5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:"

Átírás

1 5. Fajhő mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2 1. A mérési összeállítás A mérés során a 6-os számú minta fajhőjét akarjuk meghatározni. Ezt kalomiterben végezzük el kétféle módszerrel. A 1. ábrán látható a mérési összeállítás. A kaloriméter úgy van kialakítva, hogy egy R ellenállású drót van körétekerve, amirea tápegységből kapcsolhatunk egyenfeszültséget, amivel fűthetjük a kalorimétert. A kaloriméter környezetét az áramló víz adja, ami biztosítja a mérés során az állandó környezeti hőmérsékletet. A hőkulcson is keresztüláramlik ez a víz, tehát ha a hőkulcsot belerakjuk a kaloriméterbe, akkor gyorsabban beáll a kaloriméterben az egyensúlyi hőmérséklet. A kaloriméter hőmérsékletét egy tranzisztoros hőmérő méri, amin a feszültség arányos a hőmérséklettel, így ezt a feszültséget méri a digitális voltmérő. A voltmérő össze van kötve a számítógéppel, ami átszámítja a feszültséget hőmérsékletté C-ban, és másodpercenként veszi fel az eltelt idő és hőmérséklet adatpárokat, amiket egy adatfájlban rögzít. A termosztát a mintát melegíti fel a kívánt hőmérsékletre, és úgy van kialakítva, hogy az aljából a minta egyenesen a kaloriméter belsejébe esik. 1. ábra. A mérési összeállítása 1

3 2. A mérések ismertetése A minta fajhőjének meghatározásához ismernünk kell a kaloriméter hőkapacitását. A mérés megkezdéséhez kaloriméter hőmérsékletének meg kell egyezni az áramló víz hőmérsékletével. Ehhez behelyezzük a hőkulcsot a kaloriméterbe, és a számítógép Fajhő nevű programjával figyeljük az egyensúlyi hőmérséklet beállását. Ha már alig változik a hőmérséklet kivehetjük a hőkulcsot, és várjuk, hogy egyensúlyba kerüljön a kaloriméter hőmérséklete. Ezután elkezdhetjük az üres kaloriméter hőkapacitásának mérését. A mérés egy két perces előszakasszal kezdődik, ami alapján a kiértékelés során a környezeti hőmérsékletet határozzuk meg. Ezután bekapcsoljuk a fűtést annyi időre, hogy 2-3 fokkal megemelkedjen a hőmérséklet, ez lesz a főszakasz. A fűtés kikapcsolása után következik az utószakasz, ami addig tart, hogy a mérés hossza körülbelül 15 perc legyen. Az adatok elmentése után, visszarakhatjuk a hőkulcsot, hogy visszaálljon az egyensúlyi hőmérséklet. A második rész a minta fajhőjének meghatározása úgy, hogy az ismert hőmérsékletre felmelegített mintát két perces előszakasz után beleejtjük a kaloriméterbe, és figyeljük a kaloriméter hőmérsékletének változását. Ezt a mérést is 15 percig végezzük, majd az adatok elmentése után visszahelyezzük a mintára a hőkulcsot, hogy visszaálljon az egyensúlyi hőmérséklet. A harmadik részben a minta fajhőjét a következő módszerrel mérjük meg: A környezeti hőmérsékletű mintát és kalorimétert egyszerre fűtjük egy kétperces előszakasz után addig, amíg 2-3 fokkal emelkedik a hőmérsékletük. Ezután várunk addig, hogy 15 perces legyen ez a mérés is, és elmentjük az adatokat. A három adatsor kiértékelését a számítógép Fajhő kiértékelés nevű programjával végezzük. A Kiértékelés menü pontjainak elvégzésével megkapunk minden szükséges paramétert, amikből számolhatunk. Ezután kinyomtatjuk a három ábrát. 3. A kaloriméter hőkapacitásának meghatározása A kaloriméter hőkapacitása, másszóval vízértéke (v) definíció alapján: v = Q T Ez a képlet nem veszi figyelembe a veszteségeket, amit a Newton-féle lehűlési törvénnyel írhatunk le, ami alapján az időegység alatt a környezetnek átadott hő arányos a környezet és a kaloriméter hőmérsékletének különbségével: dq h = h(t T k ) Ezek és a termodinamika első főtétele alapján a következő differenciálegyenletre jutunk: v dt = dq h(t T k) 2

4 A differenciálegyenlet az utószakaszban leegyszerűsödik, mert ott csak a lehűlési hőnek van szerepe, és ennek megoldása: T u (t) = T k + Ce ε0t Az exponenciális függvény kitevőjét az utószakaszra való illesztésből határozza meg a számítógép. A differenciálegyenlet megoldásából meghatározható a kaloriméter korrigált hőmérséklete, ami a veszteségektől mentes rendszerre lenne jellemző, amit ugyancsak a számítógép illeszt rá az ábránkra: t T (t) = T(t) + ε 0 (T(t ) T k ) Ezen kívül a vízérték meghatározásához szükségünk van a betáplált hőre, amit a oule-hő ad. A t ideig az R ellenállásra rákapcsolt U fűtőfeszültségből származó oule-hő: Q = U2 R t Ezek alapján már kiszámolható a kaloriméter vízértéke: v = 0 U 2 R t A vízérték hibáját a hibaterjedés alapján számoljuk: v v = 2 U U + R R + T k + T A mért idő-hőmérséklet grafikon a 2. ábrán található, amin szerepel az illesztett korrigált hőmérséklet. A mérési adatainkat a hibáikkal együtt a következő táblázatban rögzítettük, amikből behelyettesítés után kiszámolható a kaloriméter vízértéke. Fűtőfeszültség: U (1, 779 ± 0, 0005) V A drót ellenállása: R (7, 07 ± 0, 01)Ω Fűtésidő: t 158, 74 s Környezeti hőm.: T k (17, 482 ± 0, 001) C Korrigált hőm.: T (20, 69 ± 0, 01) C Lehűlési paraméter: ε 0 0, min 1. táblázat. Az első mérés adatai Behelyettesítések után a kaloriméter hőkapacitása hibával együtt: v = (22, 15 ± 0, 12) K 3

5 4. A minta fajhőjének meghatározása az a. módszerrel A mintából és a kaloriméterből álló rendszer hőmérsékletének időbeli változását leíró differenciálegyenlet most így néz ki: v dt(t) + w dt m(t) = h(t(t) T k ) ahol v az előzőekben meghatározott vízérték, w a minta hőkapacitása, vagyis w = cm. Az előző részhez hasonló megfontolások alapján bevezethető a minta korrigált hőmérséklete: T m = T k + ε ε ε 0 ( ) ahol ε a mintát tartalmazó kaloriméter főszakaszát leíró függvény kitevőjében szereplő állandó. Ezek alapján a minta fajhője a következő kifejezésből számolható: c = v m T m0 Tm A fajhő hibáját a hibaterjedés törvényeivel számoljuk a következő módon: c c = v v + m m + ( ) + (T m0 T m) T m0 T m Az idő-hőmérséklet grafikon a 3. ábrán látható, amin szerepel az illesztett korrigált hőmérséklet és a főszakaszra illesztett exponenciális függvény. A mérési eredményeinket a következő táblázatban rögzítettük, és ezeket helyettesítjük be a képletekbe. Környezeti hőm.: T k (17, 31 ± 0, 005) C Korrigált hőm.: T (20, 67 ± 0, 005) C Minta kezdeti hőm.: T m0 (32, 0 ± 0, 05) C Minta korrigált hőm.: Tm 20, 6704 C (3, 36 ± 0, 01) K T m0 Tm (11, 3296 ± 0, 06)K Lehűlési paraméter: ε 1, min Minta tömege: m (14, 4234 ± 0, 00005) g 2. táblázat. Az második mérés adatai Behelyettesítések után a 6-os számú minta fajhője az a. módszerrel, és ennek hibája: c a = (455, 4 ± 6, 2) kgk A vas fajhőjének irodalmi értéke: c Fe = 460 meghatároztunk. kgk, amit ebben a mérésben jól 4

6 5. A minta fajhőjének meghatározása a b. módszerrel Az eddigiekhez hasonló módon számolhatjuk a minta fajhőjét a b. módszernél is. A differenciálegyenletbe beleírjuk a fűtésre használt oule-hő teljesítményét: v dt(t) + w dt m(t) = dq h(t(t) T k) Itt a kezdeti feltételünk, hogy T m0 = T k, és felhasználjuk a minta korrigált hőmérsékletére vonatkozó összefüggést az előző részből, így megkaphatjuk a minta fajhőjére vonatkozó képletet: ahol c = 1 Q v( ) m Tm T k Q = U2 R t A mérés során a minta korrigált hőmérsékletét nem tudjuk meghatározni közvetlenül, de a meghatározására két módszerünk is van. Az egyik módszer szerint a minta korrigált hőmérséklete megegyezik a kaloriméter korrigált hőmérsékletével, a másik módszer szerint az előző mérésben meghatározott ε felhasználásával határozzuk meg a minta korrigált hőmérsékletét. A következőkben mindkét módszerrel kiszámoljuk a minta fajhőjét. A mérési eredményinket a következő táblázat tartalmazza: Fűtőfeszültség: U (1, 777 ± 0, 0005) V A drót ellenállása: R (7, 07 ± 0, 01)Ω Fűtésidő: t 158, 73 s Környezeti hőm.: T k (17, 161 ± 0, 001) C Korrigált hőm.: T (19, 644 ± 0, 005) C (2, 483 ± 0, 006) K Minta tömege: m (14, 4234 ± 0, 00005) g 3. táblázat. Az harmadik mérés adatai Ha úgy számolunk, hogy T m = T, akkor a következő fajhőre jutunk, aminek hibáját megbecsültük: c b1 = (443, 9 ± 10, 0) kgk Ha behelyettesítjük a következő képletbe az előző mérésekből a paramétereket: ε 0 = 0, min és ε = 1, min. T m = T k + ε ε ε 0 ( ) = (19, 783 ± 0, 007) C 5

7 Így a fajhő becsült hibával: c b2 = (420, 2 ± 10, 0) kgk Ez a mérésünk jóval pontatlanabb értékeket adott a vas fajhőjére, mivel itt kevésbé pontosan számoltunk. A mérés idő-hőmérséklet grafikonja a 4. ábrán látható. Az ábrán jól látszik, hogy a hőmérséklet túlmegy az egyensúlyi hőmérsékleten, és onnan hűl vissza. Ennek oka, hogy a minta és a kaloriméter között a hőátadás nem tökéletes, tehát a minta hőmérséklete lassan követi a kaloriméterét a fűtés alatt. Tehát amikor kikapcsoljuk a fűtést az egyensúlyi hőmérséklet a hőkapacitások arányában a minta és a kaloriméter hőmérséklete között áll be egy egyensúlyi szintre. Az ábra és a hőkapacitások alapján kiszámolható, hogy a fűtés kikapcsolásakor, mekkora volt a hőmérsékletkülönbség a minta és a kaloriméter között: A kaloriméter maximális hőmérséklete és az egyensúlyi hőmérséklet között a különbség 0,116 fok. A kaloriméter hőkapacitása v = 22, 15 K, a minta hőkapacitása w = cm = 6, 568 K. A minta hőmérséklete, és az egyensúlyi hőmérséklet közti különbség körülbelül: 0, 116 v w = 0, 39 fok. Tehát a fűtés kikapcsolásakor a kaloriméter és a minta között fellépett hőmérsékletkülönbség körülbelül 0,5 fok, aminek hatása már jól látható az ábrán. Kisebb hőkapacitású minta esetén nem biztos, hogy látható ez a különbség, mert a hőátadási tényező arányos a hőkapacitással. Ez az eltérés ugyancsak hibákat okozhat a számolásainkban. 6. A hőátadási tényezők A Newton-féle lehűlési törvényben szereplő h a kaloriméter és a környezete közötti hőátadási tényező. Az üres kaloriméter hőkapacitásának mérési eredményeiből ez meghatározható. A kiszámításához a következő összefüggést használjuk fel: h = ε 0 v A hibaterjedés szerint ennek a hibája: h h = ε 0 + v ε 0 v Az első mérés eredményeinek behelyettesítésével (ε 0 = 0, v = (22, 15 ± 0, 12) K ) a hőátadási tényező: h = (1, 81 ± 0, 01) min K min és A k hőátadási tényező a kaloriméter és a minta közötti hővezetésre jellemző. A kiszámításához a következő két összefüggést használjuk fel: k = εε w ε 0 6

8 ε = h v + w ε ε ε 0 Behelyettesíthetjük az előzőekben meghatározott értékeket, és így a hőátadási tényező: k = (10, 7 ± 0, 2) min K Látható, hogy a minta és a kaloriméter közötti hőátadási tényező egy nagyságrenddel nagyobb, mint a kaloriméter és a környezete közötti hőátadási tényező, tehát érvényes az a közelítés, amit a levezetések során kimondatlanul is kihasználtunk, hogy h << k. 7

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje:

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje: Fajhő mérése Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: 206. 0. 20. egyzőkönyv leadásának ideje: 206.. 0. Bevezetés Mérésem során az -es számú minta fajhőjét kellett megmérnem.

Részletesebben

Fajhő mérése. Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport

Fajhő mérése. Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Fajhő mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 0/05/20 Beadás ideje: 0/2/20 . A mérés rövid leírása Mérésem során egy alumínium (-es)

Részletesebben

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc. Mérés dátuma: 28... Leadás dátuma: 28.. 8. . Mérések ismertetése A Peltier-elemek az. ábrán látható módon vannak elhelyezve

Részletesebben

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 7. Mágneses szuszceptibilitás mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 22. Leadás dátuma: 2008. 11. 05. 1 1. A mérési összeállítás A mérési összeállítás sematikus ábrája

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

Klasszikus Fizika Laboratórium V.mérés. Fajhő mérése. Mérést végezte: Vanó Lilla VALTAAT.ELTE. Mérés időpontja:

Klasszikus Fizika Laboratórium V.mérés. Fajhő mérése. Mérést végezte: Vanó Lilla VALTAAT.ELTE. Mérés időpontja: Klasszikus Fizika Laboratóriu V.érés Fajhő érése Mérést égezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.11. 1. Mérés röid leírása A érés során egy inta fajhőjét kellett eghatározno. Ezt legkönnyebben

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Fázisátalakulások vizsgálata Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/12/2011 Beadás ideje: 10/19/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv (-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

SCHWARTZ 2012 Emlékverseny

SCHWARTZ 2012 Emlékverseny SCHWARTZ 2012 Emlékverseny A TRIÓDA díjra javasolt feladat ADY Endre Líceum, Nagyvárad, Románia 2012. november 10. Befejezetlen kísérlet egy fecskendővel és egy CNC hőmérővel A kísérleti berendezés. Egy

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása

TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása A kísérlet, mérés megnevezése, célkitűzései: A kalorimetria (jelentése: hőmennyiségmérés) (http://ttk.pte.hu/fizkem/etangyakpdf/1gyak.pdf)

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

Kiegészítő leírás 05 (2014)

Kiegészítő leírás 05 (2014) Kiegészítő leírás 05 (2014) SÓK OLDÁSHŐJÉNEK MEGHATÁROZÁSA ANIZOTERM KALORIMÉTERREL A mérést a Szalma Láng Péter: Alapvető fizikai kémiai mérések és a kísérleti adatok feldolgozása c. jegyzet alapján végezzük

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

Jegyzőkönyv. fajhő méréséről 5

Jegyzőkönyv. fajhő méréséről 5 egyzőkönyv a fajhő méréséről 5 Készíee: Tüzes Dániel Mérés ideje: szerda 14 18 óra egyzőkönyv elkészüle: 8 9 4 A mérés célja A felada egy szilárd anyag fém fajhőjének közelíő meghaározása. Ugyan ma már

Részletesebben

Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar

Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar Folyamatirányítás Számítási gyakorlatok Gyakorlaton megoldandó feladatok Készítette: Dr. Farkas Tivadar 2010 I.-II. RENDŰ TAGOK 1. feladat Egy tökéletesen kevert, nyitott tartályban folyamatosan meleg

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése 2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

Lemezeshőcserélő mérés

Lemezeshőcserélő mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 111 ÉRETTSÉGI VIZSGA 01. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység

Részletesebben

Mérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése

Mérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése Tanév, félév 2010-11 I. félév Tantárgy Áramlástan GEÁTAG01 Képzés főiskola (BSc) Mérés A Nap Hét A mérés dátuma 2010 Dátum Pontszám Megjegyzés Mérési jegyzőkönyv M1 számú mérés Testek ellenállástényezőjének

Részletesebben

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv (-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát

Részletesebben

Ellenáramú hőcserélő

Ellenáramú hőcserélő Ellenáramú hőcserélő Elméleti összefoglalás, emlékeztető A hőcserélő alapvető működésével és az egyszerűsített számolásokkal a Vegyipari műveletek. tárgy keretében ismerkedtek meg. A mérés elvégzéséhez

Részletesebben

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

5. Laboratóriumi gyakorlat

5. Laboratóriumi gyakorlat 5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás

Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 04/24/2012 Beadás ideje: 04/29/2012 Érdemjegy: 1 1. A

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási

Részletesebben

Atomi er mikroszkópia jegyz könyv

Atomi er mikroszkópia jegyz könyv Atomi er mikroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc III. Mérés vezet je: Szabó Bálint Mérés dátuma: 2010. október 7. Leadás dátuma: 2010. október 20. 1. Mérés leírása A laboratóriumi mérés

Részletesebben

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy Határozzuk meg és ellenállások értékét, ha =00V, = 00, az ampermérő 88mA áramot, a voltmérő,v feszültséget jelez! Az ampermérő ellenállását elhanyagolhatóan kicsinek, a voltmérőét végtelen nagynak tekinthetjük

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése Rugalmas állandók mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/30/2011 Beadás ideje: 12/07/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Kiegészítő tudnivalók a fizikai mérésekhez

Kiegészítő tudnivalók a fizikai mérésekhez Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók

Részletesebben

HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai)

HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) HÁZI DOLGOZAT Érmefeldobások eredményei és statisztikája Készítette: Babinszki Bence EHA-kód: BABSAET.ELTE E-mail cím: Törölve A jelentés

Részletesebben

Jegyzőkönyv. fázisátalakulás vizsgálatáról (6)

Jegyzőkönyv. fázisátalakulás vizsgálatáról (6) Jegyzőkönyv a fázisátalakulás vizsgálatáról (6) Készítette: Tüzes Dániel Mérés ideje: szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-10-01 A mérés célja A feladat egy szilárd anyag (fém) fázisátalakulásának

Részletesebben

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés

Részletesebben

Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10

Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10 9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;

Részletesebben

A hallgató neve Minta Elemér A NEPTUN kódja αβγδεζ A tantárgy neve Fizika I. vagy Fizika II. A képzés típusa Élelmiszermérnök BSc/Szőlész-borász

A hallgató neve Minta Elemér A NEPTUN kódja αβγδεζ A tantárgy neve Fizika I. vagy Fizika II. A képzés típusa Élelmiszermérnök BSc/Szőlész-borász A hallgató neve Minta Elemér A NEPTUN kódja αβγδεζ A tantárgy neve Fizika I. vagy Fizika II. A képzés típusa Élelmiszermérnök BSc/Szőlész-borász /Biomérnök A gyakorlat ideje pl. Hétfő 18-20 Ez egy fiú

Részletesebben

Differenciálegyenletek a mindennapokban

Differenciálegyenletek a mindennapokban Differenciálegyenletek a mindennapokban Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 15 Pénz, pénz,

Részletesebben

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA Három követelményszint: az épületek összesített energetikai jellemzője E p = összesített energetikai jellemző a geometriai viszonyok függvénye (kwh/m

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint ÉETTSÉG VZSGA 0. október 5. ELEKTONKA ALAPSMEETEK EMELT SZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladatok Maximális

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

1. Gauss-eloszlás, természetes szórás

1. Gauss-eloszlás, természetes szórás 1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

A kedvezményes mennyiség éves elszámolása a naptári év végét követő első elszámoló számlában, azaz az éves leolvasást követően történik meg.

A kedvezményes mennyiség éves elszámolása a naptári év végét követő első elszámoló számlában, azaz az éves leolvasást követően történik meg. 1.) A részszámlázást választott fogyasztóinknál a tényleges fogyasztás elszámolási időszaka a két leolvasás közötti 12 hónap, ezzel szemben a kedvezményes árral elszámolható fogyasztás a jogszabály alapján

Részletesebben

Mag-mágneses rezonancia

Mag-mágneses rezonancia Mag-mágneses rezonancia jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csorba Ottó Mérés dátuma: 2010. március 25. Leadás dátuma: 2010. április 7. Mérés célja A labormérés célja a mag-mágneses

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 4 ÉETTSÉGI VIZSGA 04. október. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ EMEI EŐFOÁSOK MINISZTÉIMA Egyszerű, rövid feladatok

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3) Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag

Részletesebben

19. A fényelektromos jelenségek vizsgálata

19. A fényelektromos jelenségek vizsgálata 19. A fényelektromos jelenségek vizsgálata PÁPICS PÉTER ISTVÁN csillagász, 3. évfolyam Mérőpár: Balázs Miklós 2006.04.19. Beadva: 2006.05.15. Értékelés: A MÉRÉS LEÍRÁSA Fontos megállapítás, hogy a fénysugárzásban

Részletesebben

Ellenállásmérés Wheatstone híddal

Ellenállásmérés Wheatstone híddal Ellenállásmérés Wheatstone híddal A nagypontosságú elektromos ellenállásmérésre a gyakorlatban sokszor szükség van. Nagyon sok esetben nem elektromos mennyiségek mérését is visszavezethetjük ellenállásmérésre.

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését

Részletesebben

A BLOWER DOOR mérés. VARGA ÁDÁM ÉMI Nonprofit Kft. Budapest, október 27. ÉMI Nonprofit Kft.

A BLOWER DOOR mérés. VARGA ÁDÁM ÉMI Nonprofit Kft. Budapest, október 27. ÉMI Nonprofit Kft. A BLOWER DOOR mérés VARGA ÁDÁM ÉMI Nonprofit Kft. Budapest, 2010. október 27. ÉMI Nonprofit Kft. A légcsere hatása az épület energiafelhasználására A szellőzési veszteség az épület légtömörségének a függvénye:

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 2005. november 5. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól követhetően

Részletesebben

Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 SZÁMÍTÁSTECHNIKA

Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 SZÁMÍTÁSTECHNIKA Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 SZÁMÍTÁSTECHNIKA II. (regionális) forduló 2006. február 17... Helyszín fejbélyegzője Versenyző Pontszám Kódja Elérhető Elért Százalék. 100..

Részletesebben

POLIMERTECHNIKA Laboratóriumi gyakorlat

POLIMERTECHNIKA Laboratóriumi gyakorlat MÉRÉSI JEGYZŐKÖNYV Polimer anyagvizsgálat Név: Neptun kód: Dátum:. Gyakorlat célja: 1. Műanyagok folyóképességének vizsgálata, fontosabb reológiai jellemzők kiszámítása 2. Műanyagok Charpy-féle ütővizsgálata

Részletesebben

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer

Részletesebben

A hangfrekvenciás solásban sban. BME Villamos Energetika Tanszék Villamos Művek M

A hangfrekvenciás solásban sban. BME Villamos Energetika Tanszék Villamos Művek M A hangfrekvenciás fogyasztói i befolyásol solásban sban rejlő lehetőségek Raisz Dávid, Dr. Dán D n András BME Villamos Energetika Tanszék Villamos Művek M és s Környezet K Csoport Előzm zmények MEH munka

Részletesebben

Elektronikus fekete doboz vizsgálata

Elektronikus fekete doboz vizsgálata Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel

Részletesebben

A Mössbauer-effektus vizsgálata

A Mössbauer-effektus vizsgálata A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely)

(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) (III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) Mérést végezte: Szalontai Gábor Mérőtárs neve: Nagy Dániel Mérés időpontja: 2012.11.22. Bevezető A hétköznapi és kézzelfogható

Részletesebben

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja. ρ = m V.

Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja. ρ = m V. mérés Faminták sűrűségének meghatározása meg: Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja ρ = m V Az inhomogén szerkezetű faanyagok esetén ez az összefüggés az átlagsűrűséget

Részletesebben

EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA

EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA Az elektronikával foglalkozó emberek sokszor építenek házilag erősítőket, nagyrészt tranzisztorokból. Ehhez viszont célszerű egy olyan berendezést

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Szerelési utasítások. devireg 130, 131 és 132

Szerelési utasítások. devireg 130, 131 és 132 HU Szerelési utasítások devireg 130, 131 és 132 Tartalom: 1. Felhasználási lehetőségek és beállításaik 2. Szerelési utasítások. a. devireg 130 és 132-es típusok érzékelőinek szerelése b. A termosztát elhelyezése

Részletesebben