésekre viszont.... Ez azért van így, mert kis kitérésekre az inga mozgása jó közelítéssel harmonikus rezgőmozgásnak tekinthető, ahol a rezgésidő független az amplitúdótól. Mekkora az ingánk lengésideje? Számítsd ki az első három mérésed átlagát! T = T 2 o + T 4 o + T 5 o 3 = A továbbiakban vizsgáld meg, hogy kis kitérések esetén milyen tényezők befolyásolják a lengésidőt! 2. feladat Lengésidő és tömeg kapcsolata Akassz az 50 g-os test helyére kétszer, majd háromszor akkora tömegű testet! Mérd meg a lengésidőt úgy, hogy a kezdeti kitérés ne legyen nagyobb, mint 5 o! m (g) T (s) 2. táblázat Milyen összefüggés van a lengésidő és a tömeg között? oldal

3 3. feladat Lengésidő és ingahossz kapcsolata Vizsgáld meg a lengésidőnek a fonal hosszától való függését! Változtasd a fonal hosszát és mérd meg a lengésidőt. Minden ingahossz esetén háromszor mérj lengésidőt (iga hossza: a felfüggesztési pont és a test tömegközéppontjának távolsága). Töltsd ki a 3. táblázatot! l (m) 10T 1 (s) 10T 2 (s) 10T 3 (s) 10T (s) T (s) 3. táblázat Ábrázold a lengésidőt az inga hosszának függvényében! 1. grafikon Milyen kapcsolat van a két mennyiség között? oldal

4 Most ábrázold a lengésidőt az ingahossz négyzetgyökének függvényében (2. grafikon)! Fonálinga vizsgálata 2. grafikon A grafikonról leolvasható, hogy a lengésidő és az inga hosszának gyöke egymással... Az elmélet szerint a lengésidő: T = 2π l g = 2π g l, tehát az egyenes meredekségéből ( 2π ) a gravitációs gyorsulás értéke meghatározható. Határozd meg a gravitációs gyorsulás értékét! g 4. oldal

5 4. feladat A gravitációs gyorsulástól való függést is tudjuk modellezni. Tegyünk a Bunsen-állvány talpára mágnest, vagy hangszórót (3. ábra) úgy, hogy azok pontosan a vasból készült ingatest alatt legyenek. Így a gravitációs vonzáshoz hozzáadódik a mágneses vonzás, tehát azt szimuláljuk mintha erősebb gravitációs térben lengett volna a test. Állítsd úgy be az inga hosszát, hogy a test a mágnes felett 10 cm-rel legyen! Mérd meg a lengésidőt! Növeld az inga hosszát és mérd meg a lengésidőket! Töltsd ki a táblázatot! 3. ábra h (cm) T (s) 4. táblázat Hogyan változott a lengésidő? Az ismeretek ellenőrzése: 1. Mit nevezünk fonálingának? 2. Milyen mozgást végez az ingatest kis kitérések esetén? 3. Milyen tényezők befolyásolják a lengésidőt? 4. Mekkora a hossza a másodperc ingának (az ingatest egyik szélsőhelyzetből a másikba éppen 1 s alatt jut el)? 5. Mekkora az 1 m hosszú fonálinga lengésideje a Holdon? (g Hold = 1,66 m s 2 ) Felhasznált szakirodalom: Fizika 11. Mozaik kiadó, Szeged oldal

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Rezgőmozgás, lengőmozgás

Rezgőmozgás, lengőmozgás Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást

Részletesebben

Nehézségi gyorsulás mérése megfordítható ingával

Nehézségi gyorsulás mérése megfordítható ingával Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja

Részletesebben

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység

Részletesebben

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)

Részletesebben

2009/2010. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA I. kategória FELADATLAP. Valós rugalmas ütközés vizsgálata.

2009/2010. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA I. kategória FELADATLAP. Valós rugalmas ütközés vizsgálata. A versenyző kódszáma: 009/00. tanév Országos Középiskolai Tanulmányi Verseny FIZIKA I. kategória FELADATLAP Valós rugalmas ütközés vizsgálata. Feladat: a mérőhelyen található inga, valamint az inga és

Részletesebben

Rezgések és hullámok

Rezgések és hullámok Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

Tömegmérés stopperrel és mérőszalaggal

Tömegmérés stopperrel és mérőszalaggal Tömegmérés stopperrel és mérőszalaggal 1. Általános tudnivalók Mérőhelyén egy játékpisztolyt, négy lövedéket, valamint egy jól csapágyazott, fatalpra erősített fémlemezt talál. A lentebb közölt utasítások

Részletesebben

1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői. 2. A gyorsulás

1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői. 2. A gyorsulás 1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői Kísérlet: Határozza meg a Mikola féle csőben mozgó buborék mozgásának sebességét! Eszközök: Mikola féle cső, stopper, alátámasztó

Részletesebben

Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök segítségével! Eszközök: Kiskocsi-sín, Stopperóra, Mérőszalag

Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök segítségével! Eszközök: Kiskocsi-sín, Stopperóra, Mérőszalag Fizika érettségi 2017. Szóbeli tételek kísérletei és a kísérleti eszközök képei 1. Egyenes vonalú, egyenletesen változó mozgás Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

A középszintű fizika érettségi kísérleteinek képei 2017.

A középszintű fizika érettségi kísérleteinek képei 2017. A középszintű fizika érettségi kísérleteinek képei 2017. 1. Kísérlet: Feladat: A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!

Részletesebben

Elvégzendő mérések, kísérletek: Egyenes vonalú mozgások. A dinamika alaptörvényei. A körmozgás

Elvégzendő mérések, kísérletek: Egyenes vonalú mozgások. A dinamika alaptörvényei. A körmozgás Elvégzendő mérések, kísérletek: Egyenes vonalú mozgások Mérje meg a Mikola csőben lévő buborék sebességét, két különböző alátámasztás esetén! Több mérést végezzen! Milyen mozgást végez a buborék? Milyen

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Tanári mydaq pályázat

Tanári mydaq pályázat Tanári mydaq pályázat Készítette: Gyermán György Debrecen, 2014.dec-.2015.jan. I. Rugóállandó meghatározása A mérés leírása: A harmonikus rezgőmozgás része a közép- és emelt szintű érettségi vizsgának.

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése Rugalmas állandók mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. április 23. (hétfő délelőtti csoport) 1. Young-modulus mérése behajlásból 1.1. A mérés menete A mérés elméleti háttere megtalálható a jegyzetben

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben

Érettségi témakörök fizikából őszi vizsgaidőszak

Érettségi témakörök fizikából őszi vizsgaidőszak Érettségi témakörök fizikából -2016 őszi vizsgaidőszak 1. Egyenes vonalú egyenletes mozgás Mikola-cső segítségével igazolja, hogy a buborék egyenes vonalú egyenletes mozgást végez. Két különböző hajlásszög

Részletesebben

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében: 1. A mellékelt táblázat a Naphoz legközelebbi 4 bolygó keringési időit és pályagörbéik félnagytengelyeinek hosszát (a) mutatja. (A félnagytengelyek Nap- Föld távolságegységben vannak megadva.) a) Ábrázolja

Részletesebben

Galilei lejtő golyóval (golyó, ejtő-csatorna) stopperóra, mérőszalag vagy vonalzó (abban az esetben, ha a lejtő nincsen centiméterskálával ellátva),

Galilei lejtő golyóval (golyó, ejtő-csatorna) stopperóra, mérőszalag vagy vonalzó (abban az esetben, ha a lejtő nincsen centiméterskálával ellátva), Egyenes vonalú egyenletes mozgás vizsgálata A rendelkezésre álló eszközökkel vizsgálja meg a buborék mozgását a kb. 30 -os szögben álló csőben! Az alábbi feladatok közül válasszon egyet! a) Igazolja, hogy

Részletesebben

Egyenes vonalú egyenletes mozgás vizsgálata

Egyenes vonalú egyenletes mozgás vizsgálata Egyenes vonalú egyenletes mozgás vizsgálata A rendelkezésre álló eszközökkel vizsgálja meg a buborék mozgását a kb. 30 -os szögben álló csőben! Az alábbi feladatok közül válasszon egyet! a) Igazolja, hogy

Részletesebben

Elektromágneses indukció kísérleti vizsgálata

Elektromágneses indukció kísérleti vizsgálata A kísérlet célkitűzései: Kísérleti úton tapasztalja meg a diák, hogy mi a különbség a mozgási és a nyugalmi indukció között, ill. milyen tényezőktől függ az indukált feszültség nagysága. Eszközszükséglet:

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása

a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30

Részletesebben

. T É M A K Ö R Ö K É S K Í S É R L E T E K

. T É M A K Ö R Ö K É S K Í S É R L E T E K T É M A K Ö R Ö K ÉS K Í S É R L E T E K Fizika 2018. Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések . REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós

Részletesebben

Szekszárdi I Béla Gimnázium Középszintű fizika szóbeli érettségi vizsga témakörei és kísérletei

Szekszárdi I Béla Gimnázium Középszintű fizika szóbeli érettségi vizsga témakörei és kísérletei Szekszárdi I Béla Gimnázium Középszintű fizika szóbeli érettségi vizsga témakörei és kísérletei I. Mechanika: 1. A gyorsulás 2. A dinamika alaptörvényei 3. A körmozgás 4. Periodikus mozgások 5. Munka,

Részletesebben

A gravitációs gyorsulás meghatározására irányuló. célkitűzései:

A gravitációs gyorsulás meghatározására irányuló. célkitűzései: Tanári útmutató: A gravitációs gyorsulás meghatározására irányuló célkitűzései: méréssorozat általános A gravitációs gyorsulás értékének meghatározása során ismerkedjenek meg a tanulók többféle hagyományos

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése 2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának

Részletesebben

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK Oktatási Hivatal A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA I. KATEGÓRIA FELADATOK Bimetal motor tulajdonságainak vizsgálata A mérőberendezés leírása: A vizsgálandó

Részletesebben

Mechanika 1. Az egyenes vonalú mozgások

Mechanika 1. Az egyenes vonalú mozgások I. Mechanika 1. Az egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést! elvégzendő kísérlet Mikola-cső; dönthető

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata.

A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata. A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata. Eszközszükséglet: Mechanika I. készletből: kiskocsi, erőmérő, súlyok A/4-es írólap, smirgli papír gyurma

Részletesebben

Eszközszükséglet: Erők összetevőit bemutató asztal 4 db csigával, nehezékekkel (Varignon-asztal)

Eszközszükséglet: Erők összetevőit bemutató asztal 4 db csigával, nehezékekkel (Varignon-asztal) A Varignon-féle asztallal végzett megfigyelések és mérések célkitűzése: Az erők testekre való hatásának és az erők összeadódásának(eredő erő) megfigyelése. Az egyensúlyi erő és az eredő erő kapcsolatának

Részletesebben

Középszintű fizika érettségi közzéteendő mérés eszközei és azok képei

Középszintű fizika érettségi közzéteendő mérés eszközei és azok képei Középszintű fizika érettségi közzéteendő mérés eszközei és azok képei - 2019 1. Egyenes vonalú mozgások- Mikola-csöves mérés Szükséges eszközök: Mikola-cső; dönthető állvány; befogó; stopperóra; mérőszalag.

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Fizika középszintű szóbeli vizsga témakörei és kísérletei

Fizika középszintű szóbeli vizsga témakörei és kísérletei Fizika középszintű szóbeli vizsga témakörei és kísérletei I. Mechanika: 1. A gyorsulás 2. A dinamika alaptörvényei 3. A körmozgás 4. Periodikus mozgások 5. Munka, energia, teljesítmény II. Hőtan: 6. Hőtágulás

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések

1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések K1A labor 1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglakoztunk

Részletesebben

Felvételi, 2017 július -Alapképzés, fizika vizsga-

Felvételi, 2017 július -Alapképzés, fizika vizsga- Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott

Részletesebben

Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben! Határozza meg a buborék sebességét a rendelkezésre álló eszközökkel!

Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben! Határozza meg a buborék sebességét a rendelkezésre álló eszközökkel! 1. tétel. Egyenes vonalú mozgások Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben! Határozza meg a buborék sebességét a rendelkezésre álló eszközökkel! Mi okozhat mérési hibát? Eszközök:

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése.

A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése. A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése. Eszközszükséglet: Optika I. tanulói készlet főzőpohár, üvegkád,

Részletesebben

Fizikai olimpiász. 52. évfolyam. 2010/2011-es tanév. B kategória

Fizikai olimpiász. 52. évfolyam. 2010/2011-es tanév. B kategória Fizikai olimpiász 52. évfolyam 2010/2011-es tanév B kategória A kerületi forduló feladatai (további információk a http://fpv.uniza.sk/fo honlapokon találhatók) 1. A Föld mágneses pajzsa Ivo Čáp A Napból

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

Középszintű fizika érettségi kísérlet és eszközlista képekkel 2017

Középszintű fizika érettségi kísérlet és eszközlista képekkel 2017 Középszintű fizika érettségi kísérlet és eszközlista képekkel 2017 1. Nehézségi gyorsulás értékének meghatározása Audacity számítógépes akusztikus mérőprogram segítségével Nagyobb méretű acél csapágygolyó;

Részletesebben

A diákok végezzenek optikai méréseket, amelyek alapján a tárgytávolság, a képtávolság és a fókusztávolság közötti összefüggés igazolható.

A diákok végezzenek optikai méréseket, amelyek alapján a tárgytávolság, a képtávolság és a fókusztávolság közötti összefüggés igazolható. Az optikai paddal végzett megfigyelések és mérések célkitűzése: A tanulók ismerjék meg a domború lencsét és tanulmányozzák képalkotását, lássanak példát valódi képre, szerezzenek tapasztalatot arról, mely

Részletesebben

11. ÉVFOLYAM FIZIKA. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

11. ÉVFOLYAM FIZIKA. TÁMOP 3.1.3 Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban TÁMOP 3.1.3 Természettudományos 11. ÉVFOLYAM FIZIKA Szerző: Pálffy Tamás Lektorálta: Szabó Sarolta Tartalomjegyzék Bevezető... 3 Laborhasználati szabályok, balesetvédelem, figyelmeztetések... 4 A mágneses

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

, és tömege m 400g. . A bot B végét egy surlódás nélküli csuklóhoz rögzitve, Mihai azt észleli, hogy ha F 3N

, és tömege m 400g. . A bot B végét egy surlódás nélküli csuklóhoz rögzitve, Mihai azt észleli, hogy ha F 3N agina din 5. eladat (0 pont) tűkörnél fizika laborban a robotika kör tanulói egy távirányítós robot-kocsi mozgását tanulmányozzák. faltól D = 4m távolságra található kocsit a fal pontja fele irányítják

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

a) Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben!

a) Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben! Kísérletek a fizika szóbeli vizsgához 2015. május-június 1. tétel: A rendelkezésre álló eszközökkel vizsgálja meg a buborék mozgását a vízszinteshez képest kb. 0 20 -os szögben megdöntött Mikola-csőben!

Részletesebben

Lineáris erőtörvény vizsgálata és rugóállandó meghatározása

Lineáris erőtörvény vizsgálata és rugóállandó meghatározása Lineáris erőtörvény vizsgálata és rugóállandó meghatározása A mérés célja Szeretnénk igazolni az F=-Dx skaláris Hooke-törvényt, azaz a rugót nyújtó erő és a rugó megnyúlása közt fennálló lineáris kapcsolatot,

Részletesebben

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor gészítsd ki a mondatot! egyenes vonalú egyensúlyban erő hatások mozgást 1. 2:57 Normál Ha a testet érő... kiegyenlítik egymást, azt mondjuk, hogy a test... van. z egyensúlyban lévő test vagy nyugalomban

Részletesebben

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor gészítsd ki a mondatokat Válasz lehetőségek: (1) a föld középpontja felé mutató erőhatást 1. fejt ki., (2) az alátámasztásra vagy a felfüggesztésre hat., (3) két 4:15 Normál különböző erő., (4) nyomja

Részletesebben

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra

Részletesebben

2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések

2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések 2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglalkoztunk velük.

Részletesebben

Mechanika - Versenyfeladatok

Mechanika - Versenyfeladatok Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az

Részletesebben

A lendületmegmaradás vizsgálata ütközı kiskocsikkal PIC idıméréssel fotokapukkal

A lendületmegmaradás vizsgálata ütközı kiskocsikkal PIC idıméréssel fotokapukkal Tanulókísérlet Ajánlott évfolyam 9., 10. Idıtartam 80 perc A lendületmegmaradás vizsgálata ütközı kiskocsikkal PIC idıméréssel fotokapukkal F.22 B.P. Kötelezı védıeszközök Balesetvédelmi figyelmeztetések

Részletesebben

I. tétel Egyenes vonalú mozgások. Kísérlet: Egyenes vonalú mozgások

I. tétel Egyenes vonalú mozgások. Kísérlet: Egyenes vonalú mozgások I. tétel Egyenes vonalú mozgások Kísérlet: Egyenes vonalú mozgások Mikola-cső; dönthető állvány; befogó; stopperóra; mérőszalag. II. tétel A dinamika alaptörvényei Kísérlet: Newton törvényei Két egyforma,

Részletesebben

Ha műszereinkkel apró részleteket is érzékelni tudunk, akkor nagy dolgokat láthatunk meg

Ha műszereinkkel apró részleteket is érzékelni tudunk, akkor nagy dolgokat láthatunk meg Ha műszereinkkel apró részleteket is érzékelni tudunk, akkor nagy dolgokat láthatunk meg és ez nem csak a kísérletezőnek szól, elég a diák tekintetében észrevennünk egy apró csillanást, onnan már könnyű

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben

NE HABOZZ! KÍSÉRLETEZZ!

NE HABOZZ! KÍSÉRLETEZZ! NE HABOZZ! KÍSÉRLETEZZ! FOLYADÉKOK FELSZÍNI TULAJDONSÁGAINAK VIZSGÁLATA KICSIKNEK ÉS NAGYOKNAK Országos Fizikatanári Ankét és Eszközbemutató Gödöllő 2017. Ötletbörze Kicsiknek 1. feladat: Rakj három 10

Részletesebben

Hatvani István fizikaverseny Döntő. 1. kategória

Hatvani István fizikaverseny Döntő. 1. kategória 1. kategória 1.D.1. A villamosiparban a repülő drónok nagyon hasznosak, például üzemzavar esetén gyorsan és hatékonyan tudják felderíteni, hogy hol van probléma. Egy ilyen hibakereső drón felszállás után,

Részletesebben

Középszintű fizika érettségi (2018. május-június) Nyilvánosságra hozható adatok

Középszintű fizika érettségi (2018. május-június) Nyilvánosságra hozható adatok Középszintű fizika érettségi (2018. május-június) Nyilvánosságra hozható adatok I. Szóbeli témakörök: A szóbeli vizsgán a jelöltnek 20 tételből kell húznia egyet. A tételek tartalmi arányai a témakörökön

Részletesebben

FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI

FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI 1. Egyenes vonalú mozgások 2012 Mérje meg Mikola-csőben a buborék sebességét! Mutassa meg az út, és az idő közötti kapcsolatot! Három mérést végezzen, adatait

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

2. MECHANIKA 2. MECHANIKA / 1. ω +x

2. MECHANIKA 2. MECHANIKA / 1. ω +x 2. MECHANIKA A mérés célja Periodikus mozgásokkal a mindennapi életben gyakran találkozunk, és korábbi tanulmányainkban is foglalkoztunk velük. Ennek a gyakorlatnak célja egyrészt az, hogy ezeket a mozgásokat

Részletesebben

FIZIKA KÖZÉPSZINTŰ SZÓBELI FIZIKA ÉRETTSÉGI KÍSÉRLETEI Premontrei Szent Norbert Gimnázium, Gödöllő, 2012. május-június

FIZIKA KÖZÉPSZINTŰ SZÓBELI FIZIKA ÉRETTSÉGI KÍSÉRLETEI Premontrei Szent Norbert Gimnázium, Gödöllő, 2012. május-június FIZIKA KÖZÉPSZINTŰ SZÓBELI FIZIKA ÉRETTSÉGI KÍSÉRLETEI Premontrei Szent Norbert Gimnázium, Gödöllő, 2012. május-június 1. kísérlet: egyenes vonalú egyenletes mozgás vizsgálata Mikola csővel Eszközök: Mikola

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

Oktatási Hivatal FIZIKA. II. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló. Javítási-értékelési útmutató

Oktatási Hivatal FIZIKA. II. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló. Javítási-értékelési útmutató Oktatási Hivatal A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló FIZIKA II. kategória Javítási-értékelési útmutató 1. feladat. Az m tömeg, L hosszúságú, egyenletes keresztmetszet,

Részletesebben

Egy érdekes statikai - geometriai feladat

Egy érdekes statikai - geometriai feladat 1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani

Részletesebben

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. EGYSZERŰ GÉPEK Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. Az egyszerű gépekkel munkát nem takaríthatunk meg, de ugyanazt a munkát kisebb

Részletesebben

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható!

5. A súrlódás. Kísérlet: Mérje meg a kiadott test és az asztal között mennyi a csúszási súrlódási együttható! FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI ÉS KÍSÉRLETEI a 2015/2016. tanév május-júniusi vizsgaidőszakában Vizsgabizottság: 12.a Vizsgáztató tanár: Bartalosné Agócs Irén 1. Egyenes vonalú mozgások dinamikai

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

A tanulók gyűjtsenek saját tapasztalatot az adott szenzorral mérhető tartomány határairól.

A tanulók gyűjtsenek saját tapasztalatot az adott szenzorral mérhető tartomány határairól. A távolságszenzorral kapcsolatos kísérlet, megfigyelés és mérések célkitűzése: A diákok ismerjék meg az ultrahangos távolságérzékelő használatát. Szerezzenek jártasságot a kezelőszoftver használatában,

Részletesebben

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

Newton törvények és a gravitációs kölcsönhatás (Vázlat) Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások

Részletesebben

Középszintű fizika érettségi vizsga kísérleti eszközeinek listája tanév

Középszintű fizika érettségi vizsga kísérleti eszközeinek listája tanév 1. Newton törvényei Kísérlet: OH 1. A rugós ütközőkkel ellátott kocsik és a rájuk rögzíthető súlyok segítségével tanulmányozza a rugalmas ütközés jelenségét! Két egyforma, könnyen mozgó iskolai kiskocsi

Részletesebben

1. Newton-törvényei. Az OH által ajánlott mérés

1. Newton-törvényei. Az OH által ajánlott mérés 1. Newton-törvényei Kísérlet: Feladat: A rugós ütközőkkel ellátott kocsik és a rájuk rögzíthető súlyok segítségével tanulmányozza a rugalmas ütközés jelenségét! Az OH által ajánlott mérés Szükséges eszközök:

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június I. Mechanika Newton törvényei Egyenes vonalú mozgások Munka, mechanikai energia Pontszerű és merev test egyensúlya, egyszerű gépek Periodikus

Részletesebben