5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE"

Átírás

1 5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási együttható meghatározása állandó áram, illetve állandó feszültség esetében. Az LM335 tipusú hőérzékelő vizsgálata. 2. Elméleti bevezető: Egy p tipusú félvezető és egy n tipusú félvezető találkozási felületét p-n átmenetnek nevezünk Azokat a jelenségeket amelyekek a p-n átmenetben lezajlanak, a töltéshordozók diffuziójával magyarázzuk. A találkozási felületen a lyukak és az elektronok diffundálnak és a p-n átmenet két oldalán egy L b vastagságban rekombinálódnak. Ennek következtében ebben az anyagtérfogatban létrejön egy forditott irányú elektromos tér E i, mely megakadályozza a töltéshordozók további áramlását, melyeknek most már nagyobb energiára van szükségük, hogy legyőzzék a zárórétegben kialakult tér energiáját. A záróréteg vastagságát a következő képpen adhatjuk meg: 4 ε ε r Lb w 2 b (1) N q ahol: ε ε ε r az alapanyag (kristály) permitivitása NN d N a a szennyeződések száma w b a zárórétegen való áthaladáshoz szükséges energia. Ha a p-n átmenetre nyitóirányú feszültséget kapcsolunk, a záróréteg vastagsága csökken, az áthaladáshoz szükséges energia szintén. Záróirányú feszültség hatására nő a záróréteg vastagsága, illetve az áthaladáshoz szükséges energia. Mig az első esetben nő az áram, a második esetben csökkenni fog az áramerősség a p-n átmeneten. Az áram ami a p-n átmeneten áthalad függ az átmenet tipusától (alapkristály anyagától, szennyeződés tipusától és számától), a rákapcsolt feszültség nagyságától, irányától, valamint a hőmérséklettól. Az 1. ábra egy dióda (p-n átmenet) jelleggörbéjét mutatja. 1. Ábra. A p-n átmenet karakterisztikája. 34

2 A p-n átmenet f(u) jelleggörbéjének főbb paraméterei: Küszöbfeszültség U F a nyitó irányú feszültség azon értéke melynél a p-n átmenet vezetni kezd, illetve ahol az áram,1 max nagyságrendű. A küszöbfeszültség germániumdiódák esetén,2...,4v, sziliciumdiódák esetében pedig,5...,8v. Maximális áram nyitó irányú feszültségnél az áram azon maximális értéke melynél a hő okozta folyamatok nem kárositják a p-n átmenetet (katalógus adat). Szaturációs áram maximális inverz áram. Maximális inverz feszültség U i a záró irányú feszültség azon maximális értéke amelynél a p-n átmenet még nem károsodik. Az átmenet belső ellenállása R A U R A k tgα (2) Nyitó irányú feszültség esetében a belső ellenállás nagyon kicsi, mig záró irányú feszültségnél nagyon nagy. A p-n átmeneten az áramot a következő képlet adja: q U ( T ) ( e 1) (3) ahol: a maximális viszáram, k a Boltzmann-állandó, q az elemi töltés és T az abszolut hőmérséklet. Gyakran használják az U T q jelölést, melynek értéke a gyakorlatban 3...5mV között van. Nyitó irányú feszültség esetén az áram exponenciálisan nő, a (3)-as képletet qu leegyszerűsithetjük a ( ) T e formára. Záró iránzú feszültség esetén viszont az exponenciális tagot hanyagolhatjuk el és az áramot a diódán a viszáram adja ( T ) kifejezéssel közelithetjük meg. A szaturációs áram germániumdiódák esetén µa nagyságrendű, sziliciumdiódák esetében pedig na nagyságrendű. Az áramot a következő formában (általános Ohm törvénye) is megadhatjuk: 2 N q τ J A σ E A E A (4) m ahol: N a töltéshordozók száma, q az elemi töltés, m az elemi töltés tömege, τ a töltések relaxációs ideje, σ vezetőképesség, J áramsűrűség, E elektromos térerősség és A a vezető keresztmetszete amin az áram áthalad. A töltéshordozók száma N függ a hőmérséklettől a következő képlet szerint: w 3 i 2 2 N C T e (5) ahol: C anyagállandó, T abszolut hőmérséklet, w i a tiltott zóna energiája. Figyelembe véve a (4) és (5) összefüggéseket megállapithatjuk, hogy a viszáram összetevői d + gr hőmérsékletfüggőek, d a diffuziónak megfelelő áram, gr az ionpárok generálásából és rekombinálásából adódó áram. d T α e valamint 2 gr T e β (6) Hasonló módon nyitó irányú feszültség estén a direkt áram szintén hőmérsékletfüggő: qu qu d T α 2 e gr T e β (7) 35

3 Tehát az áram hőmérsékletfüggése exponenciális jellegű. A direkt áram hőmérsékletfüggése kissebb mértékű mint az inverz áramé. Ez a hőmérsékletfüggés a germánium diódák esetében jóval nagyobb mint a szilicium diódák esetében. 2. Ábra. Az áram illetve a feszültság változása a hőmérséklet növekedésével egy dióda esetében. Ha csak a diffuziós áramot vesszük figyelembe, állandó nyitó irányú feszültség mellett Uállandó, az áram változását a hőmérséklet függvényében (2a ábra) a következő képlettel fejezhetjük ki: 1 d 1 w qu d i α (8) dt T d A gyakorlatban nem a direkt áram növekedése érdekel állandó feszültség mellett, hanem a nyitófeszültség csökkenése állandó áramnál. Kifejezve a feszültséget (3)-as összefüggés egyszerűsitett formájából (nyitófeszültségre) és az áramot tartjuk állandó értéken, megkapjuk a feszültség változását a hőmérséklet függvényében (2b ábra). Ennek nagyságát a feszültség hőmérsékletfüggési együtthatója adja: du C U konst (9) dt Az áram diffuziónak megfelelő összetevőjét véve figyelembe a fenti összefüggés a következő képpen alakul: 1 CU U (1) q T Az összefüggésben elhanyagoltuk a T α tagot. Az együttható gyakorlatban használt középértéke szilicium diódáknál CU 2 mv / C. A T hőmérséklet ami a fenti összefüggésekben szerepel a p-n átmeneten mért hőmérséklet, ami rendszerint nagyobb a környezeti hőmérsékletnél, a p-n átmenet ellenállásán fejlődő hő következtében. Az LM135, LM235, LM335 érzékelők nagy pontosságú, könnyen kalibrálható, integrált hőmérsékletérzékelők, melyek egymástól a hőmérséklettartományban különböznek (LM től +15 -ig, LM tól ig és az LM tól +1 -ig). Működésükben egy 2 kimenetű Zenner-diódát utánoznak, melynek vágási feszültsége egyenese narányos az abszoluthőmérséklettel, hőmérsékleti együttható 1mV/ K. 25 -on kalibrálva 1 -os pontosságot lehet elérni. 36

4 3. A mérés menete A laboratóriumi mérőlapon három áramkör található, melyek segitségével tanulmányozhatjuk a p-n átmenet hőmérsékletfüggést állandó feszültség, állandó áramesetében, illetve az LM335 hőmérsékletérzékelő karakterisztikáját. A gyakorlat menete több részből áll Egy szilicium dióda karakterisztikájának megrajzolása különböző hőmérsékleteken. A szilicium diódát nyitó irányban polarizáljuk a 3-as ábrának megfelelően, majd egy ellenörzött hőmérsékletű közegbe helyezzük. Egy T állandó hőmérsékleten növeljük a feszültséget -tól 1V-ig az 1 táblázatnak megfelelően és minden értéknél meghatározzuk a diódán áthaladó áramot. A közeget felmelegitjuk egy T 1 hőmérsékletre (melyet stabilan tartunk) és megismételjük a méréseket, meghatározva a diódán áthaladó 1 áramot. Kitöltjük az 1 táblázatot, melybe belefoglaljuk a T és T 1 hőmérsékletértékeket is. 3. Ábra. A szilicium dióda karakterisztikájának megrajzolásához. 1. Táblázat Hőmérséklet U[V],1,2,3,4,5,6,7,8,9 T [ma] T 1 1 [ma] A mért adatok alapján felrajzoljuk a dióda f(u) karakterisztikáját a T és T 1 hőmérsékletekre ugyanabba a koordináta rendszerbe A dióda hőmérsékletfüggése állandó áram esetében U f(t) A 4-es ábrán levő kapcsolás a sziliciumdiódán egy állandó áramot biztosít. A diódát a változtatható hőmérsékletű közegbe helyezzük és melegítjük a 2 táblázatban megadott értékekre. A hőmérséklet növekedésével a diódán a feszültség csökkeni fog. Az áramkör kimenetén az U 1 feszültséget egy elektrónikus voltmérővel mérjük és a mért adatokat a 2 táblázat megfelelő sorába írjuk. A mért adatok alapján megrajzoljuk az U f(t) görbét. 37

5 4. Ábra. A dióda feszültségváltozása hőmérsékletnövekedésre A dióda hőmérsékletfüggése állandó feszültség esetében f(t) Az 5-ös ábrán levő kapcsolás a sziliciumdiódán egy állandó feszültséget biztosít. A diódát a változtatható hőmérsékletű közegbe helyezzük és melegítjük a 2 táblázatban megadott értékekre. A hőmérséklet növekedésével a diódán az áram növekedni fog. Az áram okozta feszültségváltozást a műveleti erősítő felerősíti és a kimeneten az U 2 feszültséget mérjük elektrónikus voltmérővel, amit a táblázatba írunk. 5. Ábra. A dióda áramváltozása hőmérsékletnövekedésre. Az áramváltozását a hőmérséklet függvényében megkapjuk, ha a kimeneti U 2 feszültséget osztjuk a műveleti erősítő visszacsatolásában lévő ellenállás értékével, ( U U 2 d ) 2 R, R r 2,2kΩ. Az 2 áramértékeket szintén a 2 táblázat megfelelő sorába írjuk. r A számított adatokkal megrajzoljuk az f(t) grafikont Az LM335 jelleggörbéjének meghatározása A 6-os ábrán az LM335 hőmérsékletérzékelő egyszerű kapcsolási rajza található. 6. Ábra. LM335 hőmérsékletérzékelő alap kapcsolása. 38

6 Az érzékelőt a diódákkal egyszerre melegítjük, a megadott hőmérsékletértékekre és mérjük az U 3 feszültséget. A 2 táblázat megfelelő sorának kitöltése után meghatározzuk a 9-es összefüggés segitségével az érzékelő hőmérsékletváltozási együtthatóját, majd hasonlitsuk össze az adatlapban megadott értékkel. Rajzoljuk fel az érzékelő jelleggörbéjét! 2. Táblázat T[ C] Megjegyzések U 1 [V] állandó C U mv/ C U 2 [V] U állandó 2 [ma] C ma/ C U 3 [V] C U mv/ C A mérések elvégzése után megrajzoljuk a kért karakterisztikákat, és kiszámítjuk a dióda hőmérsékletváltozási együtthatóját állandó áram esetén, használva a 9-es összefüggést, minden T1 C változásra. A számított értékeknek meghatározzuk a középértékét és a táblázatba írjuk. Hasonló módon kiszámithatjuk a dióda hőmérsékletváltozási együtthatóját is, állandó feszültség esetén, majd a középértéket a táblázatba írjuk. d C U konst (11) dt 4. Kérdések, feladatok Hogyan változik a dióda küszöbfeszültsége a hőmérséklet növekedésével? A dióda melyik kapcsolása előnyösebb hőmérsékletmérésre? Milyen hatása van töltéshordozók számának a vezetőképességre, félvezetők esetében? Keressetek olyan integrált hőmérsékletérzékelőt melynek kimenete digitális! 39

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

9. Gyakorlat - Optoelektronikai áramköri elemek

9. Gyakorlat - Optoelektronikai áramköri elemek 9. Gyakorlat - Optoelektronikai áramköri elemek (Componente optoelectronice) (Optoelectronic devices) 1. Fénydiódák (LED-ek) Elnevezésük az angol Light Emitting Diode rövidítéséből származik. Áramköri

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

I. Félvezetődiódák. Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára. Farkas Viktor

I. Félvezetődiódák. Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára. Farkas Viktor I. Félvezetődiódák Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára Farkas Viktor Bevezetés Szilícium- és Germánium diódák A fénykibocsátó dióda (LED) Zener dióda Mérési elrendezések

Részletesebben

Passzív és aktív aluláteresztő szűrők

Passzív és aktív aluláteresztő szűrők 7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.

Részletesebben

I. Nyitó lineáris tartomány II. Nyitó exponenciális tartomány III. Záróirányú tartomány IV. Letörési tartomány

I. Nyitó lineáris tartomány II. Nyitó exponenciális tartomány III. Záróirányú tartomány IV. Letörési tartomány A DIÓDA. A dióda áramiránytól függı ellenállású alkatrész. Az egykristály félvezetı diódákban a p-n átmenet tulajdonságait használják ki. A p-n átmenet úgy viselkedik, mint egy áramszelep, az áramot az

Részletesebben

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 1. A gyakorlat célja A Platina100 hőellenállás tanulmányozása kiegyensúlyozott és kiegyensúlyozatlan Wheatstone híd segítségével. Az érzékelő ellenállásának mérése

Részletesebben

PN átmenet kivitele. (B, Al, Ga, In) (P, As, Sb) A=anód, K=katód

PN átmenet kivitele. (B, Al, Ga, In) (P, As, Sb) A=anód, K=katód PN átmenet kivitele A pn átmenet: Olyan egykristályos félvezető tartomány, amelyben egymással érintkezik egy p és egy n típusú övezet. Egy pn átmenetből álló eszköz a dióda. (B, Al, Ga, n) (P, As, Sb)

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

Diszkrét aktív alkatrészek

Diszkrét aktív alkatrészek Aktív alkatrészek Az aktív alkatrészek képesek kapcsolási és erősítési feladatokat ellátni. A digitális elektronika és a teljesítményelektronika gyors kapcsolókra épül, az analóg technikában elsősorban

Részletesebben

FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás

FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK A leggyakrabban használt félvezető anyagok a germánium (Ge), és a szilícium (Si). Félvezető tulajdonsággal rendelkező elemek: szén (C),

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését

Részletesebben

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások

Analóg áramkörök Műveleti erősítővel épített alapkapcsolások nalóg áramkörök Műveleti erősítővel épített alapkapcsolások Informatika/Elektronika előadás encz Márta/ess Sándor Elektronikus Eszközök Tanszék 07-nov.-22 Témák Műveleti erősítőkkel kapcsolatos alapfogalmak

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

6.B 6.B. Zener-diódák

6.B 6.B. Zener-diódák 6.B Félvezetı áramköri elemek Speciális diódák Ismertesse a Zener-, a varicap-, az alagút-, a Schottky-, a tős-dióda és a LED felépítését, jellemzıit és gyakorlati alkalmazási lehetıségeit! Rajzolja fel

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Fényemittáló dióda (LED)

Hobbi Elektronika. Bevezetés az elektronikába: Fényemittáló dióda (LED) Hobbi Elektronika Bevezetés az elektronikába: Fényemittáló dióda (LED) 1 Felhasznált irodalom LED Diszkont: Mindent a LED világáról Dr. Veres György: Röviden és tömören a LED-ekről Szabó Géza: Elektrotechnika-Elektronika

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

Gépész BSc Nappali MFEPA31R03. Dr. Szemes Péter Tamás 2. EA, 2012/2013/1

Gépész BSc Nappali MFEPA31R03. Dr. Szemes Péter Tamás 2. EA, 2012/2013/1 Gépész BSc Nappali MFEPA31R03 Dr. Szemes Péter Tamás 2. EA, 2012/2013/1 Tartalom Beavatkozók és hatóműveik Szabályozó szelepek Típusok, jellemzői, átfolyási jelleggörbéi Csapok Hajtóművek Segédenergia

Részletesebben

A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet.

A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet. 1. HŐTÁGULÁSON ALAPULÓ ÁTALAKÍTÓK: HŐMÉRSÉKLET A hőmérséklet változását elmozdulássá alakítják át 1.1 Folyadéktöltésű hőmérők (helyzet változássá) A töltőfolyadék térfogatváltozása alapján, egy viszonyítási

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük.

A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük. Elektromos mezőben az elektromos töltésekre erő hat. Az erő hatására az elektromos töltések elmozdulnak, a mező munkát végez. A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:

Részletesebben

A BIPOLÁRIS TRANZISZTOR.

A BIPOLÁRIS TRANZISZTOR. A BIPOLÁRIS TRANZISZTOR. A bipoláris tranzisztor kialakításához a félvezetı kristályt három rétegben n-p-n vagy p-n-p típusúra adalékolják. Az egyes rétegek elnevezése emitter (E), bázis (B), kollektor

Részletesebben

1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! pozitív visszacsatolás

1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! pozitív visszacsatolás 1.zh Kösse össze a két oszlop egy-egy összetartozó fogalmát! gerjedés Bode hurokerősítés nem-invertáló db pozitív visszacsatolás követő egységnyi Kösse össze a két oszlop egy-egy összetartozó fogalmát!

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2016. május 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 18. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata. El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Részletesebben

Elektronika alapjai. Témakörök 11. évfolyam

Elektronika alapjai. Témakörök 11. évfolyam Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia

Részletesebben

SCHWARTZ 2012 Emlékverseny

SCHWARTZ 2012 Emlékverseny SCHWARTZ 2012 Emlékverseny A TRIÓDA díjra javasolt feladat ADY Endre Líceum, Nagyvárad, Románia 2012. november 10. Befejezetlen kísérlet egy fecskendővel és egy CNC hőmérővel A kísérleti berendezés. Egy

Részletesebben

Elektronika 11. évfolyam

Elektronika 11. évfolyam Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata MÉRÉSI JEGYZŐKÖNYV A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata A mérés helye: Irinyi János Szakközépiskola és Kollégium

Részletesebben

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. A 27/202 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 04 Mechatronikai technikus Tájékoztató A vizsgázó az első lapra írja fel a

Részletesebben

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri

Részletesebben

1. Visszacsatolás nélküli kapcsolások

1. Visszacsatolás nélküli kapcsolások 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ

Részletesebben

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc. Mérés dátuma: 28... Leadás dátuma: 28.. 8. . Mérések ismertetése A Peltier-elemek az. ábrán látható módon vannak elhelyezve

Részletesebben

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET)

Hobbi Elektronika. Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET) Hobbi Elektronika Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET) 1 Felhasznált irodalom Sulinet Tudásbázis: Unipoláris tranzisztorok Electronics Tutorials: The MOSFET CONRAD Elektronik: Elektronikai

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

- elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetők félvezetők szigetelő anyagok

- elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetők félvezetők szigetelő anyagok lektro- és irányítástechnika. jegyzet-vázlat 1. Félvezető anyagok - elektromos szempontból az anyagokat három csoportra oszthatjuk: vezetők félvezetők szigetelő anyagok - vezetők: normál körülmények között

Részletesebben

Elektronika Alapismeretek

Elektronika Alapismeretek Alapfogalmak lektronika Alapismeretek Az elektromos áram a töltéssel rendelkező részecskék rendezett áramlása. Az ika az elektromos áram létrehozásával, átalakításával, befolyásolásával, irányításával

Részletesebben

F1301 Bevezetés az elektronikába Félvezető diódák

F1301 Bevezetés az elektronikába Félvezető diódák F1301 Bevezetés az elektronikába Félvezető diódák FÉLVEZETŐ DÓDÁK Félvezető P- átmeneti réteg (P- átmenet, kiürített réteg): A félvezető kristály két ellentétesen szennyezett tartományának határán kialakuló

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

Koincidencia áramkörök

Koincidencia áramkörök Koincidencia áramkörök BEVEZETÉS Sokszor előfordul, hogy a számítástechnika, az automatika, a tudományos kutatás és a technika sok más területe olyan áramkört igényel, amelynek kimenetén csak akkor van

Részletesebben

FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás

FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás A tranzisztor felfedezése A tranzisztor kifejlesztését a Lucent Technologies kutatóintézetében, a Bell Laboratóriumban végezték el. A laboratóriumban három

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

ELEKTRONIKA I. (KAUEL11OLK)

ELEKTRONIKA I. (KAUEL11OLK) Félévi követelmények és beadandó feladatok ELEKTRONIKA I. (KAUEL11OLK) tárgyból a Villamosmérnöki szak levelező tagozat hallgatói számára Óbuda Budapest, 2005/2006. Az ELEKTRONIKA I. tárgy témaköre: Az

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

SZIGETELŐK, FÉLVEZETŐK, VEZETŐK

SZIGETELŐK, FÉLVEZETŐK, VEZETŐK SZIGETELŐK, FÉLVEZETŐK, VEZETŐK ITRISIC (TISZTA) FÉLVEZETŐK E EXTRÉM AGY TISZTASÁG (kb: 10 10 Si, v. Ge, 1 szennyező atom) HIBÁTLA KRISTÁLYSZERKEZET abszolút nulla hőmérsékleten T = 0K = elektron kevés

Részletesebben

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata

Bipoláris tranzisztoros erősítő kapcsolások vizsgálata Mérési jegyzõkönyv A mérés megnevezése: Mérések Microcap Programmal Mérõcsoport: L4 Mérés helye: 14 Mérés dátuma: 2010.02.17 Mérést végezte: Varsányi Péter A Méréshez felhasznált eszközök és berendezések:

Részletesebben

Nagyteljesítményű LEDek fénytechnikai és elektromos tulajdonságai valós működési körülmények között

Nagyteljesítményű LEDek fénytechnikai és elektromos tulajdonságai valós működési körülmények között tulajdonságai valós működési körülmények között 2012.02. 07 MEE-VTT 3. LED konferencia Előadó: SZEGULJA, Márton (M.Eng) 1 a) c) b) d) 1. Ábra: Mérőhelyek és mérőberendezések: a) LED mérőhely FH-Hannover;

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Vezetékek. Fizikai alapok

Vezetékek. Fizikai alapok Vezetékek Fizikai alapok Elektromos áram A vezetékeket az elektromos áram ill. elektromos jelek vezetésére használják. Az elektromos áramot töltéshordozók (elektromos töltéssel rendelkező részecskék: elektronok,

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Félvezető diódák, LED-ek

Hobbi Elektronika. Bevezetés az elektronikába: Félvezető diódák, LED-ek Hobbi Elektronika Bevezetés az elektronikába: Félvezető diódák, LED-ek 1 Felhasznált irodalom Sulinet - Tudásbázis: Félvezető diódak hamwiki: A dióda működése LED Diszkont: Mindent a LED világáról Dr.

Részletesebben

601H-R és 601H-F típusú HŐÉRZÉKELŐK

601H-R és 601H-F típusú HŐÉRZÉKELŐK 601H-R és 601H-F típusú HŐÉRZÉKELŐK 1. BEVEZETÉS A 601H-R és 601H-F hőérzékelők a mennyezetre szerelhető, aljzatra illeszthető 600-as sorozatú érzékelők közé tartoznak. Kétvezetékes hálózatba szerelhető,

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Elektronikus fekete doboz vizsgálata

Elektronikus fekete doboz vizsgálata Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel

Részletesebben

6 az 1-ben digitális multiméter AX-190A. Használati útmutató

6 az 1-ben digitális multiméter AX-190A. Használati útmutató 6 az 1-ben digitális multiméter AX-190A Használati útmutató 1. Biztonsági szabályok SOHA ne használjon a mérőműszernél olyan feszültséget, vagy áramerősséget, amely értéke túllépi a megadott maximális

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

4.B 4.B. A félvezetı anyagok fizikája (sajátvezetés, szennyezés, áramvezetés félvezetıkben)

4.B 4.B. A félvezetı anyagok fizikája (sajátvezetés, szennyezés, áramvezetés félvezetıkben) 4.B Félvezetı áramköri elemek Félvezetı diódák Ismertesse a félvezetık felépítésének és mőködésének fizikai alapjait, s fejtse ki a mőködés elektronfizikai és elektrokémiai vonatkozásait! Értelmezze a

Részletesebben

Elektronika 1. 4. Előadás

Elektronika 1. 4. Előadás Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA

EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA Az elektronikával foglalkozó emberek sokszor építenek házilag erősítőket, nagyrészt tranzisztorokból. Ehhez viszont célszerű egy olyan berendezést

Részletesebben

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez?

Műveleti erősítők. Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Műveleti erősítők Előzetes kérdések: Milyen tápfeszültség szükséges a műveleti erősítő működtetéséhez? Milyen kimenő jel jelenik meg a műveleti erősítő bemeneteire adott jel hatására? Nem invertáló bemenetre

Részletesebben

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Kiegészítő tudnivalók a fizikai mérésekhez

Kiegészítő tudnivalók a fizikai mérésekhez Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

E8 laboratóriumi mérés Fizikai Tanszék

E8 laboratóriumi mérés Fizikai Tanszék E8 laboratóriumi mérés Fizikai Tanszék Germánium-dióda nyitóirányú karakterisztikájának felvétele 1. A mérés célja, elve A diódák olyan eszközök, amelyeknek a viselkedése nagyban függ attól, hogy a feszültséget

Részletesebben

Digitális multiméterek

Digitális multiméterek PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Fizikai mérési gyakorlatok Digitális multiméterek Segédlet környezettudományi és kémia szakos hallgatók fizika laboratóriumi mérési gyakorlataihoz)

Részletesebben

G04 előadás Napelem technológiák és jellemzőik. Szent István Egyetem Gödöllő

G04 előadás Napelem technológiák és jellemzőik. Szent István Egyetem Gödöllő G04 előadás Napelem technológiák és jellemzőik Kristályos szilícium napelem keresztmetszete negatív elektróda n-típusú szennyezés pozitív elektróda p-n határfelület p-típusú szennyezés Napelem karakterisztika

Részletesebben

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2

Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 Az erősítés frekvenciafüggése: határfrekvenciák meghatározása ELEKTRONIKA_2 TEMATIKA A kapacitív ellenállás. Váltakozó áramú helyettesítő kép. Alsó határfrekvencia meghatározása. Felső határfrekvencia

Részletesebben

Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők

Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők Gingl Zoltán, Szeged, 06. 06.. 3. 7:47 Elektronika - Műveleti erősítők 06.. 3. 7:47 Elektronika - Műveleti erősítők Passzív elemek nem lehet erősíteni, csi jeleket kezelni erősen korlátozott műveletek

Részletesebben

Elektromos egyenáramú alapmérések

Elektromos egyenáramú alapmérések Elektromos egyenáramú alapmérések A mérés időpontja: 8.. 5. hétf ő,.-4. Készítették: 5.mérőpár - Lele István (CYZH7) - Nagy Péter (HQLOXW) A mérések során elektromos egyenáramú köröket vizsgálunk feszültség-

Részletesebben

UNIPOLÁRIS TRANZISZTOR

UNIPOLÁRIS TRANZISZTOR UNIPOLÁRIS TRANZISZTOR Az unipoláris tranzisztorok térvezérléső tranzisztorok (Field Effect Transistor). Az ilyen tranzisztorok kimeneti áramának nagyságát a bemeneti feszültséggel létrehozott villamos

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Integrált áramkörök/2. Rencz Márta Elektronikus Eszközök Tanszék

Integrált áramkörök/2. Rencz Márta Elektronikus Eszközök Tanszék Integrált áramkörök/2 Rencz Márta Elektronikus Eszközök Tanszék Mai témák MOS áramkörök alkatrészkészlete Bipoláris áramkörök alkatrészkészlete 11/2/2007 2/27 MOS áramkörök alkatrészkészlete Tranzisztorok

Részletesebben

OP-300 MŰSZAKI ADATOK

OP-300 MŰSZAKI ADATOK OP-300 Félautomata, mikrokontrolleres vezérlésű, hálózati táplálású, asztali készülék fóliatasztatúrával 40 karakter, alfanumerikus LCD, háttérvilágítással i tartományok Felbontás ph 0,000... 14,000 ph

Részletesebben

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! 1 Óbudai Egyetem 2 TARTALOMJEGYZÉK I. Bevezetés 3 I-A. Beüzemelés.................................. 4 I-B. Változtatható ellenállások...........................

Részletesebben