Digitális tananyag a fizika tanításához
|
|
- Ágnes Gál
- 9 évvel ezelőtt
- Látták:
Átírás
1 Digitális tananyag a izika tanításához
2 Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g anyagmennyiség: [n]=mol részecskeszám (atom, molekula): N moláris tömeg: [M]=g/mol A Celsius és Kelvin skála ala ontjai
3 Gázok állaotjelzői Állaotegyenlet: n RT mol az az anyagmennyiség mely N A =6,00 3 db részecskét (atomot vagy molekulát) tartalmaz. moláris tömeg (M): mol anyagmennyiség tömege grammban kiejezve. Pl: a víz (H O) moláris tömege: +6=8g/mol. R Regnault állandó vagy egyetemes gázállandó. R=8,3 J/molK n m M N N A R N A k k: Boltzmann állandó k=,380-3 J/K
4 Normál izikai állaot Normál izikai állaot jelzői: normál légköri nyomás: 0 =,030 5 Pa hőmérséklet: T 0 =73,5K (0 0 C) Avogadro törvény: Egy mol gázmennyiség térogata normál izikai állaotban a gáz minőségétől üggetlenül ugyanakkora:,4dm 3
5 Ideális gázmodell Az ideális gáz modellje olyan absztrakció, mellyel matematikailag leírható a gázok viselkedése eléggé alacsony nyomáson és magas hőmérsékleten. A gázmolekulák saját térogata elhanyagolható a gáz által betöltött térogathoz kéest. A gázmolekulák sontán, rendezetlen, magától végbemenő mozgásban vannak (Brown-éle hőmozgás). A mozgás intenzitásának jellemzésére az abszolút hőmérséklet szolgál [T]. A gázmolekulák egymásra sem vonzó, sem taszító hatást nem ejtenek ki, az ütközésektől eltekintve. A gázmolekulák egymással illetve az edény alával való ütközése rugalmas.
6 A nyomás és a belső energia A bezárt gázok nyomásának kinetikai értelmezése: Miközben a molekulák a tartály alával ütköznek, a alra erőt ejtenek ki, ebből származik a gáz által a tartály alára kiejtett nyomás. A gáz belső energiája: A gázmolekulák átlagos sebességét és mozgási energiáját a gáz hőmérséklete adja meg. Azonos hőmérsékleten, azonos számú gázmolekula összes mozgási energiája megegyezik, és üggetlen a gáz anyagi minőségétől. Ez a gáz belső energiája.
7 Szabadsági okok () Ideális gázmolekula szabadsági okainak száma többéle értelmezésben: egy molekula teljes mozgásának leírásához szükséges sebesség és szögsebesség komonensek száma. Egy molekula mozgási lehetőségeinek száma egy háromdimenziós koordinátarendszerhez vonatkoztatva. Az a szám mely megadja, hogy egy anyag egyetlen részecskéje hányéle módon kées energiát elvenni. atomos gázok esetén =3 (haladási szabadsági okok) kétatomos molekulájú gázok esetén: =3+ (orgási)=5 többatomos molekulájú gázok esetén: =3+3=6.
8 Ekviartíció tétel Ekviartíció tétel (Boltzmann): A mozgási energia a részecskék között, a rendezetlen mozgás, és az ütközések miatt, egyormán oszlik el. Minden sebességösszetevőre (akár haladó mozgási sebességről, akár orgásból származó szögsebességről van szó) átlagosan, egy molekulára: k T energia jut. Máskéen: Egy gázmolekula minden egyes szabadsági okára átlagosan ugyanannyi energia jut. Adott minőségű és mennyiségű ideális gáz belső energiája csak a hőmérséklet üggvénye.
9 Ideális gázok belső energiája N darab szabadsági okú gázmolekula összes mozgási energiája adja meg a gáz belső energiáját: E b N k T N k T n R T Megjegyzés: olyadékok és szilárd anyagok esetén a szabadsági okok száma nagyobb 6-nál (l. rezgések miatt). A molekulák, atomok közötti kölcsönhatásnak megelelő energia is növeli az anyagok belső energiáját. Ezt az energiát igyelembe kell venni a reális gázoknál is.
10 Az anyagok belső energiáját megváltoztató kölcsönhatások termikus kölcsönhatás - hőközlés- Q Pl. melegítjük, vagy hűtjük az anyagot Előjel konvenció: Q>0 a rendszer hőmennyiséget ka vagy a rendszerrel hőt közlünk. Q<0 a rendszer hőt ad le vagy a rendszertől hőt vonunk el.
11 Az anyagok belső energiáját megváltoztató kölcsönhatások mechanikus kölcsönhatás munkavégzés W Pl. összenyomunk egy gázmennyiséget, vagy a gázmennyiség kitágulva munkát végez környezetén. Előjel konvenció: W>0 a rendszeren munkát végeznek (csökkentjük a gázmennyiség térogatát) W<0 a rendszer végez munkát környezetén (a gázmennyiség kitágulva munkát végez környezetén)
12 A hőtan I. őtétele Egy termodinamikai rendszer belső energiájának megváltozása egyenlő a közölt hőmennyiség és a rajta végzett munka előjeles összegével. E b Q W Mivel a belső energia állaothatározó mennyiség, a belső energia változása nem ügg attól, hogy milyen olyamaton keresztül jut el a rendszer a kezdeti állaottól a végső állaotba. Ideális gázoknál a olyamattól üggetlenül: E b n R T Q 0 0 Q W W E b 0
13 Kalorikus együtthatók Az anyagok melegítésekor (vagy hűtésekor) a közölt (vagy leadott) hőmennyiség és a hőmérséklet változás között egyenes arányosság van. Az arányossági tényezőket nevezzük kalorikus együtthatóknak. Hőkaacitás: megmutatja, hogy egy test egységnyi hőmérséklet változása mekkora hőelvétellel (vagy hőleadással) jár. C Q T J kg Fajlagos hőkaacitás (ajhő): megmutatja, hogy egy bizonyos anyag egységnyi tömegének egységnyi hőmérséklet változása mekkora hőelvétellel (vagy hőleadással) jár. c Q m T J kg K
14 A gázok seciális állaotváltozásai Ha egy rögzített gázmennyiség,, T állaotjelzői közül valamelyik nem változik egyszerű állaotváltozásról beszélünk: Ha =állandó izobár állaotváltozás Ha =állandó izochor állaotváltozás Ha T=állandó izoterm állaotváltozás Ha egy rögzített gázmennyiség minden állaotjelzője megváltozik általános állaotváltozásról beszélünk. Ha egy rögzített gázmennyiség minden állaotjelzője megváltozik, de az állaotváltozás közben a gáz nem cserél hőt (Q=0) környezetével adiabatikus állaotváltozásról beszélünk, mely egy seciális állaotváltozásnak tekinthető.
15 A gázok seciális állaotváltozásai A seciális állaotváltozások energetikai vizsgálata: Izobár állaotváltozás Izochor állaotváltozás Izoterm állaotváltozás Adiabatikus állaotváltozás
16 Izobár állaotváltozás törvénye Gay Lussac I. törvénye: Állandó mennyiségű gáz térogata állandó nyomáson egyenesen arányos az abszolút (kelvinben mért) hőmérséklettel. T állandó T T 0 T 73K 0,00366 K
17 Izobár állaotváltozás során végzett térogati munka A munkavégzés megegyezik a graikon alatti területtel W F s n R T
18 Izobár állaotváltozás energetikája Izobár melegítésnél a közölt hőmennyiség egy része a gáz tágulási munkáját edezi, ennmaradó része a gáz belső energiáját növeli. T R n E b T m c E B Ideális gázoknál: A ajhő ismeretében: T R n Q T m c Q P T R n s F W A térogati munka: Q>0 W<0 =áll. T-nő
19 Izobár állaotváltozás energetikája Izobár hűtésnél a gáztól elvont hőmennyiség egy részét a gázon végzett munka edezi, a többi a gáz belső energia csökkenését idézi elő. T R n E b T m c E B Ideális gázoknál: A ajhő ismeretében: T R n Q T m c Q P T R n s F W A térogati munka: Q<0 W>0 =áll. T - csökken
20 Izochor állaotváltozás Gay Lussac II. törvénye: Állandó mennyiségű gáz nyomása állandó térogaton egyenesen arányos az abszolút (kelvinben mért) hőmérséklettel. T állandó T T 0 T 73K 0,00366 K
21 Izochor állaotváltozás energetikája - nő T-nő Izochor melegítésnél a közölt hőmennyiség teljes egészében a gáz belső energiáját növeli. Ideális gázoknál: E b n R T Q E B Q>0 W=0 A ajhő ismeretében: E B Q c m T A munkavégzés: W 0
22 Izochor állaotváltozás energetikája - csökken T-csökken Izochor hűtűsnél az elvont hőmennyiség teljes egészében a gáz belső energiáját csökkenti. Ideális gázoknál: E b n R T Q<0 W=0 Q E B A ajhő ismeretében: E B Q c m T A munkavégzés: W 0
23 Izoterm állaotváltozás Boyle Mariotte törvénye: Állandó mennyiségű gáz nyomása állandó hőmérsékleten ordítottan arányos a térogatával. állandó
24 Izoterm állaotváltozás energetikája T=áll. Izoterm összenyomásnál a gázon végzett munka - nő egyenlő a gáz által a környezetének leadott hőmennyiséggel. Q<0 W>0 E b 0 Q W
25 Izoterm állaotváltozás energetikája - csökken T=áll. Izoterm tágulásnál a gáz által a környezetén végzett munkát teljes egészében a környezettől elvett hőmennyiség edezi. Q>0 W<0 E b 0 Q W
26 Izoterm állaotváltozás során végzett munka W d d v W v W ln ln W n R T ln
27 Az általános gáztörvény x x T T x T T x X T T T állandó
28 Adiabatikus állaotváltozás energetikája Q=0 növekszik - nő T - nő. W>0 E B 0 Az állaotváltozás adiabatikusnak tekinthető ha: A gázmennyiség hőszigetelő allal van körülvéve A olyamat leolyása nagyon gyors ezért: Ideális gázoknál: E B Q 0 n R T A ajhő ismeretében: A térogati munka: E B c W ΔEB m T
29 Adiabatikus állaotváltozás energetikája Q=0 T - csökken. - csökken csökken W<0 E B 0 Az állaotváltozás adiabatikusnak tekinthető ha: A gázmennyiség hőszigetelő allal van körülvéve A olyamat leolyása nagyon gyors ezért: Ideális gázoknál: E B Q 0 n R T A ajhő ismeretében: A térogati munka: E B c W ΔEB m T
30 Az adiabatikus állaotváltozás üggvénye Mi az összeüggés az állaotjelzők között ilyen esetben? Mi az egyenlete az adiabatának? T T
31 Az adiabata egyenlete Az. őtételből Q 0 de W m B c v dt d d Az egyesített gáztörvényből d n R dt n R dt A kettő összevetéséből d d m c v d n R d
32 Az adiabata egyenlete c v d d m c v d n R R M Átrendezés után d c v d c c v R M a változók szétválasztásával c c v d d c c v
33 Az adiabata egyenlete ln ln lnc Átrendezés után állandó A adiabatikus kitevő (hőoktényező) értéke: a kétatomos gázok esetén kb.,4, háromatomos gázok esetén kb.,3.
34 A Poisson-egyenletek állandó R T T állandó R T T állandó
35 Az adiabatikus állaotváltozás összeoglalás v W v T T E b v n R T E Q 0 b I. őtétel: mc hőoktényező: T W E b állandó c c v hőszigetelő alú henger vagy hirtelen olyamat
36 Ellenőrző kérdések (bar) Adott mennyiségű gáz körolyamatot ír le az 3 4 állaotokon keresztül az ábra szerint. A 34 olyamat adiabatikus. T 3 T T = 50K (dm 3 ) Az ábra alaján jelöljük meg az egyetlen helyes választ a következő kérdéseknél:
37 Ellenőrző kérdések Melyik állaotban legnagyobb a gáz hőmérséklete? ). állaotban ). állaotban 3) 3. állaotban 4) 4. állaotban
38 Ellenőrző kérdések Mely állaotváltozások során nő a gáz belső energiája? ) és 3 ) 3) 3 4) 3 4 és 4
39 Ellenőrző kérdések Mely állaotváltozások során vesz el hőt a gáz környezetétől? ) és 3 ) 3) 3 4) 3 4 és 4
40 Ellenőrző kérdések Mely állaotváltozások során ad le hőt a gáz környezetének? ) és 3 4 ) 3) 3 4 és 4 4), 3 4 és 4
41 Ellenőrző kérdések Mely állaotváltozások során végez a környezet munkát a gázon? ) és 3 4 ) 3) 3 4 4), 3 és 3 4
42 Ellenőrző kérdések Mely állaotváltozások során végez a gáz munkát környezetén? ) és 3 4 ) 3 3) 3 és 3 4 4), 3 és 3 4
43 Ellenőrző kérdések Melyek azok az állaotváltozások melyek során a végzett munka és a hőmennyiség ellentétes előjelű? ) és 3 ) 3 3) 3 4 és 4 4)
44 Ellenőrző kérdések Melyek azok az állaotváltozások melyek során a belső energia megváltozása és a hőmennyiség azonos előjelű? ) és 3 4 ) 3 3) 3 és 4 4) 4
45 Száméldák Adjuk meg a hiányzó állaotjelzőket, valamint a gázmennyiségét! A körolyamatot kétatomos ideális gáz hajtja végre. n =,93 mol P = bar P = 3 = 3 bar P 4 =,67 bar = 4 = 40 dm 3 = 0 dm 3 3 =30 dm 3 T = T = 50K T 3 = 750 K T 4 = 668, 48K
46 Száméldák Adjuk meg a minden egyes részolyamatra a végzett munkát, a belső energia változását valamint a hőmennyiséget! A körolyamatot kétatomos ideális gáz hajtja végre. izotermikus: W = 5558,45 J Q = 5558,45 J E B = 0 3 izobár: W = 8000 J Q = 8000 J E B = 0000 J 3 4 adiabatikus: W = 368,6 J Q = 0 E B = 368,6 J 4 izochor: W = 0 J Q = 6700 J E B = 6700 J
47 Száméldák Adjuk össze az előző eladatban kiszámított értékeket! Mekkora a belső energia-változások, hőmennyiségek, munkavégzések összege? Hogyan érvényesül az I. őtétel a teljes körolyamatra? W Q E B 0
48 Száméldák Ha egy hőerőgé ezt a körolyamatot írná le, mekkora termikus hatásokkal működne? W Q elvett 0,39%
49 Felhasznált irodalom Dr. Író Béla SZE-MTK: Hő és áramlástan elektronikus előadása Walter Fendt Java animációi: htt://titan.hysx.u-szeged.hu/~serenyi/h4hu/ Animációk az ELTE suliizika honlajáról: htt://suliizika.elte.hu/html/m3.html
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
Termodinamika. Belső energia
Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
Hőtan I. főtétele tesztek
Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele
A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
Mivel foglalkozik a hőtan?
Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Termodinamika. 1. rész
Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
Gáztörvények tesztek
Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?
Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik
Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja
1. Feladatok a termodinamika tárgyköréből
. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete
Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).
Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok
Műszaki hőtantermodinamika. Műszaki menedzsereknek. BME Energetikai Gépek és Rendszerek Tanszék
Műszaki hőtantermodinamika Műszaki menedzsereknek Termodinamikai rendszer Meghatározott anyagmennyiség, agy/és Véges térrész. A termodinamikai rendszert a környezetétől tényleges agy elkézelt fal álasztja
gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44)
Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát
1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
Klasszikus zika Termodinamika I.
Klasszikus zika Termodinamika I. Horváth András, SZE GIVK v 0.95 Oktatási célra szabadon terjeszthet Horváth András, SZE GIVK Termodinamika I. v 0.95 1 / 35 A termodinamika tárgya A termodinamika a testek
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Légköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
Ideális gáz és reális gázok
Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:
TERMIKUS KÖLCSÖNHATÁSOK
ERMIKUS KÖLCSÖNHAÁSOK ÁLLAPOJELZŐK, ERMODINAMIKAI EGYENSÚLY A mindennai élet legkülönbözőbb területein találkozunk a hőmérséklet fogalmáal, méréséel, a rendszerek hőtani jellemzőiel (térfogat, nyomás,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,
2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül
gáznál 16+16 = 32, CO 2 gáznál 1+1=2, O 2 gáznál 12+16+16= 44)
Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát
Feladatok gázokhoz. Elméleti kérdések
Feladatok ázokhoz Elméleti kérdések 1. Ismertesd az ideális ázok modelljét! 2. Írd le az ideális ázok tulajdonsáait! 3. Mit nevezünk normálállapotnak? 4. Milyen tapasztalati tényeket használhatunk a hımérséklet
Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).
Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok
A termodinamika törvényei
A termodinamika törvényei 2009. 03. 23-24. Kiss Balázs Termodinamikai Természeti környezetünk meghatározott tulajdonságú falakkal leválasztott része. nincs kölcsönhatás a környezettel izolált kissb3@gmail.com
Feladatok gázokhoz (10. évfolyam) Készítette: Porkoláb Tamás
Feladatok ázokhoz (10. évfolyam) Készítette: Porkoláb Tamás Elméleti kérdések 1. Ismertesd az ideális ázok modelljét! 2. Írd le az ideális ázok tulajdonsáait! 3. Mit nevezünk normálállapotnak? 4. Milyen
Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika.
Hőmérséklet ermodinamika Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. óth Mónika 203 monika.a.toth@aok.pte.hu Különböző hőmérsékleti skálák. Kelvin skálájú
Hőtan 2. feladatok és megoldások
Hőtan 2. feladatok és megoldások 1. Mekkora a hőmérséklete 60 g héliumnak, ha első energiája 45 kj? 2. A úvárok oxigénpalakjáan 4 kg 17 0C-os gáz van. Mekkora a első energiája? 3. A tanulók - a fizika
Fizika minta feladatsor
Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,
Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia
Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története
71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:
Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
Termodinamika. Tóth Mónika
Termodinamika Tóth Mónika 2012.11.26-27 monika.a.toth@aok.pte.hu Hőmérséklet Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. Különböző hőmérsékleti skálák.
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással
Fizika feladatok 014. december 8. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-3) Határozzuk meg egy 0 cm hosszú, 4 cm átmérőjű hengeres vörösréz rúdon
MŰSZAKI HŐTAN I. 1. ZÁRTHELYI
MŰSZAKI HŐAN I.. ZÁRHELYI Név: Kézési kód: _N_ Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Both Ambrus Dr. Cséfalvay Edit Györke Gábor Lengyel Vivien Pa Máté Gábor
Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok
Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok Az előadás anyaga pár napon belül pdf formában is elérhető: energia.bme.hu/~imreattila (nem kell elé www!)
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv
Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1
1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
Termokémia. Termokémia Dia 1 /55
Termokémia 6-1 Terminológia 6-2 Hő 6-3 Reakcióhő, kalorimetria 6-4 Munka 6-5 A termodinamika első főtétele 6-6 Reakcióhő: U és H 6-7 H indirekt meghatározása: Hess-tétel 6-8 Standard képződési entalpia
Hőtan főtételei. (vázlat)
Hőtan főtételei (vázlat) 1. Belső energia oka, a hőtan I. főtétele. Ideális gázok belső energiája 3. Az ekvipartíció elve 4. Hőközlés és térfogati munka, a hőtan I. főtétele ideális gázokra 5. A hőtan
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
21. A testek hőtágulása
21. A testek hőtágulása Végezzen el két kísérletet a hőtágulás jelenségének szemléltetésére a rendelkezésre álló eszközök felhasználásával! Magyarázza meg a kísérleteknél tapasztalt jelenséget! Soroljon
Művelettan 3 fejezete
Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási
Általános Kémia GY, 2. tantermi gyakorlat
Általános Kémia GY, 2. tantermi gyakorlat Sztöchiometriai számítások -titrálás: ld. : a 2. laborgyakorlat leírásánál Gáztörvények A kémhatás fogalma -ld.: a 2. laborgyakorlat leírásánál Honlap: http://harmatv.web.elte.hu
Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás
MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS
MŰSZAKI TERMODINAMIKA. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS 207/8/2 MT0A Munkaidő: 90 perc NÉV:... NEPTUN KÓD: TEREM HELYSZÁM:... DÁTUM:... KÉPZÉS Energetikai mérnök BSc Gépészmérnök BSc JELÖLJE MEG
A hőmérséklet változtatásával a szilárd testek hosszméretei megváltoznak, mégpedig melegítéskor általában növekednek. Ez azzal magyarázható, hogy a
Kísérletek: 1 2 3 4 A hőmérséklet változtatásával a szilárd testek hosszméretei megváltoznak, mégpedig melegítéskor általában növekednek. Ez azzal magyarázható, hogy a szilárd testet alkotó molekulák rezgőmozgásának
4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban
Energetika 1 4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban Energodinamikai rendszerek vizsgálata során elsősorban gáznemű halmazállapot esetén lényeges az állapotváltozásokat megkülönböztetni.
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
Fizika 1i (keresztfélév) vizsgakérdések kidolgozása
Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Készítette: Hornich Gergely, 2013.12.31. Kiegészítette: Mosonyi Máté (10., 32. feladatok), 2015.01.21. (Talapa Viktor 2013.01.15.-i feladatgyűjteménye
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai
3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer
Műszaki hőtan I. ellenőrző kérdések
Alapfogalmak, 0. főtétel Műszaki hőtan I. ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és zárt termodinamikai rendszer? A termodinamikai rendszer (TDR) az anyagi
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 6.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 6. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely
Termodinamikai bevezető
Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 20.
Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 20. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely
A gázok. 1 mol. 1 mol H 2 gáz. 1 mol. 1 mol. O 2 gáz. NH 3 gáz. CH 4 gáz 24,5 dm 3. 52. ábra. Gázok moláris térfogata 25 o C-on és 0,1 MPa nyomáson.
A gázok A halmazok tulajdonságait, állapotát, bizonyos külső tényezők, mint pl. a nyomás, a térfogat és a hőmérséklet is befolyásolják. Ezeket a tényezőket állapothatározóknak nevezzük. Mi jellemzi a gázhalmazállapotot?
MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:
Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika
Értékelési útmutató az emelt szint írásbeli feladatsorhoz I.
Értékelési útmutató az emelt szint írásbeli feladatsorhoz I. 1. C. B 3. B 4. C 5. B 6. A 7. D 8. D 9. A 10. C 11. C 1. A 13. C 14. B 15. B 16. B 17. D 18. B 19. C 0. B I. RÉSZ Összesen 0 pont 1 1. téma
Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához
Dr. Pósa Mihály Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához 1. Bevezetés Shillady Don professzor az Amerikai Kémiai Szövetség egyik tanácskozásán felhívta a figyelmet a
Termodinamika. Tóth Mónika
Termodinamika Tóth Mónika 2015 monika.a.toth@aok.pte.hu Termodinamika Hő Mozgás TERMODINAMIKA a világ egy jól körülhatárolt részének a RENDSZERnek és a rendszer KÖRNYEZETének kölcsönhatásával és a rendszer
A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.
A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?
(2006. október) Megoldás:
1. Állandó hőmérsékleten vízgőzt nyomunk össze. Egy adott ponton az edény alján víz kezd összegyűlni. A gőz nyomását az alábbi táblázat mutatja a térfogat függvényében. a)ábrázolja nyomás-térfogat grafikonon
6. Termodinamikai egyensúlyok és a folyamatok iránya
6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála:
HŐTAN. Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki:
Hőmérséklet HŐTAN Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Fahrenheit skála (angolszász országokban
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
1 Kémia műszakiaknak
1 Kémia műszakiaknak 2 Tartalomjegyzék Tartalomjegyzék.2 Bevezetés.6 I. Általános kémia 6 1. Az anyagmegmaradás törvényei..7 1.1. Az anyag fogalma..7 1.2. A tömegmegmaradás törványe 7 1.3. Az energia megmaradás
Reológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilárd, folyékony vagy
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
BME Energetika Tanszék
BME Energetika anszék A vastagon bekeretezett részt vizsgázó tölti ki!... név (a személyi igazolványban szerelő módon) HELYSZÁM: Hallgatói azonosító (NEPUN): AGOZA: N NK LK Műszaki Hőtan I. (ermodinamika)
Kémia Kutasi, Istvánné dr.
Kémia Kutasi, Istvánné dr. Kémia Kutasi, Istvánné dr. Publication date 2014 Szerzői jog 2014 Kutasi Istvánné dr. Tartalom Bevezetés... vi I. Általános kémia... 1 1. Az anyagmegmaradás törvényei... 4 1.
Szakmai fizika Gázos feladatok
Szakmai fizika Gázos feladatok 1. *Gázpalack kivezető csövére gumicsövet erősítünk, és a gumicső szabad végét víz alá nyomjuk. Mennyi a palackban a nyomás, ha a buborékolás 0,5 m mélyen szűnik meg és a
Munka, energia, teljesítmény
Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és
Munka, energia, teljesítmény
Munka, energia, teljesítmény Ha egy tárgyra, testre erő hat és annak hatására elmozdul, halad, megváltoztatja helyzetét, akkor az erő munkát végez. Ez a munka annál nagyobb, minél nagyobb az erő (F) és
ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o
ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:
A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos
Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy
Termodinamika és statisztikus mechanika. Nagy, Károly
Termodinamika és statisztikus mechanika Nagy, Károly Termodinamika és statisztikus mechanika Nagy, Károly Publication date 1991 Szerzői jog 1991 Dr. Nagy Károly Dr. Nagy Károly - tanszékvezető egyetemi
8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál
8. első energia, entalpia és entrópia ideális és nem ideális gázoknál első energia első energia (U): a vizsgált rendszer energiája, DE nem tartozik hozzá - a teljes rendszer együttes mozgásából adódó mozgási
f = n - F ELTE II. Fizikus 2005/2006 I. félév
ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek
Szabadentalpia nyomásfüggése
Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével
Általános Kémia Gyakorlat II. zárthelyi október 10. A1
2008. október 10. A1 Rendezze az alábbi egyenleteket! (5 2p) 3 H 3 PO 3 + 2 HNO 3 = 3 H 3 PO 4 + 2 NO + 1 H 2 O 2 MnO 4 + 5 H 2 O 2 + 6 H + = 2 Mn 2+ + 5 O 2 + 8 H 2 O 1 Hg + 4 HNO 3 = 1 Hg(NO 3 ) 2 +
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,
2011/2012 tavaszi félév 2. óra. Tananyag:
2011/2012 tavaszi félév 2. óra Tananyag: 2. Gázelegyek, gőztenzió Gázelegyek összetétele, térfogattört és móltört egyezősége Gázelegyek sűrűsége Relatív sűrűség Parciális nyomás és térfogat, Dalton-törvény,