Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből december 8. Hővezetés, hőterjedés sugárzással

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással"

Átírás

1 Fizika feladatok 014. december Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-3) Határozzuk meg egy 0 cm hosszú, 4 cm átmérőjű hengeres vörösréz rúdon időegység alatt átvezetett hőmennyiséget, ha a rúd két vége 0 0 C, ill. 0 0 C hőmérsékletű! Megoldás: 1.. Feladat: (HN 19A-5) Órai kidolgozásra 1. feladat Egy épület téglafalának mérete: 4 m 10 m és, a fal 15 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi hő áramlik át a falon 1 óra alatt, ha az átlagos belső hőmérséklet 0 0 C, a külső pedig 5 0 C? Megoldás: Jelölések: a fal felülete A = 4 m 10 m = 40 m ; a falvastagság d = 15 cm; az eltelt idő t = 1 óra = 4300 s; = 0 0 C és T = 5 0 C. A hőáram (a belső energia árama, itt most a fal teles felületére vett teljesítmény) a Fouriertörvény szerint A 1 óra alatt átáramlott hő I = P = λ T A. (1..1) d Q = λ T At = 1, J. (1..) d 1.3. Feladat: (HN 19B-33) Órai kidolgozásra. feladat Egy 3 cm élhosszúságú alumínium kockát lámpakorommal vontak be és így ideális hősugárzó lett. A kockát vákuumkamrába tették, amelynek falait 7 0 C-on tartották. Milyen teljesítményű legyen az a fűtőtest, amely annyi energiát ad a kockának, hogy hőmérséklete állandóan 90 0 C maradjon? Megoldás: Jelölések, adatok: a = 3 cm; T 0 = 7 0 C = 300 K; = 90 0 C = 363 K és σ = 5,

2 W/(m K 4 ). A stacionárius (időben állandó) állapot beálltakor a fűtőtest teljesítménye ahol a kocka felszíne A = 6a. Az adatok behelyettesítése után Ideális gázok állapotegyenlete P = σ(t 4 1 T 4 0 )A (1.3.1) P =,836W. (1.3.) 1.4. Feladat: (HN 0B-6) Órai kidolgozásra 3. feladat Egy tó fenekén, ahol a hőmérséklet 4 0 C, egy 0, cm átmérőjű légbuborék képződött. Ez 5 m-t emelkedik a felszínig, ahol a víz hőmérséklete 4 0 C. Határozzuk meg a gömb alakú buborék méretét, amint éppen eléri a víz felszínét, feltételezve, hogy a buborék belsejében lévő levegő mindig felveszi a környező víz hőmérsékletét! A légköri nyomás 10 5 Pa. Megoldás: Jelölések: = 4 0 C = 77 K; d 1 = 0, cm; h = 5 m; T = 4 0 C = 97 K; a külső légnyomás p k = 10 5 Pa; a víz sűrűsége ϱ = 1000 kg/m 3. Az egyesített gáztörvény szerint (p k + ϱgh) 4 3 ( d 1 ) 3 π ahonnan behelyettesítés után a buborék átmérője = p 4 k ( d 3 ) 3 π, (1.4.1) T d = 0,31cm. (1.4.) 1.5. Feladat: (HN 0A-9) A Nap belsejének hőmérséklete kb K. (a) Határozzuk meg egy proton átlagos kinetikus energiáját a Nap belsejében! (b) Határozzuk meg a proton négyzetes középsebességét! Megoldás: 1.6. Feladat: (HN 0B-36) Órai kidolgozásra 4. feladat Milyen hőmérsékleten egyenlő az oxigén atomok négyzetes középsebessége a Föld felszínéről való szökési sebességgel? Megoldás: Adatok: A Föld sugara R F = 6370 km, tömege M F = kg; gravitációs állandó γ = 6, Nm /kg ; egyetmes gázállandó R = 8,31 J/(mol K); az oxigén móltömege M = december 8.

3 g/mol. A v sz szökési sebesség a v nks négyzetes középsebesség v sz = γmf R F, (1.6.1) 3RT v nks = M. (1.6.) A kettő egyenlőségéből a fenti adatokkal a kérdéses hőmérséklet T = 8064K. (1.6.3) 1.7. Feladat: mól, atomos gázzal állandó nyomáson 747,9 J hőt közlünk. A hőmérséklete 10 0 C-kal változik. Hány szabadsági fokú a gáz? Megoldás: Az állandó nyomásom vett mólhő és a szabadsági fokok száma közötti összefüggés c p = f + R. (1.7.1) A közölt hő és a hőmérséklet változás között fenn áll, hogy Q = c p n T, (1.7.) amelyből behelyettesítés után az állandó nyomáson vett mólhőre c p = 9 adódik. Innen egyszerűen leolvasható, hogy a szabadsági fokok száma f = 7. (1.7.3) Megjegyzés: A szoba hőmérsékletű kétatomos gázok állandó nyomáson vett mólhője c p = 7, a szabadsági fokok száma f = 5, amelyek a transzlációs és rotációs mozgásokhoz kapcsolódnak. Magas hőmérsékleten ( 000 K) azonban a rezgéshez tartozó újabb szabadsági fok jelenik meg. A mérést ezen a hőmérsékleten végezték! 1.8. Feladat: (HN 1B-1) Órai kidolgozásra 5. feladat Mutassuk meg, hogy egyatomos ideális gázra az izotermikus kompresszió-modulus (K = V d p/dv ) egyenlő a nyomással! Megoldás: Az ideális gáz állapotegyenlete ahonnan a nyomás A d p/dv differenciálhányadost kiszámolva pv = nrt, (1.8.1) p(v ) = nr V. (1.8.) d p dv = nr V, (1.8.3) az izoterm kompresszió-modulus felhasználva az állapotegyenlet alakját K = V d p dv = V nr = p. (1.8.4) V 014. december 8. 3

4 Körfolyamatok ideális gázzal 1.9. Feladat: (HN 1C-) Órai kidolgozásra 6. feladat Kezdeti p 1, V 1, állapotjelzőkkel jellemzett egyatomos ideális gázzal a következő, három lépésből álló körfolyamatot végezzük: izotermikus expanzió V térfogatig, izobár kompresszió az eredeti térfogatig és izochor melegítés a kezdeti nyomás és hőmérséklet visszaállítására. (a) Ábrázoljuk a körfolyamatot a p V síkon! (b) Határozzuk meg a gáz mólszámát a megadott paraméterekkel, a gázállandóval és c v -vel kifejezve. (c) Határozzuk meg a T hőmérsékletet az izobár kompresszió végén a b) feladat eredményét felhasználva! (d) Írjuk fel mindhárom folyamatra a hőmérséklet változását a megfelelő változók függvényében. Megoldás: (a) (ábra) (b) Az ideális gáz állapotegyenletéből és a mólhőre érvényes összefüggéssel az n mólszám (c) A fenti egyenletből a T hőmérséklet pv = nrt (1.9.1) c v = 3 R (1.9.) n = 3p 1V 1 c v = 3p V c v = 3p V 1 c v T. (1.9.3) T = V 1 V. (1.9.4) (d) Az első folyamatban T = 0; a másodikban T = T = ( V 1 V 1) ; míg a harmadikban T = T = (1 V 1 V ) Feladat: (HN 1C-6) Órai kidolgozásra 7. feladat Két mól egyatomos gázzal a 1. ábrán látható abca körfolyamatot végezzük. A p V síkon mindhárom folyamat ábrája egyenes. Az a pontban a paraméterek: p 0, V 0, T 0. Az alábbi feladatokat oldjuk meg RT 0 függvényében. (a) Határozzuk meg egy teljes ciklus alatt végzett munkát. (b) Határozzuk meg a b c folyamat során történő hőcserét! A rendszer által felvett vagy leadott hőmennyiségről van-e szó? (c) Mekkora a belső energia teljes megváltozása egy ciklus során? 014. december 8. 4

5 BME Fizikai Intézet 1. ábra. Megoldás: Az egyesített gáztörvény alkalmazásával az egyes pontokban az állapothatározók: a: (p0,v0, T0 ) b: (p0,v0, T0 ) c: (p0, V0, T0 ) (a) A körfolyamatban végzett munka W = (p0 p0 )(V0 V0 ) = p0v0 = nrt0. (1.10.1) (b) A b c folyamat kezdo és végállapotában a ho mérséklet egyaránt T, de etto l a folyamat maga nem izotermikus. Ugyanakkor a belso energia megváltozása zérus. A gáz által végzett munka (1.10.) Wb c = (p0 + p0 )(V0 V0 ) = p0v0 = nrt0, s ennek megfelelo en a felvett ho 3 Qb c = nrt0. (1.10.3) Megjegyzés: E folyamat további diszkusszióra érdemes! (c) A körfolyamat egy teljes ciklusában a belso energia megváltozása zérus Feladat: (HN A-5) Órai kidolgozásra 8. feladat Egy ho ero gép, amelynek a Carnothatásfoka 30%, a 400 K ho mérsékletu ho tartályból vesz fel ho t. Határozzuk meg a hidegebb ho tartály ho mérsékletét! Megoldás: A Carnot-körfolyamat hatásfoka η= T1 T, T1 (1.11.1) ahol T1 a felso, T az alsó ho tartály ho mérséklete. Innen T = (1 η)t1 = 80K december 8. (1.11.) 5

6 BME Fizikai Intézet 1.1. Feladat: (HN B-3) Egyatomos ideális gázzal a. ábrán látható, a b c d a körfolyamatot végezzük. (a) Határozzuk meg a gáz által végzett eredo munkát p0 és V0 segítségével! (b) Határozzuk meg a körfolyamat hatásfokát! Megoldás:. ábra Feladat: A 3. ábra 1 kmol héliumgázon végzett körfolyamatot mutat. A BC ív izotermát jelöl, pa = 105 Pa, VA =,4 m3, pb = 105 Pa. a, Határozzuk meg TA, TB és VC értékeit! b, Számítsuk ki a körfolyamatban az AB és BC folyamatban végzett munkát! p B A C V 3. ábra. Megoldás: a, Az ideális gáz állapotegyenletét pava = nrta 014. december 8. (1.13.1) 6

7 felhasználva az A-beli hőmérséklet T A = p AV A nr A B-beli hőmérsékletet Gay-Lussac II. törvénye segítségével határozhatjuk meg. Innen Mivel a B C folyamat izoterm, így A C-beli térfogatot pl. Gay-Lussac I. törvénye segítségével határozhatjuk meg. Innen = 69,6K. (1.13.) p A T A = p B T B (1.13.3) T B = T A p B p A = 539,K. (1.13.4) T C = T B = 539,K. (1.13.5) V A T A = V C T C (1.13.6) V C = V A T C T A = 44,8m 3. (1.13.7) b, Mivel az A B folyamatban nincs térfogatváltozás, így a végzett munka is zérus: A B C izoterm folyamatban a gáz által végzett munka W = VC V B p(v )dv = VC V B W A B = 0. (1.13.8) nrt B V dv = nrt Bln V C = 3, J. (1.13.9) V B Feladat: 1 m 3, 0 C 0 -os 10 5 Pa nyomású héliumot állandó nyomáson addig hűtenek, amíg térfogata 0,75 m 3 nem lesz. Mennyi hőt kell ehhez elvonni? Megoldás: Jelölések: V 1 = 1 m 3, = 0 C 0 = 73 K, p 1 = p = 10 5 Pa és V = 0,75 m 3. Mivel egyatomos gázról van szó, az állandó nyomáson vett mólhő c p = 5 R. A folyamat állandó nyomáson történik, így V 1 = V, (1.14.1) T amelyből a hűtés utáni hőmérséklet T = V V 1 = 04,75K. (1.14.) 014. december 8. 7

8 A elvont hő kiszámolásához tudni kell, hány mól hélium van rendszerben. Ez a összefüggésből tehető meg, azaz pv = nrt (1.14.3) n = p 1V 1 R = 44,08mol. (1.14.4) Ezzel a közölt hő Q = c p n(t ) = 5 Rn(T ) = 6500J. (1.14.5) Megjegyzés: A negatív előjel arra utal, hogy hőelvonás történik Feladat: Tekintsünk n = mólnyi egyatomos ideális gázt: p 1 = 10 5 Pa, = 73 K. A gázzal Q = 6806 J hőt közlünk, állandó térfogat mellett, majd izoterm módon tágulni engedjük úgy, hogy a végső térfogat háromszorosa legyen a kiindulási térfogatnak. (a) Ábrázolja a folyamatot állapotdiagramon! (b) Mennyi lesz a hőközlés utáni hőmérséklet? (c) Mekkora lesz a nyomás a folyamat végén? (d) Mekkora az entrópia-változás a két folyamatban? Megoldás: (a) Az állapotdiagram a 4. ábrán látható. p 1 3 V 4. ábra. (b) A közölt hő és a hőmérséklet változás közötti összefüggés ahol c v = 3 nr. Innen a hőközlés utáni hőmérséklet T = Q c v n = Q = c v n T, (1.15.1) Q = 73K. (1.15.) 3nR 014. december 8. 8

9 Így az állandó nyomású hőközlés utáni hőmérséklet T = 546K. (1.15.3) (c) Az állandó térfogaton végzett hőközlés során kialakuló p nyomás a összefüggésből p 1 = p T (1.15.4) p = T p 1 = 10 5 Pa. (1.15.5) A térfogatváltozás miatti nyomás figyelembe véve, hogy V 1 = V és V 3 = 3V 1 a Boyle-Mariotte törvény szerint a p V = p 3 V 3 (1.15.6) összefüggésből (d) Az izochor (1 ) folyamatbeli S 1 entrópiaváltozás a S 1 = T p 3 = V V 3 p = 0, Pa. (1.15.7) dq T T = c v ndt T = 3 nrlnt = 17,8J/K. (1.15.8) Az izoterm ( 3) folyamatban a gáz belsőenergia változása, a felvett hő a tágulási munkára fordítódik. Így a felvett hő Q = V V 1 p(v )dv = V V 1 nrt V dv = nrt ln V V 1 = 9969,4J. (1.15.9) Az izoterm S entrópiaváltozás S = Q T = 18,6J/K. ( ) Az össz entrópiaváltozás: 35,54 J/K Feladat: 8 g tömegű, 5 l térfogatú, 7 0 C hőmérsékletű N gázt (M = 8 g) adiabatikusan kiterjesztünk 50 liter térfogatra. Mennyi hőmennyiséget kell ezen a térfogaton a gázzal közölni, hogy hőmérséklete újra 7 0 C legyen? Megoldás: Jelölések: m = 8 g, V 1 = 5 l, = 7 0 C = 300 K és V = 50 l. Mivel kétatomos szoba hőmérsékletű gázról van szó, ezért a mólhők c p = 7R, c v = 5R, így κ = c p/c v = 7. Elsőként az 5 adiabatikus folyamat végi hőmérsékletet határozzuk meg a TV κ 1 = const. összefüggés alapján V κ 1 1 = T V κ 1. (1.16.1) 014. december 8. 9

10 Behelyettesítés után T = 119,43K. (1.16.) A 8 g nitrogén gáz n = 0,857 molnak felel meg, így az állandó térfogaton történő visszamelegítéshez szükséges hő Q = c v n T = 5 Rn( T ) = 1071,8J. (1.16.3) Hőátadás Feladat: A c 1 fajhőjű, m 1 tömegű, hőmérsékletű pohárba c fajhőjű, m tömegű, T hőmérsékletű sört öntünk. (c 1 = 670 J/kgK, = 37 0 C, m 1 = 0,3 kg, c = 4000 J/kgK, T = 8 0 C, m = 0,5 kg) (a) Mekkora lesz a közös hőmérséklet? (b) Mennyi az átadott hő? (c) Mekkora a hőáram, ha t = 5 s alatt áll be az egyensúly? (d) Mekkora a teljes entrópia változás? Megoldás: (a) Az energiamegmaradás kifejezhető úgy, hogy a belső energiákat a T 0 = 0 0 C-hoz viszonyítjuk: c 1 m 1 + c m T = (c 1 m 1 + c m )T, (1.17.1) ahol T a közös hőmérséklet. Innen T = c 1m 1 + c m T c 1 m 1 + c m = 10,64 0 C = 83,64K. (1.17.) (b) Az átadott hő nagysága Q = c 1 m 1 ( T ) = 598J. (1.17.3) (c) A hőáram I = Q t = 1059,6W. (1.17.4) (d) A teljes entrópiaváltozás S = T dt T c 1 m 1 T + dt c m T T = c 1m 1 ln T + c m ln T (1.17.5) T = ( 17, ,70)J/K = 0,84J/K. (1.17.6) Emlékeztető: A hőmérsékletet kelvinben kell behelyettesíteni december 8. 10

11 1.18. Feladat: m = 1 kg tömegű, = 73 K hőmérsékletű vizet T = 300 K hőmérsékletű végtelen hőkapacitású hőtartállyal hozunk kapcsolatba. (A víz fajhője: 4,18 kj/kg.) Mennyi a rendszer teljes entrópiájának megváltozása? Megoldás: A víz és a hőtartály által cserélt hő nagysága Q = T c v mdt = c v m(t ), (1.18.1) amely pozitív a vízre, negatív a hőtartályra nézve. A víz S 1 entrópiaváltozása figyelembe véve, hogy a hőfelvétel a víz esetén nem állandó hőmérsékleten történik S 1 = T c v m dt T = c vmln T = 394,J/K. (1.18.) A hőtartály végtelen hőkapacitású, ami azt jelenti, hogy T hőmérséklete nem változik, azaz a hőtártály S entrópiaváltozása egyszerűen Azaz az össz entrópiaváltozás: 18 J/K. S = Q T = 376,J/K. (1.18.3) Feladat: (HN 3B-9) Igazoljuk, hogy n mól ideális gáz V 0 kezdeti térfogatról V 0 végső térfogatra való izobár tágulásakor a gáz entrópiaváltozása nr[κ/(κ 1)] ln! Megoldás: A folyamat során felvett elemi hő így az entrópiaváltozás S = dq T = dq = nc p dt, (1.19.1) T nc p dt T = nc pln T, (1.19.) ahol a kezdeti, T a végső hőmérséklet. Felhasználva Gay-Lussac I. törvényét T = V V k, (1.19.3) ahol most V 1 = V 0 a kezdeti, V = V 0 a végső térfogat, az entrópiaváltozás Most már csak az kell belátni, hogy Így az állítást igazoltuk. S = nc p ln V V 1 = nc p ln. (1.19.4) κ κ 1 R = c p c v c p c v 1 R = c p. (1.19.5) 014. december 8. 11

12 1.0. Feladat: (HN 3C-17) Igazoljuk, hogy az egyatomos ideális gáz izochor állapotváltozása során az entrópiaváltozás 3/ nr ln (p v /p k ), ahol p k a kezdeti, p v a végső nyomás! Megoldás: Mivel egyatomos gázról van szó, az állandó térfogaton vett mólhő c v = 3 R. (1.0.1) A folyamat során felvett elemi hő dq = nc v dt, (1.0.) így az entrópiaváltozás S = dq Tv T = 3 T k nrdt T = 3 nrlnt v, (1.0.3) T k ahol T k a kezdeti, T v a végső hőmérséklet. Felhasználva Gay-Lussac II. törvényét T v T k = p v p k, (1.0.4) az entrópiaváltozás S = 3 nrln p v p k. (1.0.5) 014. december 8. 1

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

Gáztörvények tesztek

Gáztörvények tesztek Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS MŰSZAKI TERMODINAMIKA. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS 207/8/2 MT0A Munkaidő: 90 perc NÉV:... NEPTUN KÓD: TEREM HELYSZÁM:... DÁTUM:... KÉPZÉS Energetikai mérnök BSc Gépészmérnök BSc JELÖLJE MEG

Részletesebben

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja: Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika

Részletesebben

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály

Részletesebben

3. Gyakorlat Áramlástani feladatok és megoldásuk

3. Gyakorlat Áramlástani feladatok és megoldásuk 3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

Hőtan 2. feladatok és megoldások

Hőtan 2. feladatok és megoldások Hőtan 2. feladatok és megoldások 1. Mekkora a hőmérséklete 60 g héliumnak, ha első energiája 45 kj? 2. A úvárok oxigénpalakjáan 4 kg 17 0C-os gáz van. Mekkora a első energiája? 3. A tanulók - a fizika

Részletesebben

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat,

2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás Hőáramlás (konvekció) olyan folyamat, 2. A hőátadás formái és törvényei 2. A hőátadás formái Tapasztalat: tűz, füst, meleg edény füle, napozás. 2.1. Hőáramlás (konvekció) olyan folyamat, amelynek során a hő a hordozóközeg áramlásával kerül

Részletesebben

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI MŰSZAKI HŐAN I.. ZÁRHELYI Név: Kézési kód: _N_ Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Both Ambrus Dr. Cséfalvay Edit Györke Gábor Lengyel Vivien Pa Máté Gábor

Részletesebben

ATMH A: / A: / A: / B: / B: / B: / HŐTAN ÍRÁSBELI RÉSZVIZSGA Munkaidő: 150 perc. Dátum: Tisztelt Vizsgázó! Pontszám: SZ: J.V.: i.j.v.

ATMH A: / A: / A: / B: / B: / B: / HŐTAN ÍRÁSBELI RÉSZVIZSGA Munkaidő: 150 perc. Dátum: Tisztelt Vizsgázó! Pontszám: SZ: J.V.: i.j.v. A vastagon bekeretezett részt a vizsgázó tölti ki!................................................... Név (a személyi igazolványban szereplő módon) Hallgatói azonosító: Dátum: Tisztelt Vizsgázó! N-AM0

Részletesebben

Klasszikus zika Termodinamika III.

Klasszikus zika Termodinamika III. Klasszikus zika Termodinamika III. Horváth András, SZE GIVK v 0.9 Oktatási célra szabadon terjeszthet 1 / 24 Ismétlés Mi is az az entrópia? Alapötlet Egy izotermán belül mozogva nincs bels energia változás.

Részletesebben

8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál

8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál 8. első energia, entalpia és entrópia ideális és nem ideális gázoknál első energia első energia (U): a vizsgált rendszer energiája, DE nem tartozik hozzá - a teljes rendszer együttes mozgásából adódó mozgási

Részletesebben

Szakmai fizika Gázos feladatok

Szakmai fizika Gázos feladatok Szakmai fizika Gázos feladatok 1. *Gázpalack kivezető csövére gumicsövet erősítünk, és a gumicső szabad végét víz alá nyomjuk. Mennyi a palackban a nyomás, ha a buborékolás 0,5 m mélyen szűnik meg és a

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 20.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 20. Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 20. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban

4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban Energetika 1 4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban Energodinamikai rendszerek vizsgálata során elsősorban gáznemű halmazállapot esetén lényeges az állapotváltozásokat megkülönböztetni.

Részletesebben

Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok

Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok Műszaki termodinamika I. 2. előadás 0. főtétel, 1. főtétel, termodinamikai potenciálok, folyamatok Az előadás anyaga pár napon belül pdf formában is elérhető: energia.bme.hu/~imreattila (nem kell elé www!)

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!

Részletesebben

Klasszikus zika Termodinamika I.

Klasszikus zika Termodinamika I. Klasszikus zika Termodinamika I. Horváth András, SZE GIVK v 0.95 Oktatási célra szabadon terjeszthet Horváth András, SZE GIVK Termodinamika I. v 0.95 1 / 35 A termodinamika tárgya A termodinamika a testek

Részletesebben

Termokémia. Termokémia Dia 1 /55

Termokémia. Termokémia Dia 1 /55 Termokémia 6-1 Terminológia 6-2 Hő 6-3 Reakcióhő, kalorimetria 6-4 Munka 6-5 A termodinamika első főtétele 6-6 Reakcióhő: U és H 6-7 H indirekt meghatározása: Hess-tétel 6-8 Standard képződési entalpia

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Műszaki hőtantermodinamika. Műszaki menedzsereknek. BME Energetikai Gépek és Rendszerek Tanszék

Műszaki hőtantermodinamika. Műszaki menedzsereknek. BME Energetikai Gépek és Rendszerek Tanszék Műszaki hőtantermodinamika Műszaki menedzsereknek Termodinamikai rendszer Meghatározott anyagmennyiség, agy/és Véges térrész. A termodinamikai rendszert a környezetétől tényleges agy elkézelt fal álasztja

Részletesebben

Termodinamika. Tóth Mónika

Termodinamika. Tóth Mónika Termodinamika Tóth Mónika 2012.11.26-27 monika.a.toth@aok.pte.hu Hőmérséklet Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. Különböző hőmérsékleti skálák.

Részletesebben

BEVEZETÉS A FIZIKÁBA II. GYAKORLAT

BEVEZETÉS A FIZIKÁBA II. GYAKORLAT BEVEZETÉS A FIZIKÁBA II. GYAKORLAT I. A HŐMÉRSÉKLET ÉS A HŐ 1. HŐTAN 1. H Fejezzük ki F-ban a következő C-ban értendő hőmérsékleteket: -210; -100; -40; -2; 10; 25; 37; 40,5; 210! Mennyi az első és az utolsó

Részletesebben

MŰSZAKI INFORMATIKA SZAK

MŰSZAKI INFORMATIKA SZAK FIZIKA II. KF 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007.DECEMBER 6. EHA kód:.név:.. g=9,81m/s 2 ; R=8,314J/kg mol; k=1,38 10-23 J/K; 1 atm=10 5 Pa M oxigén =32g/mol; M hélium = 4 g/mol; M nitrogén

Részletesebben

(2006. október) Megoldás:

(2006. október) Megoldás: 1. Állandó hőmérsékleten vízgőzt nyomunk össze. Egy adott ponton az edény alján víz kezd összegyűlni. A gőz nyomását az alábbi táblázat mutatja a térfogat függvényében. a)ábrázolja nyomás-térfogat grafikonon

Részletesebben

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel

Részletesebben

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés. SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi

Részletesebben

FELADATOK A DINAMIKUS METEOROLÓGIÁBÓL 1. A 2 m-es szinten végzett standard meteorológiai mérések szerint a Földön valaha mért második legmagasabb hőmérséklet 57,8 C. Ezt San Luis-ban (Mexikó) 1933 augusztus

Részletesebben

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Készítette: Hornich Gergely, 2013.12.31. Kiegészítette: Mosonyi Máté (10., 32. feladatok), 2015.01.21. (Talapa Viktor 2013.01.15.-i feladatgyűjteménye

Részletesebben

Bolyai Farkas Országos Fizika Tantárgyverseny 2014 Bolyai Farkas Elméleti Líceum Marosvásárhely X. Osztály. Válaszoljatok a következő kérdésekre:

Bolyai Farkas Országos Fizika Tantárgyverseny 2014 Bolyai Farkas Elméleti Líceum Marosvásárhely X. Osztály. Válaszoljatok a következő kérdésekre: Válaszoljatok a következő kérdésekre: 1. feladat Adott mennyiségű levegőt Q=1050 J hőközléssel p 0 =10 5 Pa állandó nyomáson melegítünk. A kezdeti térfogat V=2l. (γ=7/5). Mennyi a végső térfogat és a kezdeti

Részletesebben

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk. A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

MMK Auditori vizsga felkészítő előadás Hő és Áramlástan 2.

MMK Auditori vizsga felkészítő előadás Hő és Áramlástan 2. MMK Auditori vizsga felkészítő előadás 2017. Hő és Áramlástan 2. Alapvető fogalmak Hőátviteli jelenség fogalma: hőenergia áramlása magasabb hőmérsékletű helyről alacsonyabb hőmérsékletű hely felé. -instacioner-

Részletesebben

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia

Energia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás

Részletesebben

Hőtan. A hőmérséklet mérése. A hő fogalma. PDF created with pdffactory trial version www.pdffactory.com. Szubjektív

Hőtan. A hőmérséklet mérése. A hő fogalma. PDF created with pdffactory trial version www.pdffactory.com. Szubjektív Fizika illamosmérnököknek FIGYELMEZEÉS! Hőtan Az előadásázlat a Széchenyi Egyetem elsőées illamosmérnök hallgatóinak készült a Budó Ágoston Kísérleti Fizika I. felsőoktatási tanköny alapján, a tankönyben

Részletesebben

Fizika II. E-példatár

Fizika II. E-példatár Fizika II. (hőtan, termosztatika, termodinamika) E-példatár 5*8 internetes feladat Élelmiszermérnök, Biomérnök és Szőlész-borász mérnök hallgatóknak Dr. Firtha Ferenc Fizika-Automatika Tanszék 2013 egyes

Részletesebben

Kompresszorok energetikai és üzemviteli kérdései Czékmány György, Optimus Plus Kft.

Kompresszorok energetikai és üzemviteli kérdései Czékmány György, Optimus Plus Kft. Kompresszorok energetikai és üzemviteli kérdései Czékmány György, Optimus Plus Kft. 1. A kompresszorok termodinamikája Annak érdekében, hogy teljes egészében tisztázni tudjuk a kompresszorok energetikai

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

2011/2012 tavaszi félév 2. óra. Tananyag:

2011/2012 tavaszi félév 2. óra. Tananyag: 2011/2012 tavaszi félév 2. óra Tananyag: 2. Gázelegyek, gőztenzió Gázelegyek összetétele, térfogattört és móltört egyezősége Gázelegyek sűrűsége Relatív sűrűség Parciális nyomás és térfogat, Dalton-törvény,

Részletesebben

gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44)

gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44) Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát

Részletesebben

TestLine - Fizika hőjelenségek Minta feladatsor

TestLine - Fizika hőjelenségek Minta feladatsor 1. 2:29 Normál zt a hőmérsékletet, melyen a folyadék forrni kezd, forráspontnak nevezzük. Különböző anyagok forráspontja más és más. Minden folyadék minden hőmérsékleten párolog. párolgás gyorsabb, ha

Részletesebben

Termodinamika. Tóth Mónika

Termodinamika. Tóth Mónika Termodinamika Tóth Mónika 2015 monika.a.toth@aok.pte.hu Termodinamika Hő Mozgás TERMODINAMIKA a világ egy jól körülhatárolt részének a RENDSZERnek és a rendszer KÖRNYEZETének kölcsönhatásával és a rendszer

Részletesebben

Értékelési útmutató az emelt szint írásbeli feladatsorhoz

Értékelési útmutató az emelt szint írásbeli feladatsorhoz Értékelési útmutató az emelt szint írásbeli feladatsorhoz 1. C 1 pont 2. B 1 pont 3. D 1 pont 4. B 1 pont 5. C 1 pont 6. A 1 pont 7. B 1 pont 8. D 1 pont 9. A 1 pont 10. B 1 pont 11. B 1 pont 12. B 1 pont

Részletesebben

Műszaki hőtan I. ellenőrző kérdések

Műszaki hőtan I. ellenőrző kérdések Alapfogalmak, 0. főtétel Műszaki hőtan I. ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és zárt termodinamikai rendszer? A termodinamikai rendszer (TDR) az anyagi

Részletesebben

Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Kovács Viktória Barbara Laza Tamás Ván Péter. Hőközlés.

Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Kovács Viktória Barbara Laza Tamás Ván Péter. Hőközlés. Adja meg az Ön képzési kódját! N Név: Azonosító: Terem Helyszám: KF - MŰSZAKI HŐTAN II. 1. ZÁRTHELYI Jelölje meg (aláhúzással vagy keretezéssel) Gyakorlatvezetőjét! Bihari Péter Both Soma Farkas Patrik

Részletesebben

gáznál 16+16 = 32, CO 2 gáznál 1+1=2, O 2 gáznál 12+16+16= 44)

gáznál 16+16 = 32, CO 2 gáznál 1+1=2, O 2 gáznál 12+16+16= 44) Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát

Részletesebben

Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához

Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához Dr. Pósa Mihály Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához 1. Bevezetés Shillady Don professzor az Amerikai Kémiai Szövetség egyik tanácskozásán felhívta a figyelmet a

Részletesebben

BME Energetika Tanszék

BME Energetika Tanszék BME Energetika anszék A vastagon bekeretezett részt vizsgázó tölti ki!... név (a személyi igazolványban szerelő módon) HELYSZÁM: Hallgatói azonosító (NEPUN): AGOZA: N NK LK Műszaki Hőtan I. (ermodinamika)

Részletesebben

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg). Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok

Részletesebben

TERMODINAMIKA ÉS MOLEKULÁRIS FIZIKA

TERMODINAMIKA ÉS MOLEKULÁRIS FIZIKA PÉCSI TUDOMÁNYEGYETEM Természettudományi Kar Dr. Kotek László TERMODINAMIKA ÉS MOLEKULÁRIS FIZIKA Feladatgyűjtemény Pécs, 2005 Lektorálta: Dr. Hraskó Péter ELŐSZÓ A feladatgyűjtemény a Pécsi Tudományegyetem

Részletesebben

1. Termodinamika. 1.1. Az ideális gázok állapotváltozásai

1. Termodinamika. 1.1. Az ideális gázok állapotváltozásai . Termodinamika.. Az ideális gázok állapotváltozásai... Egy hengerben 000 cm3 térfogatú, atm nyomású, 7 oc hõmérsékletû levegõ van. Mekkora lesz a levegõ nyomása,ha hõmérsékletét állandó térfogaton -3

Részletesebben

Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika.

Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika. Hőmérséklet ermodinamika Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. óth Mónika 203 monika.a.toth@aok.pte.hu Különböző hőmérsékleti skálák. Kelvin skálájú

Részletesebben

Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia

Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története

Részletesebben

1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai

1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai 3.1. Ellenőrző kérdések 1. Mi a termodinamikai rendszer? Miben különbözik egymástól a nyitott és a zárt termodinamikai rendszer? Az anyagi valóság egy, általunk kiválasztott szempont vagy szempontrendszer

Részletesebben

II. fejezet Hőtan. Többet gőzzel, mint erővel...

II. fejezet Hőtan. Többet gőzzel, mint erővel... II fejezet Hőtan Többet gőzzel, mint erővel Hőtan 2 Hőmérsékleti skálák, hőtágulás Az egészséges ember testhőmérséklete 98,24 F Mekkora ez a hőmérséklet Celsius-fokban? Mekkora ez az érték az abszolút

Részletesebben

HŐTAN. Bevezetés, alapfogalmak

HŐTAN. Bevezetés, alapfogalmak HŐAN HŐAN... Bevezetés, alapfogalmak... A termodinamika első főtétele... Belső energia... Munkavégzés... Hőközlés, fajhő, kalorimetria... 3 A hőtan első főtétele... 4 Kinetikus gázelmélet és ideális gázok...

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű

Részletesebben

Feladatok gázokhoz. Elméleti kérdések

Feladatok gázokhoz. Elméleti kérdések Feladatok ázokhoz Elméleti kérdések 1. Ismertesd az ideális ázok modelljét! 2. Írd le az ideális ázok tulajdonsáait! 3. Mit nevezünk normálállapotnak? 4. Milyen tapasztalati tényeket használhatunk a hımérséklet

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ... Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár

Részletesebben

Mivel foglalkozik a hőtan?

Mivel foglalkozik a hőtan? Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:

Részletesebben

Hatvani István fizikaverseny Döntő. 1. kategória

Hatvani István fizikaverseny Döntő. 1. kategória 1. kategória 1.D.1. A villamosiparban a repülő drónok nagyon hasznosak, például üzemzavar esetén gyorsan és hatékonyan tudják felderíteni, hogy hol van probléma. Egy ilyen hibakereső drón felszállás után,

Részletesebben

Munka- és energiatermelés. Bányai István

Munka- és energiatermelés. Bányai István Munka- és energiatermelés Bányai István Joule tétele: adiabatikus munka A XIX. Sz. legnagyobb kihívása a munka Emberi erőforrás (rabszolga, szolga, bérmunkás, erkölcs?, ár!) Állati erőforrás (kevésbé erkölcssértő?,

Részletesebben

Fajhő mérése. (Mérési jegyzőkönyv) Hagymási Imre február 26. (hétfő délelőtti csoport)

Fajhő mérése. (Mérési jegyzőkönyv) Hagymási Imre február 26. (hétfő délelőtti csoport) Fajhő mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. február 26. (hétfő délelőtti csoport) 1. A mérés elméleti háttere Az anyag fajhőjének mérése legegyszerűbben a jólismert Q = cm T m (1) összefüggés

Részletesebben

Hőtan főtételei. (vázlat)

Hőtan főtételei. (vázlat) Hőtan főtételei (vázlat) 1. Belső energia oka, a hőtan I. főtétele. Ideális gázok belső energiája 3. Az ekvipartíció elve 4. Hőközlés és térfogati munka, a hőtan I. főtétele ideális gázokra 5. A hőtan

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 6.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 6. Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 6. A termodinamikai rendszer fogalma Termodinamika: Nagy részecskeszámú rendszerek fizikája. N A 10 23 db. A rendszer(r): A világ azon része, amely

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 27.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK március 27. Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. március 27. Az entrópia A természetben a mechanikai munka teljes egészében átalakítható hővé. Az elvont hő viszont nem alakítható át teljes egészében mechanikai

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor 1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a

Részletesebben

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék 2. (b) Hővezetési problémák Utolsó módosítás: 2013. február25. A változók szétválasztásának módszere (5) 1 Az Y(t)-re vonakozó megoldás: Így: A probléma megoldása n-re összegzés után: A peremfeltételeknek

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

HŐKÖZLÉS ZÁRTHELYI BMEGEENAMHT. Név: Azonosító: Helyszám: K -- Munkaidő: 90 perc I. 30 II. 40 III. 35 IV. 15 ÖSSZ.: Javította:

HŐKÖZLÉS ZÁRTHELYI BMEGEENAMHT. Név: Azonosító: Helyszám: K -- Munkaidő: 90 perc I. 30 II. 40 III. 35 IV. 15 ÖSSZ.: Javította: HŐKÖZLÉS ZÁRTHELYI dja meg az Ön képzési kódját! Név: zonosító: Helyszám: K -- BMEGEENMHT Munkaidő: 90 perc dolgozat megírásához szöveges adat tárolására nem alkalmas számológépen, a Segédleten, valamint

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben