ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o"

Átírás

1 ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait: -os Anyag Fajlagos ellenállás: Ω mm 2 m Réz 0,01786 Alumínium 0,02867 Vas 0,12 Ezüst 0,016 Arany 0, táblázat 0 0 : kiinduló hőmérséklet ( 20 o ); : a változás utáni hőmérséklet; 0 : az ellenállás ( 20 o -on mérve); : a változás utáni ellenállás; Δ T : hőmérsékletváltozás; : ellenállásváltozás. T ábra PT vezető melegítése T [ o ] A vezetőanyagok egyik csoportjában a hőmérséklet növekedésével az ellenállásérték növekszik. Ezek az anyagok hideg állapotban jó vezetőképességgel rendelkeznek, ezért hidegvezetőknek nevezzük őket. A pozitív hőmérsékleti együtthatójú anyagok ellenállása tehát a hőmérséklet növekedésével együtt növekszik (pozitív termikus koefficiens: PT, Positive Temperature oefficient: PT). Eme jelenség oka az, hogy növekvő hőmérséklet 0 0 T [ o ] hatására megnövekszik az atomtörzsek és a töltéshordozók, molekulák hőmozgása. A hidegvezetők PT jellege jól megfigyelhető az 1. ábrán. A kapott hőmérséklet-ellenállás függvény egyértelműen szigorúan monoton növekvő képet mutat, vagyis az m differenciahányados (meredekség) pozitív előjelű [PT > m() ]. Természetesen a PT jelleg akkor is igazolható, ha a vezetőanyagot hűtjük, ez figyelhető meg a 2. ábrán. A hűtés hatására az ellenállás értéke csökken a hőmérséklettel együtt. Mivel a változások, Δ T és előjele negatív, így a meredekség előjele továbbra is pozitív: m (-) (-) () 2. ábra PT vezető hűtése ELETROTEHNIA észítette: Mike Gábor 1/7

2 Általánosságban leírhatjuk, hogy hőmérsékletváltozás ( Δ T ) hatására, a hőmérsékletváltozás előjelének megfelelően az ellenállásérték is változni fog: 0. Az ellenállásváltozás nem lineáris viszonyú a hőmérsékletváltozással, de van egy szűk hőmérséklettartomány, ahol közel lineárisnak tekinthető: 60 o és 200 o között. Az α hőmérsékleti együttható (termikus koefficiens: T; Temperature oefficient: T) az az ellenállásváltozás, amely 1 (azaz 1 o ) hőmérsékletváltozáskor 1Ω ellenálláson következik be. Másképpen: egységnyi ellenállású anyag, egységnyi hőmérsékletváltozásának hatására bekövetkező ellenállásváltozás: α 1 1. o Az ellenállásváltozás kiszámításakor a 20 o -on mért ellenállás értékéből kell kiindulni: α ahol 0 α Δ T. Ugyanakkor 0 0 α esetén 0 -at kiemelve: 0 (1α Δ T ) Anyag Réz Alumínium Vas Ezüst Arany Hőmérsékleti együttható: α 1 1 o 3, , , , táblázat A 2. táblázat adataiból kitűnik, hogy ha az α értéke pozitív előjelű, akkor az ellenállásváltozás is pozitív, vagyis az anyag PT jellegű. A hidegvezető anyagok hőmérsékleti együtthatója pozitív (PT). 1. példa: hidegvezető melegítése Mekkora az 1000Ω -os réz anyagú hidegvezető ellenállása, ha 20 o hőmérsékletre melegítjük? Adatok: Ω ; α réz 3, ; Megoldás: A hőmérsékletváltozás: Δ T 40 o 20 o 20 Az ellenállásváltozás: 0 α 1000 Ω 3, ,6 Ω A változás utáni ellenállás: Ω78,6Ω1078,6Ω -ról 40 o 40 o -os ELETROTEHNIA észítette: Mike Gábor 2/7

3 2. példa: hidegvezető melegítése Egy alumíniumvezető 0 400Ω -os ellenállása 500Ω -ra növekedett. Mekkora a hőmérsékletnövekedés? 0 500Ω 400Ω100Ω 0 α Al 100Ω 400Ω 3, ,31 66,31 o 1, példa: hidegvezető melegítése Egy ezüstvezető ellenállása melegítés után 120Ω -ra adódott, miközben a hőmérséklet 60 o. Mekkora volt a melegítés előtti ellenállás? 60 o 40 o α 120Ω 13, ,152 Ω104,16Ω 4. példa: hidegvezető hűtése Egy 1000Ω -os vasból készült hidegvezetőt 60 o ellenállása? α vas 4, hőmérsékletre hűtünk. Mekkora lesz az Megoldás: A hőmérsékletváltozás: Az ellenállásváltozás: A változás utáni ellenállás: Δ T 60 o 80 o 80 0 α Δ T 1000Ω 4, ( 80 ) 368Ω Ω( 368Ω)632Ω 5. példa: hidegvezető hűtése 6. példa: hidegvezető hűtése Egy rézvezető 0 500Ω -os ellenállása 450Ω -ra csökkent. Mekkora a hőmérsékletváltozás? 0 450Ω 500Ω 50Ω Δ T 50Ω 0 α réz 500Ω 3, ,44 25,44 o 1,965 Egy aranyvezető ellenállása hűtés hatására 10Ω -ra csökkent, miközben a hőmérséklet 30 o. Mekkora volt a hűtés előtti ellenállás? Δ T 30 o 10Ω α Δ T ( 50 ) Ω 1( 0,2) 0,8 12,5Ω ELETROTEHNIA észítette: Mike Gábor 3/7

4 A vezetőanyagok másik csoportjában a hőmérséklet növekedésével az ellenállásérték csökken. Ezek az anyagok meleg állapotban jobban vezetnek, ezért melegvezetőknek nevezzük őket. Eme anyagok tehát negatív hőmérsékleti együtthatójúak (negatív termikus koefficiens: NT, Negative Temperature oefficient: NT). Mindennek az oka abban keresendő, hogy a hőmérséklet elelkedésének hatására egyre több elektron szabadul fel kötött állapotából, így elektrontöbblet alakul ki, mely miatt megnő a vezetőképesség, vagyis csökken az ellenállás. 0 A melegvezetők hőmérséklet-ellenállás függvénye szigorúan monoton csökkenő (3. ábra), az m differenciahányados (meredekség) negatív előjelű [NT > ]. Növekvő hőmérséklet hatására csökken az ellenállás. Ekkor: m (-) () (-). Ha a melegvezetőt hűtésének hatására az ellenállás értéke növekszik (4. ábra). A a meredekség előjele továbbra is negatív: m Δ T () (-) (-) 0 T [ o ] 3. ábra NT vezető melegítése Az NT összefüggések ugyanazok, mint a hidegvezetők esetében: α 1 1 o ; 0 α α 0 0 (1α ) NT jelleget mutató pl. a szén: α szén 0, T [ o ] 4. ábra NT vezető melegítése ELETROTEHNIA észítette: Mike Gábor 4/7

5 1. példa: melegvezető melegítése Egy 100Ω -os szénrétegellenállást 20 o -ról 50 o -os hőmérsékletre melegítjük. Mekkora a melegítés utáni ellenállásérték? Δ T 50 o 30 o 30 0 α 100Ω ( 0, ) 30 1,6Ω Ω( 1,6Ω)98,4Ω 2. példa: melegvezető melegítése Egy szénréteg ellenállás felmelegszik, eközben a 0 470Ω -os ellenállása 460Ω -ra csökkent. Mekkora a hőmérséklet? 0 460Ω 470Ω 10 Ω 0 α Al 10Ω 470Ω ( 0, ) 10 26,6 26,6 o 0, példa: melegvezető melegítése Egy szénréteg ellenállás ellenállása melegítés után 1020 Ω lett, eközben a hőmérséklet 60 o. Mekkora volt a melegítés előtti ellenállás? Δ T 60 o 40 o α 1020 Ω 1(0, ) ,968 Ω1053,72 Ω 4. példa: melegvezető hűtése Egy 1000Ω -os szénréteg ellenállást 50 o hőmérsékletre hűtünk. Mekkora lesz az ellenállása? Δ T 0 α 50 o Ω ( 0, ) ( 70 )56Ω Ω56Ω1056 Ω 5. példa: melegvezető hűtése Egy szénréteg ellenállás 0 500Ω -os ellenállása 510Ω -ra nőtt. Mekkora a hőmérsékletváltozás? 0 510Ω 500Ω10Ω Δ T 10Ω 0 α réz 500Ω ( 0, ) o 0,4 6. példa: melegvezető hűtése Egy szénszál ellenállása hűtés hatására 10Ω -ra nőtt, miközben a hőmérséklet 0 o. Mekkora volt a hűtés előtti ellenállás? Δ T 0 o α 10Ω 1( 0, ) ,984 Ω10,16Ω ELETROTEHNIA észítette: Mike Gábor 5/7

6 A PT és NT jelleg igazolása karakterisztikákkal Ideális ellenállás A TINA-TI nevű szimulációs szoftver segítségével állítsa össze az 5. ábra szerinti mérőkört! Ha az ellenállás feszültség-áram karakterisztikáját felvesszük (0-tól 10 V-ig növelve a feszültséget), akkor a karakterisztika bármely pontján ugyanaz az ellenállásérték adódik (az Ohm-törvény), a karakterisztika ennek megfelelően lineáris (6. ábra). Mivel az ideális ellenállás hőmérsékleti együtthatója nulla, ezért a hőmérséklet változására az ellenállásérték nem változik. Ha az ellenállásérték nem változik, akkor az ellenálláson folyó áram értéke sem (7. ábra). AM1 A 10.00m 7.50m 10.01m 10.00m VS1 10 R1 1k urrent (A) 5.00m urrent (A) 10.00m 2.50m 9.99m Input voltage (V) 9.99m Temperature () 5. ábra 6. ábra 7. ábra PT ellenállás A TINA-TI nevű szimulációs szoftver segítségével állítsa össze az 8. ábra szerinti mérőkört! A PT ellenállásra kapcsolt feszültség növelésekor a rajta átfolyó áram is növekszik, melynek következménye, hogy az ellenállás teljesítménye és hőmunkája okán a hőmérséklete is növekszik. Növekvő hőmérséklet hatására azonban az ellenállásérték is növekszik, mely az átfolyó áramot korlátozza. Mindennek okán a feszültség-áram karakterisztika nem lineáris (9. ábra). Adott munkapontban (állandó feszültség esetén), amennyiben a hőmérsékletet növeljük, nő az ellenállás, így az áram csökken, ahogy az a hőmérséklet-áram karakterisztikán megfigyelhető (10. ábra). Ilyen PT elem a wolframszálas izzó is. AM1 A 80.00m 75.00m m 75.00m VS1 10 PT PT1 urrent (A) 70.00m urrent (A) 50.00m 65.00m 25.00m 60.00m Input voltage (V) Temperature () 8. ábra 9. ábra 10. ábra ELETROTEHNIA észítette: Mike Gábor 6/7

7 PT ellenállás A TINA-TI nevű szimulációs szoftver segítségével állítsa össze a 11. ábra szerinti mérőkört! Amennyiben egy NT ellenállásra kapcsolt feszültséget növelünk, akkor a rajta átfolyó áram is nő, azonban korántsem lineárisan. Ennek oka a következő: az átfolyó áram hatására az ellenállás teljesítménye, hőmunkája, valamint ennek okán a hőmérséklete is növekszik. Ahogy nő a hőmérséklet az ellenállásérték csökken, így az Ohm-törvény értelmében az áramérték meredekebben növekszik (12. ábra). AM1 A 2.00m 1.50m VS1 10 NT NT1 urrent (A) 1.00m u 11. ábra Input voltage (V) 12. ábra ELETROTEHNIA észítette: Mike Gábor 7/7

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Wien-hidas oszcillátor mérése (I. szint)

Wien-hidas oszcillátor mérése (I. szint) Wien-hidas oszcillátor mérése () A Wien-hidas oszcillátor az egyik leggyakrabban alkalmazott szinuszos rezgéskeltő áramkör, melyet egyszerűen kivitelezhető hangolhatóságának, kedvező amplitúdó- és frekvenciastabilitásának

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 1. A gyakorlat célja A Platina100 hőellenállás tanulmányozása kiegyensúlyozott és kiegyensúlyozatlan Wheatstone híd segítségével. Az érzékelő ellenállásának mérése

Részletesebben

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

PN átmenet kivitele. (B, Al, Ga, In) (P, As, Sb) A=anód, K=katód

PN átmenet kivitele. (B, Al, Ga, In) (P, As, Sb) A=anód, K=katód PN átmenet kivitele A pn átmenet: Olyan egykristályos félvezető tartomány, amelyben egymással érintkezik egy p és egy n típusú övezet. Egy pn átmenetből álló eszköz a dióda. (B, Al, Ga, n) (P, As, Sb)

Részletesebben

1. ábra A Wheatstone-híd származtatása. és U B +R 2 U B =U A. =0, ha = R 4 =R 1. Mindezekből a hídegyensúly: R 1

1. ábra A Wheatstone-híd származtatása. és U B +R 2 U B =U A. =0, ha = R 4 =R 1. Mindezekből a hídegyensúly: R 1 A Wheatstone-híd lényegében két feszültségosztóból kialakított négypólus áramkör, mely Sir Charles Wheatstone (1802 1875) angol fizikus és feltalálóról kapta a nevét. UA UB UA UB Írjuk fel a kész feszültségosztó

Részletesebben

Nagyteljesítményű LEDek fénytechnikai és elektromos tulajdonságai valós működési körülmények között

Nagyteljesítményű LEDek fénytechnikai és elektromos tulajdonságai valós működési körülmények között tulajdonságai valós működési körülmények között 2012.02. 07 MEE-VTT 3. LED konferencia Előadó: SZEGULJA, Márton (M.Eng) 1 a) c) b) d) 1. Ábra: Mérőhelyek és mérőberendezések: a) LED mérőhely FH-Hannover;

Részletesebben

HŐMÉRSÉKLETMÉRÉS. Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja. 961,93 C Ezüst dermedéspontja. 444,60 C Kén olvadáspontja

HŐMÉRSÉKLETMÉRÉS. Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja. 961,93 C Ezüst dermedéspontja. 444,60 C Kén olvadáspontja Hőmérsékletmérés HŐMÉRSÉKLETMÉRÉS Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja 961,93 C Ezüst dermedéspontja 444,60 C Kén olvadáspontja 0,01 C Víz hármaspontja -182,962 C Oxigén forráspontja

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

Hőmérséklet mérése. Sarkadi Tamás

Hőmérséklet mérése. Sarkadi Tamás Hőmérséklet mérése Sarkadi Tamás Hőtáguláson alapuló hőmérés Gázhőmérő Gay-Lussac törvények V1 T 1 V T 2 V 2 T 2 2 V T 1 1 P1 T 1 P T 2 P T 2 2 2 P T 1 1 Előnyei: Egyszerű, lineáris Érzékeny: dt=1c dv=0,33%

Részletesebben

A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet.

A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet. 1. HŐTÁGULÁSON ALAPULÓ ÁTALAKÍTÓK: HŐMÉRSÉKLET A hőmérséklet változását elmozdulássá alakítják át 1.1 Folyadéktöltésű hőmérők (helyzet változássá) A töltőfolyadék térfogatváltozása alapján, egy viszonyítási

Részletesebben

MÉRŐERŐSÍTŐK EREDŐ FESZÜLTSÉGERŐSÍTÉSE

MÉRŐERŐSÍTŐK EREDŐ FESZÜLTSÉGERŐSÍTÉSE MÉŐEŐSÍTŐK MÉŐEŐSÍTŐK EEDŐ FESZÜLTSÉGEŐSÍTÉSE mérőerősítők nagy bemeneti impedanciájú, szimmetrikus bemenetű, változtatható erősítésű egységek, melyek szimmetrikus, kisértékű (általában egyen-) feszültségek

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

1. Visszacsatolás nélküli kapcsolások

1. Visszacsatolás nélküli kapcsolások 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási

Részletesebben

Vezetékek. Fizikai alapok

Vezetékek. Fizikai alapok Vezetékek Fizikai alapok Elektromos áram A vezetékeket az elektromos áram ill. elektromos jelek vezetésére használják. Az elektromos áramot töltéshordozók (elektromos töltéssel rendelkező részecskék: elektronok,

Részletesebben

Nagyteljesítményű LEDek fénytechnikai és elektromos tulajdonságai valós működési körülmények között

Nagyteljesítményű LEDek fénytechnikai és elektromos tulajdonságai valós működési körülmények között tulajdonságai valós működési körülmények között 2010.02.24 MEE-VTT LED konferencia Előadó: Szegulja Márton (M.Eng) 1 LEDek fényárammérése (Diplomamunka) Verfahren und Messanordnung für LED Lichtstrommessungen

Részletesebben

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály

TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, 2002 március 13 9-12 óra 11 osztály 1 Egyatomos ideális gáz az ábrán látható folyamatot végzi A folyamat elsõ szakasza izobár folyamat, a második szakasz

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

ELLENÁLL 1. MÉRŐ ÉRINTKEZŐK:

ELLENÁLL 1. MÉRŐ ÉRINTKEZŐK: 1. MÉŐ ÉINTKEZŐK: 1. MÉŐ ÉINTKEZŐK (folytatás): á tm F ö s s z e s z o rító 1. MÉŐ ÉINTKEZŐK (folytatás): meghibásodott érintkezők röntgen felvételei EED CSÖVES ÉINTKEZŐ: É D 2. CSÚSZÓÉINTKEZŐS ÁTALAKÍTÓK

Részletesebben

HŐMÉRSÉKLETMÉRÉS. Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja. 961,93 C Ezüst dermedéspontja. 444,60 C Kén olvadáspontja

HŐMÉRSÉKLETMÉRÉS. Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja. 961,93 C Ezüst dermedéspontja. 444,60 C Kén olvadáspontja Hőmérsékletmérés HŐMÉRSÉKLETMÉRÉS Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja 961,93 C Ezüst dermedéspontja 444,60 C Kén olvadáspontja 0,01 C Víz hármaspontja -182,962 C Oxigén forráspontja

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g

Részletesebben

FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás

FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK I. Elektrotechnika 4. előadás FÉLVEZETŐ ESZKÖZÖK A leggyakrabban használt félvezető anyagok a germánium (Ge), és a szilícium (Si). Félvezető tulajdonsággal rendelkező elemek: szén (C),

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata. El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Részletesebben

1. ábra A Wien-hidas mérőpanel kapcsolási rajza

1. ábra A Wien-hidas mérőpanel kapcsolási rajza Ismeretellenőrző kérdések A mérések megkezdése előtt kérem, gondolja végig a következő kérdéseket, feladatokat! Szükség esetén elevenítse fel ismereteit az ide vonatkozó elméleti tananyag segítségével!

Részletesebben

EGYENÁRAMÚ KÖRÖK. Számítsuk ki, hogy 1,5 milliamperes áram az alábbi ellenállásokon mekkora feszültséget ejt!

EGYENÁRAMÚ KÖRÖK. Számítsuk ki, hogy 1,5 milliamperes áram az alábbi ellenállásokon mekkora feszültséget ejt! Mennyi töltés halad át egy tranzisztoron, ha rajta 10 óráig 2 ma áram folyik? Hány db elektront jelent ez? Az 1,2 ma nagyságú áram mennyi idő alatt szállít 0,6 Ah töltésmennyiséget? Egy tranzisztoros zsebrádió

Részletesebben

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc. Mérés dátuma: 28... Leadás dátuma: 28.. 8. . Mérések ismertetése A Peltier-elemek az. ábrán látható módon vannak elhelyezve

Részletesebben

A függvényekről tanultak összefoglalása /9. évfolyam/

A függvényekről tanultak összefoglalása /9. évfolyam/ A függvényekről tanultak összefoglalása /9. évfolyam/ Készítette: Almási István almasi84@gmail.com Lineáris függvény A függvény általános alakja: f (x):= m 1 m 2 x+b m a meredekség b a tengelymetszet 2/42

Részletesebben

Hőtágulás - szilárd és folyékony anyagoknál

Hőtágulás - szilárd és folyékony anyagoknál Hőtágulás - szilárd és folyékony anyagoknál Celsius hőmérsékleti skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Kelvin hőmérsékleti skála: A beosztása 273-al van elcsúsztatva a

Részletesebben

Speciális passzív eszközök

Speciális passzív eszközök Varisztorok Voltage Dependent Resistor VDR Variable resistor - varistor Speciális passzív eszközök Feszültségfüggő ellenállás, az áram erősen függ a feszültségtől: I=CU α ahol C konstans, α értéke 3 és

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27

Bevezetés a méréstechnikába és jelfeldolgozásba. Tihanyi Attila 2007 március 27 Bevezetés a méréstechnikába és jelfeldolgozásba Tihanyi Attila 2007 március 27 Ellenállások R = U I Fajlagos ellenállás alapján hosszú vezeték Nagy az induktivitása Bifiláris Trükkös tekercselés Nagy mechanikai

Részletesebben

8. A vezetékek elektromos ellenállása

8. A vezetékek elektromos ellenállása 8. A vezetékek elektromos ellenállása a) Fémbôl készült vezeték van az elektromos melegítôkészülékekben, a villanymotorban és sok más elektromos készülékben. Fémhuzalból vannak a távvezetékek és az elektromos

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar

Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar Folyamatirányítás Számítási gyakorlatok Gyakorlaton megoldandó feladatok Készítette: Dr. Farkas Tivadar 2010 I.-II. RENDŰ TAGOK 1. feladat Egy tökéletesen kevert, nyitott tartályban folyamatosan meleg

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA

EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA Az elektronikával foglalkozó emberek sokszor építenek házilag erősítőket, nagyrészt tranzisztorokból. Ehhez viszont célszerű egy olyan berendezést

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor Mi az áramerősség fogalma? (1 helyes válasz) 1. 1:56 Normál Egységnyi idő alatt áthaladó töltések száma. Egységnyi idő alatt áthaladó feszültségek száma. Egységnyi idő alatt áthaladó áramerősségek száma.

Részletesebben

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03 Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

1. konferencia: Egyenáramú hálózatok számítása

1. konferencia: Egyenáramú hálózatok számítása 1. konferencia: Egyenáramú hálózatok számítása 1.feladat: 20 1 kω Határozzuk meg az R jelű ellenállás értékét! 10 5 kω R z ellenállás értéke meghatározható az Ohm-törvény alapján. Ehhez ismernünk kell

Részletesebben

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

Az alacsony hőmérséklet előállítása

Az alacsony hőmérséklet előállítása Az alacsony hőmérséklet előállítása A kriorendszerek jelentősége Megbízható, alacsony üzemeltetési költségű, kisméretű és olcsó hűtőrendszer kialakítása a szupravezetős elektrotechnikai alkalmazások kereskedelmi

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások

Részletesebben

M ű veleti erő sítő k I.

M ű veleti erő sítő k I. dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt

Részletesebben

Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás

Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 04/24/2012 Beadás ideje: 04/29/2012 Érdemjegy: 1 1. A

Részletesebben

Fizika Vetélkedő 8 oszt. 2013

Fizika Vetélkedő 8 oszt. 2013 Fizika Vetélkedő 8 oszt. 2013 Osztályz«grade» Tárgy:«subject» at: Dátum:«date» 1 Hány proton elektromos töltése egyenlő nagyságú 6 elektron töltésével 2 Melyik állítás fogadható el az alábbiak közül? A

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

E1 laboratóriumi mérés Fizikai Tanszék

E1 laboratóriumi mérés Fizikai Tanszék E1 laboratóriumi mérés Fizikai Tanszék Konduktív ellenállás és fémszálas izzó feszültségáram karakterisztikája 1. A mérés célja, elve Az izzólámpa fajlagos ellenállása működés közben nagy mértékben függ

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Utoljára mentve: BME-MIT, :22:00, sorsz.: 3

Utoljára mentve: BME-MIT, :22:00, sorsz.: 3 Az útmutató célja Ezen útmutató célja, hogy rövid áttekintést adjon a mérési eredmények ábrázolásáról, értelmezéséről. A mérés nem csupán az elsődleges mérések elvégzéséből áll, hanem a mért eredmények

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Elektronika I. Gyakorló feladatok

Elektronika I. Gyakorló feladatok Elektronika I. Gyakorló feladatok U I Feszültséggenerátor jelképe: Áramgenerátor jelképe: 1. Vezesse le a terheletlen feszültségosztóra vonatkozó összefüggést: 2. Vezesse le a terheletlen áramosztóra vonatkozó

Részletesebben

8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai

<mérésvezető neve> 8 C s z. 7 U ki TL082 4 R. 1. Neminvertáló alapkapcsolás mérési feladatai MÉRÉSI JEGYZŐKÖNYV A mérés tárgya: Egyszerű áramkör megépítése és bemérése (1. mérés) A mérés időpontja: 2004. 02. 10 A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik: A Belso Zoltan B Szilagyi

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia ok. TRI-MESTER, Tatabánya. 33. o. 1. 65.) Keynesi abszolút

Részletesebben

OMRON MŰSZAKI INFORMÁCIÓK OMRON

OMRON MŰSZAKI INFORMÁCIÓK OMRON A hőmérséklet A stabil hőmérséklethoz szükséges idő függ a szabályozott rendszertől. A válaszidő megrövidítése rendszerint, túllövést vagy lengő rendszert fog eredményezni. Ha csökkentjük a hőmérséklet

Részletesebben

Bolyai Farkas Országos Fizika Tantárgyverseny 2014 Bolyai Farkas Elméleti Líceum Marosvásárhely X. Osztály. Válaszoljatok a következő kérdésekre:

Bolyai Farkas Országos Fizika Tantárgyverseny 2014 Bolyai Farkas Elméleti Líceum Marosvásárhely X. Osztály. Válaszoljatok a következő kérdésekre: Válaszoljatok a következő kérdésekre: 1. feladat Adott mennyiségű levegőt Q=1050 J hőközléssel p 0 =10 5 Pa állandó nyomáson melegítünk. A kezdeti térfogat V=2l. (γ=7/5). Mennyi a végső térfogat és a kezdeti

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény 84-85.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 38. o. 16-17. (Javasolt változtatások: 16. feladat: I( r) 500

Részletesebben

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

Bevezetés a lézeres anyagmegmunkálásba

Bevezetés a lézeres anyagmegmunkálásba Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 13. A lézeres l anyagmegmunkálás szempontjából l fontos anyagi tulajdonságok Optikai tulajdonságok Mechanikai tulajdonságok

Részletesebben

A 31. Nemzetközi Fizikai Diákolimpia feladatai 1

A 31. Nemzetközi Fizikai Diákolimpia feladatai 1 A 31. Nemzetközi Fizikai Diákolimpia feladatai 1 Kísérleti forduló l. feladat. Mágneses korong. Ebben a mérési feladatban szükséges a mérési hiba feltüntetése minden mért adatnál eredménynél és a grafikonokon.

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

írásbeli vizsgatevékenység

írásbeli vizsgatevékenység Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 0896-06 Villanyszerelési munka előkészítése, dokumentálása Vizsgarészhez rendelt vizsgafeladat száma, megnevezése: 0896-06/2 Folyamatábra

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK. Különösen viselkedő oszcillátor vizsgálata Oktatási Hivatal A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA FELADATOK Különösen viselkedő oszcillátor vizsgálata Elméleti bevezető: A mérési feladat

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Mikro- és nanotechnika (KMENT14TNC) Szenzorok és mikroáramkörök (KMESM11TNC) Laboratóriumi gyakorlatok Mérési útmutató

Részletesebben

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

Használható segédeszköz: Függvénytáblázat, szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép

Használható segédeszköz: Függvénytáblázat, szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 04 Mechatronikai technikus

Részletesebben

Galvanomágneses jelenségek

Galvanomágneses jelenségek isme d meg Galvanomágneses jelenségek Azokat a jelenségeket, amelyek az áramátjárta vezetőben mágneses tér hatására jönnek létre galvanomágneses jelenségebiek nevezzük. Ezek a jelenségek a közegben haladó

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

Mûveleti erõsítõk I.

Mûveleti erõsítõk I. Mûveleti erõsítõk I. 0. Bevezetés - a mûveleti erõsítõk mûködése A következõ mérésben az univerzális analóg erõsítõelem, az un. "mûveleti erõsítõ" mûködésének alapvetõ ismereteit sajátíthatjuk el. A nyílthurkú

Részletesebben