Feladatok gázokhoz (10. évfolyam) Készítette: Porkoláb Tamás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Feladatok gázokhoz (10. évfolyam) Készítette: Porkoláb Tamás"

Átírás

1 Feladatok ázokhoz (10. évfolyam) Készítette: Porkoláb Tamás Elméleti kérdések 1. Ismertesd az ideális ázok modelljét! 2. Írd le az ideális ázok tulajdonsáait! 3. Mit nevezünk normálállapotnak? 4. Milyen tapasztalati tényeket használhatunk a hımérséklet mérésére? 5. Mitıl fü és mibıl származik az ideális áz nyomása? 6. Hoyan valósítható me az izoterm állapotváltozás? 7. Hoyan valósítható me az izochor állapotváltozás? 8. Hoyan valósítható me az izobár állapotváltozás? 9. Írd le a Boyle-Mariotte törvényt! 10. Írd le Gay-Lussac I. törvényét! 11. Írd le Gay-Lussac II. törvényét! 12. Mit mond ki a termodinamika I. fıtétele? 13. Mit mond ki az ekvipartíció tétele? 14. Mit mutat me az állandó térfoaton mért fajhı? 15. Mit mutat me az állandó nyomáson mért fajhı? 16. Mit értünk irreverzibilis folyamaton? Írj példákat is! Írd le a termodinamika II. fıtételét! 17. Írd le a termodinamika III. fıtételét! Mejeyzések: - Ahol súrlódásmentes duattyúval ellátott tartály szerepel, a áz nyomás nyilván mindi a külsı lényomással, 10 5 Pa-lal eyenlı, íy állandó értékő (izobár). - Ahol merev falú tartály szerepel, a áz térfoata állandó (izochor). - Ahol nem szerepel adatként a moláris töme, ott a füvénytáblázatból kell kikeresni. - Fiyelni kell arra is, hoy a áz hány atomos. A nemesázok kivételével az itt szereplı ázok kétatomosak. - A feladatok közt vannak olyanok, amelyekben az elsı kérdésre az állapoteyenlet seítséével adható me a válasz. - A 29. feladattól a 35. feladati eyszerően az állapoteyenlettel kell számolni. - A 36. feladattól a 41.-i az a) részben az állapoteyenlettel, a b) részben pedi a Boyle- Mariotte- vay a Gay-Lussac-törvényekkel kell számolni. Alapfeladatok 18. Hány mol normálállapotú Ar áz van 56,05 dm 3 térfoatban? Hány darab részecskét jelent ez? Mekkora a tömee? (Az Ar moláris tömee 40 ) mol

2 19. Hány mol normálállapotú Ne áz van 67,23 dm 3 térfoatban? Mekkora a tömee? (A Ne moláris tömee 20 ) mol 20. Ey tartályban 20 normálállapotú He áz van. Hány mol az anyamennyisée és mekkora a térfoata? (A Ne moláris tömee 4 ) mol A Boyle-Mariotte törvény 21. Ey tartályban 160 normálállapotú O 2 áz van. Hány mol ázról van szó és mekkora a térfoata? Mekkora lesz a nyomása, ha térfoatát állandó hımérsékleten 201,7 dm 3 -re növeljük? 22. Ey tartályban 10 mol normálállapotú O 2 áz van. Mekkora a térfoata? Mekkora lesz a nyomása, ha térfoatát állandó hımérsékleten 74,7 dm 3 -re csökkentjük? 23. Ey ideális áz nyomását állandó hımérsékleten kétszeresére növeljük, íy térfoata 20 dm 3 -rel csökken. Mennyi volt az eredeti térfoata? 24. Ey tartályban 140 normálállapotú N 2 áz van. Mekkora a térfoata? Mekkora lesz a nyomása, ha térfoatát állandó hımérsékleten 280,13 dm 3 -re növeljük? Gay-Lussac I. törvénye 25. Ey ideális áz hımérsékletét állandó nyomáson 20 C-ról 80 C-ra növeljük, miközben térfoata 120 dm 3 -rel menı. Mekkora volt az eredeti térfoata? 26. Ey ideális áz hımérséklete 20%-kal csökken állandó nyomáson, miközben térfoata 50 dm 3 -rel kisebb lesz. Mekkora volt az eredeti térfoata? 27. Ey tartályban 5 mol normálállapotú N 2 áz van. Mekkora a térfoata? Mekkora lesz a térfoata, ha hımérsékletét állandó nyomáson 300 C-ra növeljük? 28. Ey tartályban 160 normálállapotú O 2 áz van. Mekkora a térfoata? Mekkora lesz a hımérséklete, ha térfoatát állandó nyomáson 201,7 dm 3 -re növeljük? 29. Ey súrlódásmentes duattyúval ellátott tartályban hidroén van. Térfoata 50 dm 3, tömee 24. A külsı nyomás a lényomással azonos. a) Mekkora a hımérséklete? b) Mekkora lesz a hımérséklete, ha térfoatát150 dm 3 -rel menöveljük? 30. Ey lombik térfoata 1,5 dm 3. Hány cm leveı távozik belıle, ha hımérsékletét 20 ºC-ról 50 Cº-ra növeljük?

3 Gay-Lussac II. törvénye 31. Ey merev falú áztartályban a hımérséklet 2 részére csökken, miközben a nyomás Pa-lal csökken. Mekkora volt a áz eredeti nyomása? 32. Ey 40 dm 3 -es merev falú tartályban 57,7 oxién van 127 C hımérsékleten. a) Mekkora a áz nyomása? b) Mekkora lesz a nyomása, ha a hımérsékletet állandó értéken tartva kienedjük a áz 20%-át? 33. Ey bicikli kerekében 0 ºC-on 250 kpa a túlnyomás. Mekkora a túlnyomás 45 ºC-on? ,5 10 Pa nyomású, 60 dm 3 térfoatú He áz hımérséklete a 103 C. a) Mekkora a áz tömee? b) Mekkora lesz a hımérséklete, ha nyomását állandó térfoaton változtatjuk? 5 1,5 10 Pa-ra Az állapoteyenlet 35. Ey tartályban 196 N 2 áz van. Nyomása Pa, térfoata 80 dm 3. Mekkora a hımérséklete? (Az atomos nitroén moláris tömee 14 ) mol 36. Ey merev falú tartályban normálállapotú O 2 van, melynek tömee 256. Mekkora a áz térfoata? (Az atomos oxién áz moláris tömee 16 ). mol 37. Ey merev falú tartályban 6 dm 3 27 C hımérséklető nitroén van, melynek tömee 10,1. Mekkora a áz nyomása? (Az atomos nitroén áz moláris tömee 14 ). mol 38. Hány C a hımérséklete a Pa nyomású, 50 dm 3 térfoatú és 140 tömeő nitroén áznak? (Az atomos nitroén áz moláris tömee 14 ). mol 39. Ey súrlódásmentes duattyúval ellátott tartályban hidroén van. Térfoata 50 dm 3, tömee 24. Mekkora a hımérséklete? 40. Ey 30 dm 3 5 -es merev falú tartályban (V = áll.) 48 oxién van1,5 10 Pa. Mekkora a áz hımérséklete?

4 41. Ey merev falú tartályban 10 dm C-os He van, melynek tömee 20. Mekkora a áz nyomása? 42. Ey hıáteresztı falú tartályban 6 dm 3 300K hımérséklető nitroén van, melynek tömee 10,1. a) Mekkora a áz nyomása? b) Mekkora lesz a áz nyomása, ha térfoatát állandó hımérséklet mellett 4 dm 3 re csökkentjük? 43. Ey 40 dm 3 -es hıáteresztı falú tartályban 57,7 oxién van 127 C hımérsékleten. a) Mekkora a áz nyomása? b) Mekkora lesz a térfoata, ha nyomását állandó hımérséklet mellett 0, ra csökkentjük? 44. Ey súrlódásmentesen elmozdítható duattyúval elzárt tartályban 24 hidroén van. Térfoata 50 dm 3. a) Mekkora a áz hımérséklete? b) Mekkora lesz a térfoata, ha a áz hımérsékletét 300 K-re csökkentjük? 45. Ey súrlódásmentesen mozó duattyúval elzárt tartályban 30,8 250K hımérséklető oxién van. A külsı nyomás a lényomással eyenlı. a) Mekkora a áz térfoata? b) Mekkora lesz a hımérséklete, ha a áz térfoatát 35 dm 3 -re növeljük? 46. Ey 20 dm 3 -es merev falú tartályban 30,8 oxién van Pa nyomáson. a) Mekkora a áz hımérséklete? b) Mekkora lesz a nyomása, ha a hımérsékletet 227 C - ra csökkentjük? 47. Ey 30 dm 3 5 -es merev falú tartályban (V = áll.) 48 oxién van1,5 10 Pa. a) Mekkora a áz hımérséklete? b) Mekkora lesz a hımérséklete, ha nyomását 5 2,5 10 Pa - ra emeljük? Az eyesített áztörvény 1. Döntsd el, hoy az alábbi állítások közül melyek iazak és melyek hamisak! a) Ha ey áz térfoatát állandó hımérsékleten a néyszeresére növeljük, akkor nyomása is a néyszeresére nı b) Ha ey áz térfoatát állandó hımérsékleten a kétszeresére növeljük, akkor nyomása a felére csökken

5 c) Ha ey áz hımérsékletét állandó nyomás esetén háromszorosára növeljük, akkor térfoata a harmadrészére csökken d) Ha ey áz hımérsékletét állandó nyomás esetén másfélszeresére növeljük, akkor térfoata is másfélszeresére nı e) Ha ey áz hımérsékletét állandó térfoat esetén kétszeresére növeljük, akkor nyomása a felére csökken f) Ha ey áz hımérsékletét állandó térfoat esetén a harmadára csökkentjük, akkor nyomása is a harmadára csökken ) Ha ey áz részecskéinek felét állandó térfoat és hımérséklet mellett kienedjük a tartályból, akkor nyomása is a felére csökken h) Ha ey áz részecskéinek felét állandó nyomás és térfoat mellett kienedjük a tartályból, akkor hımérséklete is a felére csökken i) Ha ey áz részecskéinek felét állandó nyomás és hımérséklet mellett kienedjük a tartályból, akkor térfoata is a felére csökken 48. Ey ideális áz térfoatát 1,2-szeresére növeljük, miközben hımérséklete 40%-kal, nyomása pedi 1, Pa-lal csökken (a áz mennyisée változatlan marad). Mekkora volt eredetile a áz nyomása? 49. Ey merev falú tartályban 6 dm 3 27 C hımérséklető nitroén van, melynek tömee 10,1. Mekkora a áz nyomása? Mekkora lesz a hımérséklete, ha kienedjük a részecskék 60%- át és eközben nyomását Pa-lal menöveljük? (Az atomos nitroén áz moláris tömee 14 ). mol 50. Ey súrlódásmentesen elmozdítható duattyúval elzárt tartályban 24 hidroén van. Térfoata 50 dm 3. (A külsı nyomás a lényomással eyenlı.) a) Mekkora a áz hımérséklete? b) Mekkora lesz a hımérséklete, ha kienedjük a áz felét és közben térfoata a 2 3 részére csökken? 51. Ey ideális áz nyomását másfélszeresére növeljük, közben kienedjük a részecskék felét, íy térfoata 60 dm 3 -rel csökken állandó hımérséklet mellett. Mekkora volt a áz eredeti térfoata? 52. Ey áz nyomása 40%-kal csökken, miközben térfoata 40 dm 3 -rel, hımérséklete pedi háromszorosára menı (a részecskék száma változatlan marad). Mekkora volt a áz eredeti térfoata? 53. Hány C a hımérséklete a Pa nyomású, 50 dm 3 térfoatú és 140 tömeő nitroén áznak? Mekkora lesz a térfoata, ha állandó nyomáson kienedjük a áz 40 %-át és eközben a hımérsékletét 50 C-kal növeljük? (Az atomos nitroén áz moláris tömee 14 ). mol 54. Ey merev falú tartályban 10 dm C-os He van, melynek tömee 20.

6 a) Mekkora a áz nyomása? b) Mekkora lesz a hımérséklete, ha nyomása az 1,5-szeresére nı, miközben kienedjük a áz neyedét? 55. Ey súrlódásmentesen mozó duattyúval elzárt tartályban 30,8 250K hımérséklető oxién van. A külsı nyomás a lényomással eyenlı. a) Mekkora a áz térfoata? b) Mekkora lesz a áz hımérséklete, ha térfoatát az 5 -szorosára növeljük, miközben 3 kienedjük a áz 1 3 részét? Az I. fıtétel 56. Karikázd be az alábbi állítások közül az iazakat! a) Minél nayobb ey áz fajhıje, annál kevesebb hıt kell közölni vele, hoy 1 fokkal nıjön a hımérséklete b) Izobár állapotváltozás esetén az eyatomos ázzal közölt hı 40%-a munkavézésre fordítódik c) Izoterm állapotváltozás esetén a nyomás és a térfoat fordítottan arányos d) Adiabatikus állapotváltozás során nem változik a áz belsı eneriája e) Izoterm állapotváltozás esetén nincs hıközlés f) Az izobár mólhı csak attól fü, hoy hány atomos a áz ) Izochor állapotváltozás esetén a ázzal közölt hıbıl 2 eysé munkavézésre fordítódik h) Az izochor mólhı nayobb az izobár mólhınél i) Adiabatikus állapotváltozás során nincs munkavézés j) Izoterm állapotváltozás esetén nem változik a áz belsı eneriája k) Ha ey áz hımérsékletét 100 º C-ról 300 º C-ra növeljük, akkor eneriája a háromszorosára nı l) Ha ey áz hımérsékletét 546 º C-ról 273 º C-ra csökkentjük, akkor eneriája a felére csökken m) Ha ey áz hımérsékletét 273 K-rıl 273 º C-ra növeljük, akkor eneriája a kétszeresére nı n) Az ideális áz belsı eneriája csak a hımérsékletétıl fü, a áz mennyiséétıl nem o) Ha állandó hımérsékleten kienedjük a áz részecskéinek felét, eneriája változatlan marad p) Ha kienedjük a áz részecskéinek felét, és hımérsékletét a kétszeresére növeljük, akkor eneriája változatlan marad q) Állandó térfoaton vébemenı állapotváltozás során a áz belsı eneriája annyival nı, amennyi munkát vézünk a ázon r) Állandó térfoaton vébemenı állapotváltozás során a áz a vele közölt hı eészét munkavézésre fordítja s) Állandó térfoaton vébemenı állapotváltozás során a áz a vele közölt hı eészét belsı eneriájának növelésére fordítja

7 t) Állandó térfoaton vébemenı állapotváltozás során a áz a vele közölt hı ey részét belsı eneriájának növelésére fordítja, másik részét pedi munkavézésre Az izochor állapotváltozás eneretikája dm 3 térfoatú N 2 áz hımérséklete 327 C és nyomása 10 5 Pa. a) Hány mol áz vesz részt a folyamatban? b) Mekkora a tömee? c) Mekkora lesz a áz hımérséklete, ha a áz nyomását állandó térfoaton az ötszörösére növeljük? d) Mennyivel változott me a belsı eneriája? e) Mennyi hıt közöltünk a ázzal? f) Mekkora a munkavézés? ) Mekkora a áz fajhıje? He ázzal 22,44 kj hıt közlünk állandó 60 dm 3 térfoat mellett. A áz hımérséklete eredetile 180 K volt. a) Mennyivel változik me a hımérséklete? b) Mennyi lesz a hımérséklete? c) Mekkora lesz a áz nyomása? d) Mennyivel változik a belsı eneriája? e) Mennyi munkát véez a áz? 59. A rafikonon látható folyamatban N 2 áz vesz részt. Hımérséklete az A állapotban 200 K. a) Hány mol áz vesz részt a folyamatban? b) Mekkora a áz tömee? c) Mekkora a áz hımérséklete a B állapotban? d) Mekkora a belsı eneriaváltozása? e) Mennyi hıt közöltünk a ázzal? f) Mekkora a munkavézés? ) Mekkora a folyamat fajhıje? p ( ,5 B A 60. Az ábrán látható folyamatban N 2 áz vesz részt. Nyomása az A állapotban Pa. V (dm 3 ) A 15 V (dm 3 ) B a) Hány mól áz vesz részt a folyamatban? b) Mekkora a B állapotbeli nyomása? c) Mennyivel változott a belsı eneriája? d) Mennyi hıt közöltünk a ázzal? e) Mekkora a munkavézés? f) Mekkora a áz fajhıje? T (K)

8 Az izobár állapotváltozás eneretikája 61. Ey súrlódásmentesen mozó duattyúval ellátott tartályban 83 dm 3, 0,2 k aron van. Hımérséklete 127 C. A ázzal állandó nyomáson 70 kj hıt közlünk. (Moláris tömee 40 /mol) a) Mekkora a áz nyomása? b) Mennyivel változik a hımérséklete? c) Mennyi lesz a hımérséklete? d) Mekkora lesz a térfoata? e) Mekkora a munkavézés? f) Mennyivel nı a belsı eneriája? ) Mekkora a fajhıje? h) Mekkora lett a sőrősée? Ne áz belsı eneriáját 7,5 kj-lal menöveljük állandó 2, Pa nyomáson. Kezdeti térfoata 50 dm 3. a) Mekkora a kezdeti hımérséklete? b) Mennyivel változott a hımérséklete? c) Mekkora lett a térfoata? d) Mennyi hıt közöltünk a ázzal? e) Mennyi munkát vézett a áz? 63. Az ábrán 4,8 He állapotváltozását láthatjuk. p (10 5 Pa) a) Mekkora a áz hımérséklete az A ill. a B állapotban? b) Mekkora a munkavézés? c) Mennyi hıt közöltünk a ázzal? d) Mennyivel változott me a belsı eneriája? e) Mekkora a folyamat fajhıje? A B 10 50

9 64. 53,2 N 2 ázon a rafikonon látható állapotváltozást hajtjuk vére. p (10 5 Pa) a) Mekkora a hımérséklete az A állapotban? b) Mekkora a hımérséklete a B állapotban? c) Mennyivel változott a belsı eneriája? d) Mennyi hıt közöltünk a ázzal? e) Mekkora a munkavézés? f) Mekkora a folyamat fajhıje? 1 B 10 A V (dm 3 ) Az izoterm állapotváltozás eneretikája hidroént 20 kj munkával izotermikusan összenyomunk. Eközben a kezdeti Pa nyomása a másfélszeresére nı, térfoata pedi 60 dm3 -rel csökken. Mennyi volt az eredeti térfoata, és mennyi hıt ad le a folyamat közben a környezetének? 66. Izoterm állapotváltozás során 7 kj hıt közlünk ey ázzal. Eközben nyomása 1,4- szeresére nı, térfoata pedi 80 dm 3 -rel csökken. a) Mennyi volt az eredeti térfoata? b) Mennyi munkát vézett közben a áz? Az adabatikus állapotváltozás eneretikája 67. Adiabatikus állapotváltozás során 64 O 2 hımérsékletét -73 C-ról 327 C-ra növeljük. a) Mennyivel nı a áz belsı eneriája? b) Mennyi munkát véez a áz?

Feladatok gázokhoz. Elméleti kérdések

Feladatok gázokhoz. Elméleti kérdések Feladatok ázokhoz Elméleti kérdések 1. Ismertesd az ideális ázok modelljét! 2. Írd le az ideális ázok tulajdonsáait! 3. Mit nevezünk normálállapotnak? 4. Milyen tapasztalati tényeket használhatunk a hımérséklet

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g

Részletesebben

Szakmai fizika Gázos feladatok

Szakmai fizika Gázos feladatok Szakmai fizika Gázos feladatok 1. *Gázpalack kivezető csövére gumicsövet erősítünk, és a gumicső szabad végét víz alá nyomjuk. Mennyi a palackban a nyomás, ha a buborékolás 0,5 m mélyen szűnik meg és a

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

Gáztörvények tesztek

Gáztörvények tesztek Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal k t a t á si Hivatal 01/01. tanévi rszáos Középiskolai Tanulmányi Verseny Kémia I. kateória. orduló I. FELADATR Meoldások 1. A helyes válasz(ok) betűjele: B, D, E. A lenayobb elektromotoros erejű alvánelem

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

Gáztörvények. Alapfeladatok

Gáztörvények. Alapfeladatok Alapfeladatok Gáztörvények 1. Ha egy bizonyos mennyiségő tökéletes gázt izobár módon három fokkal felhevítünk, a térfogata 1%-al változik. Mekkora volt a gáz kezdeti hımérséklete. (27 C) 2. Egy ideális

Részletesebben

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

Gázok. Készítette: Porkoláb Tamás

Gázok. Készítette: Porkoláb Tamás Gázok Készítette: Porkoláb Taás. Alapfogalak. Az ideális gáz nyoása, a Boyle-Mariotte törvény 3. A hıérséklet 4. Gay-Lussac I. törvénye 5. Gay-Lussac II. törvénye 6. Az állapotegyenlet 7. Az ideális gáz

Részletesebben

g g g g mol mol mol mol g g g g mol mol mol mol g H 0 mol CH + 2O = CO + 2H O Kémia ZH Nappali Dátum: Név: Neptun-kód Aa Csoport

g g g g mol mol mol mol g g g g mol mol mol mol g H 0 mol CH + 2O = CO + 2H O Kémia ZH Nappali Dátum: Név: Neptun-kód Aa Csoport émia 2. 1. Z ppali Dátum: év: eptun-kód Aa soport 1. Ismertesse a víz kloridion tartalmának mérési elvét, a mérés menetét röviden! 2.1. Adott az alábbi reakcióeyenlet: l + A = Al+ l = 35, 5 A = 17, 9 =

Részletesebben

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS MŰSZAKI TERMODINAMIKA. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS 207/8/2 MT0A Munkaidő: 90 perc NÉV:... NEPTUN KÓD: TEREM HELYSZÁM:... DÁTUM:... KÉPZÉS Energetikai mérnök BSc Gépészmérnök BSc JELÖLJE MEG

Részletesebben

Műszaki hőtantermodinamika. Műszaki menedzsereknek. BME Energetikai Gépek és Rendszerek Tanszék

Műszaki hőtantermodinamika. Műszaki menedzsereknek. BME Energetikai Gépek és Rendszerek Tanszék Műszaki hőtantermodinamika Műszaki menedzsereknek Termodinamikai rendszer Meghatározott anyagmennyiség, agy/és Véges térrész. A termodinamikai rendszert a környezetétől tényleges agy elkézelt fal álasztja

Részletesebben

4. FELADATSOR (2015. 03. 02.)

4. FELADATSOR (2015. 03. 02.) 4 FELADATSOR (2015 03 02) 1 feladat Egy rendszer fundamentális egyenlete a következő:,,= a) Írd fel az egyenletet intenzív mennyiségekkel! b) Írd fel az egyenletet entrópiareperezentációban! c) Ellenőrizd,

Részletesebben

Vegyjel Mg O Vegyértékelektronok száma 55. 2 56. 6 Párosítatlan elektronok száma alapállapotban 57. 0 58. 2

Vegyjel Mg O Vegyértékelektronok száma 55. 2 56. 6 Párosítatlan elektronok száma alapállapotban 57. 0 58. 2 IV. ANYAGI HALMAZOK IV. 1 2. FELELETVÁLASZTÁSOS TESZTEK 0 1 2 4 5 6 7 8 9 0 B B D C B A B D A 1 C C C E C A B C C D 2 C E C D D E(D*) D C A A B D C A B A B D B C 4 B C A D A B A D D C 5 A D B A C *A D

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

f = n - F ELTE II. Fizikus 2005/2006 I. félév

f = n - F ELTE II. Fizikus 2005/2006 I. félév ELTE II. Fizikus 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 2. (X. 25) Gibbs féle fázisszabály (0-dik fıtétel alkalmazása) Intenzív állapotothatározók száma közötti összefüggés: A szabad intenzív paraméterek

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

2011/2012 tavaszi félév 2. óra. Tananyag:

2011/2012 tavaszi félév 2. óra. Tananyag: 2011/2012 tavaszi félév 2. óra Tananyag: 2. Gázelegyek, gőztenzió Gázelegyek összetétele, térfogattört és móltört egyezősége Gázelegyek sűrűsége Relatív sűrűség Parciális nyomás és térfogat, Dalton-törvény,

Részletesebben

Fizika 1X, pótzh (2010/11 őszi félév) Teszt

Fizika 1X, pótzh (2010/11 őszi félév) Teszt Fizika X, pótzh (00/ őszi félév) Teszt A sebessé abszolút értékének időszerinti interálja meadja az elmozdulást. H Az átlayorsulás a sebesséváltozás és az eltelt idő hányadosa. I 3 A harmonikus rező mozást

Részletesebben

FIZIKA. EMELT SZINTŐ ÍRÁSBELI VIZSGA április 19. Az írásbeli vizsga idıtartama: 240 perc. Max. p. Elért p. I. Feleletválasztós kérdések 30

FIZIKA. EMELT SZINTŐ ÍRÁSBELI VIZSGA április 19. Az írásbeli vizsga idıtartama: 240 perc. Max. p. Elért p. I. Feleletválasztós kérdések 30 FIZIKA EMELT SZINTŐ ÍRÁSBELI VIZSGA 2008. április 19. Az írásbeli vizsga idıtartama: 240 perc Max. p. Elért p. I. Feleletválasztós kérdések 30 II. Esszé: tartalom 18 II. Esszé: kifejtés módja 5 Összetett

Részletesebben

gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44)

gáznál = 32, CO 2 gáznál 1+1=2, O 2 gáznál = 44) Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát

Részletesebben

gáznál 16+16 = 32, CO 2 gáznál 1+1=2, O 2 gáznál 12+16+16= 44)

gáznál 16+16 = 32, CO 2 gáznál 1+1=2, O 2 gáznál 12+16+16= 44) Hőtan - gázok Gázok állapotjelzői A gázok állapotát néhány jellemző adatával adhatjuk meg. Ezek: Térfogat Valójában a tartály térfogata, amelyben van, mivel a gáz kitölti a rendelkezésére álló teret, tehát

Részletesebben

Klasszikus zika Termodinamika I.

Klasszikus zika Termodinamika I. Klasszikus zika Termodinamika I. Horváth András, SZE GIVK v 0.95 Oktatási célra szabadon terjeszthet Horváth András, SZE GIVK Termodinamika I. v 0.95 1 / 35 A termodinamika tárgya A termodinamika a testek

Részletesebben

FIZIKA. EMELT SZINTŐ ÍRÁSBELI VIZSGA április 19. Az írásbeli vizsga idıtartama: 240 perc. Max. p. Elért p. I. Feleletválasztós kérdések 30

FIZIKA. EMELT SZINTŐ ÍRÁSBELI VIZSGA április 19. Az írásbeli vizsga idıtartama: 240 perc. Max. p. Elért p. I. Feleletválasztós kérdések 30 FIZIKA EMELT SZINTŐ ÍRÁSBELI VIZSGA 2008. április 19. Az írásbeli vizsga idıtartama: 240 perc Max. p. Elért p. I. Feleletválasztós kérdések 30 II. Esszé: tartalom 18 II. Esszé: kifejtés módja 5 Összetett

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI MŰSZAKI HŐAN I.. ZÁRHELYI Név: Kézési kód: _N_ Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Both Ambrus Dr. Cséfalvay Edit Györke Gábor Lengyel Vivien Pa Máté Gábor

Részletesebben

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja: Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika

Részletesebben

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály

Részletesebben

Értékelési útmutató az emelt szint írásbeli feladatsorhoz I.

Értékelési útmutató az emelt szint írásbeli feladatsorhoz I. Értékelési útmutató az emelt szint írásbeli feladatsorhoz I. 1. C. B 3. B 4. C 5. B 6. A 7. D 8. D 9. A 10. C 11. C 1. A 13. C 14. B 15. B 16. B 17. D 18. B 19. C 0. B I. RÉSZ Összesen 0 pont 1 1. téma

Részletesebben

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Készítette: Hornich Gergely, 2013.12.31. Kiegészítette: Mosonyi Máté (10., 32. feladatok), 2015.01.21. (Talapa Viktor 2013.01.15.-i feladatgyűjteménye

Részletesebben

Készült az FVM Vidékfejlesztési, Képzési és Szaktanácsadási Intézet megbízásából

Készült az FVM Vidékfejlesztési, Képzési és Szaktanácsadási Intézet megbízásából Készült az FVM Vidékfejlesztési, Kézési és Szaktanácsadási Intézet mebízásából Kélettár Készült az Élelmiszer-iari mőeletek és folyamatok tankönyöz Összeállította: Pa ászló ektorálta: Koács Gáborné Budaest,

Részletesebben

Hőtan 2. feladatok és megoldások

Hőtan 2. feladatok és megoldások Hőtan 2. feladatok és megoldások 1. Mekkora a hőmérséklete 60 g héliumnak, ha első energiája 45 kj? 2. A úvárok oxigénpalakjáan 4 kg 17 0C-os gáz van. Mekkora a első energiája? 3. A tanulók - a fizika

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ izika középszint 1012 ÉRETTSÉGI VIZSGA 11. május 17. IZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐORRÁS MINISZTÉRIUM JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ELSŐ RÉSZ A feleletválasztós

Részletesebben

Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika.

Termodinamika. Gázok hőtágulása, gáztörvények. Az anyag gázállapota. Avogadro törvény Hőmérséklet. Tóth Mónika. Hőmérséklet ermodinamika Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. óth Mónika 203 monika.a.toth@aok.pte.hu Különböző hőmérsékleti skálák. Kelvin skálájú

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással Fizika feladatok 014. december 8. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-3) Határozzuk meg egy 0 cm hosszú, 4 cm átmérőjű hengeres vörösréz rúdon

Részletesebben

Mivel foglalkozik a hőtan?

Mivel foglalkozik a hőtan? Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Sugárszivattyú H 1. h 3. sugárszivattyú. Q 3 h 2. A sugárszivattyú hatásfoka a hasznos és a bevezetett hidraulikai teljesítmény hányadosa..

Sugárszivattyú H 1. h 3. sugárszivattyú. Q 3 h 2. A sugárszivattyú hatásfoka a hasznos és a bevezetett hidraulikai teljesítmény hányadosa.. Suárszivattyú suárszivattyúk működési elve ey nay eneriájú rimer folyadéksuár és ey kis eneriájú szekunder folyadéksuár imulzusseréje az ún. keverőtérben. rimer és szekunderköze lehet azonos vay eltérő

Részletesebben

Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia

Az energia bevezetése az iskolába. Készítette: Rimai Anasztázia Az energia bevezetése az iskolába Készítette: Rimai Anasztázia Bevezetés Fizika oktatása Energia probléma Termodinamika a tankönyvekben A termodinamikai fogalmak kialakulása Az energia fogalom története

Részletesebben

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg). Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok

Részletesebben

Tartalom Fogalmak Törvények Képletek Lexikon

Tartalom Fogalmak Törvények Képletek Lexikon Fizikakönyv ifj. Zátonyi Sándor, 016. Tartalom Foalmak Törvények Képletek Lexikon A szabadesés Az elejtett kulcs, a fáról lehulló alma vay a leejtett kavics füőleesen esik le. Ősszel a falevelek azonban

Részletesebben

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel

Részletesebben

VEGYIPARI ALAPISMERETEK

VEGYIPARI ALAPISMERETEK ÉRESÉGI VIZSG 010. május 14. VEGYIPRI LPISMEREEK KÖZÉPSZINŰ ÍRÁSBELI VIZSG 010. május 14. 8:00 z írásbeli vizsga időtartama: 180 perc Pótlapok száma isztázati Piszkozati OKÁSI ÉS KULURÁLIS MINISZÉRIUM

Részletesebben

Örvényszivattyú A feladat

Örvényszivattyú A feladat Örvényszivattyú A feladat 1. Adott n fordulatszám mellett határozza meg a gép jellemző fordulatszámát az optimális üzemi pont mérésből becsült értéke alapján: a) n = 1700/min b) n = 1800/min c) n = 1900/min

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

Carnot körfolyamat ideális gázzal:

Carnot körfolyamat ideális gázzal: ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 4. (XI. 8) Carnot körfolyamat ideális gázzal: p E körfoly. = 0 IV I III II V Q 1 + Q 2 + W I + W II + W III + W IV = 0 W I + W II + W III + W

Részletesebben

Értékelési útmutató az emelt szint írásbeli feladatsorhoz

Értékelési útmutató az emelt szint írásbeli feladatsorhoz Értékelési útmutató az emelt szint írásbeli feladatsorhoz 1. C 1 pont 2. B 1 pont 3. D 1 pont 4. B 1 pont 5. C 1 pont 6. A 1 pont 7. B 1 pont 8. D 1 pont 9. A 1 pont 10. B 1 pont 11. B 1 pont 12. B 1 pont

Részletesebben

Hatvány gyök logaritmus

Hatvány gyök logaritmus Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Hatvány gyök logaritmus Hatványozás azonosságai 1. Döntse el az alábbi állításról, hogy igaz-e vagy hamis! Ha két szám négyzete egyenl, akkor

Részletesebben

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 9. (XI. 23)

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 9. (XI. 23) ELE II. Fizikus, 005/006 I. félév KISÉRLEI FIZIKA Hıtan 9. (XI. 3) Kémiai reakciók Gázelegyek termodinamikája 1) Dalton törvény: Azonos hımérséklető, de eltérı anyagi minıségő és V térfogatú gázkeverékben

Részletesebben

Solow modell levezetések

Solow modell levezetések Solow modell levezetések Szabó-Bakos Eszter 25. 7. hét, Makroökonómia. Aranyszabály A azdasá működését az alábbi eyenletek határozzák me: = ak α t L α t C t = MP C S t = C t = ( MP C) = MP S I t = + (

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

Tantárgy kódja Meghirdetés féléve Kreditpont Összóraszám (elm+gyak) Előfeltétel (tantárgyi kód)

Tantárgy kódja Meghirdetés féléve Kreditpont Összóraszám (elm+gyak) Előfeltétel (tantárgyi kód) Tantárgy neve Tantárgy kódja Meghirdetés féléve Kreditpont Összóraszám (elm+gyak) Számonkérés módja Előfeltétel (tantárgyi kód) Tantárgyfelelős neve Tantárgyfelelős beosztása Fizikai alapismeretek Dr.

Részletesebben

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. I. rész: Hőtan. Készítette: Balázs Ádám

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. I. rész: Hőtan. Készítette: Balázs Ádám ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat Fizika 10. osztály I. rész: Hőtan Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék Hőtan.......................................

Részletesebben

TERMODINAMIKA ÉS MOLEKULÁRIS FIZIKA

TERMODINAMIKA ÉS MOLEKULÁRIS FIZIKA PÉCSI TUDOMÁNYEGYETEM Természettudományi Kar Dr. Kotek László TERMODINAMIKA ÉS MOLEKULÁRIS FIZIKA Feladatgyűjtemény Pécs, 2005 Lektorálta: Dr. Hraskó Péter ELŐSZÓ A feladatgyűjtemény a Pécsi Tudományegyetem

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika

Kérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!

Részletesebben

I. kérdéscsoport: Termodinamikai modellek

I. kérdéscsoport: Termodinamikai modellek I. kérdéscsoort: ermodinamikai modellek Értelmezze a termodinamikai rendszer és környezet fogalmát! Jellemezze a rendszert határoló falakat tulajdonságaik alaján! Mit értünk a köetkezı fogalmak alatt:

Részletesebben

Hőtan főtételei. (vázlat)

Hőtan főtételei. (vázlat) Hőtan főtételei (vázlat) 1. Belső energia oka, a hőtan I. főtétele. Ideális gázok belső energiája 3. Az ekvipartíció elve 4. Hőközlés és térfogati munka, a hőtan I. főtétele ideális gázokra 5. A hőtan

Részletesebben

21. A testek hőtágulása

21. A testek hőtágulása 21. A testek hőtágulása Végezzen el két kísérletet a hőtágulás jelenségének szemléltetésére a rendelkezésre álló eszközök felhasználásával! Magyarázza meg a kísérleteknél tapasztalt jelenséget! Soroljon

Részletesebben

Mekkora az égés utáni elegy térfogatszázalékos összetétele

Mekkora az égés utáni elegy térfogatszázalékos összetétele 1) PB-gázelegy levegőre 1 vonatkoztatott sűrűsége: 1,77. Hányszoros térfogatú levegőben égessük, ha 1.1. sztöchiometrikus mennyiségben adjuk a levegőt? 1.2. 100 % levegőfelesleget alkalmazunk? Mekkora

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

Termodinamika. Tóth Mónika

Termodinamika. Tóth Mónika Termodinamika Tóth Mónika 2015 monika.a.toth@aok.pte.hu Termodinamika Hő Mozgás TERMODINAMIKA a világ egy jól körülhatárolt részének a RENDSZERnek és a rendszer KÖRNYEZETének kölcsönhatásával és a rendszer

Részletesebben

(2006. október) Megoldás:

(2006. október) Megoldás: 1. Állandó hőmérsékleten vízgőzt nyomunk össze. Egy adott ponton az edény alján víz kezd összegyűlni. A gőz nyomását az alábbi táblázat mutatja a térfogat függvényében. a)ábrázolja nyomás-térfogat grafikonon

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal A 01/013. Tanévi FIZIKA Orszáos Középiskolai Tanulmányi Verseny első fordulójának feladatai és meoldásai I. kateória A dolozatok elkészítéséhez minden seédeszköz használható. Meoldandó

Részletesebben

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

ATMH A: / A: / A: / B: / B: / B: / HŐTAN ÍRÁSBELI RÉSZVIZSGA Munkaidő: 150 perc. Dátum: Tisztelt Vizsgázó! Pontszám: SZ: J.V.: i.j.v.

ATMH A: / A: / A: / B: / B: / B: / HŐTAN ÍRÁSBELI RÉSZVIZSGA Munkaidő: 150 perc. Dátum: Tisztelt Vizsgázó! Pontszám: SZ: J.V.: i.j.v. A vastagon bekeretezett részt a vizsgázó tölti ki!................................................... Név (a személyi igazolványban szereplő módon) Hallgatói azonosító: Dátum: Tisztelt Vizsgázó! N-AM0

Részletesebben

Általános Kémia GY, 2. tantermi gyakorlat

Általános Kémia GY, 2. tantermi gyakorlat Általános Kémia GY, 2. tantermi gyakorlat Sztöchiometriai számítások -titrálás: ld. : a 2. laborgyakorlat leírásánál Gáztörvények A kémhatás fogalma -ld.: a 2. laborgyakorlat leírásánál Honlap: http://harmatv.web.elte.hu

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

Kísérleti Fizikai Tanszék Előadó: K, G

Kísérleti Fizikai Tanszék Előadó: K, G Hőtan előadás Kurzuskód: FBN203E-1 Tantárgykód: FBN203E Tanszék: Kísérleti Fizikai Tanszék Előadó: Dr. Bohus János Kredit: 3 Félév: 2. Heti óraszám: 2+1 Előfeltétel: Mechanika Követelmény: K, G Ajánlott

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

1. Termodinamika. 1.1. Az ideális gázok állapotváltozásai

1. Termodinamika. 1.1. Az ideális gázok állapotváltozásai . Termodinamika.. Az ideális gázok állapotváltozásai... Egy hengerben 000 cm3 térfogatú, atm nyomású, 7 oc hõmérsékletû levegõ van. Mekkora lesz a levegõ nyomása,ha hõmérsékletét állandó térfogaton -3

Részletesebben

Termodinamika. Tóth Mónika

Termodinamika. Tóth Mónika Termodinamika Tóth Mónika 2012.11.26-27 monika.a.toth@aok.pte.hu Hőmérséklet Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. Különböző hőmérsékleti skálák.

Részletesebben

V. ANYAGSZERKEZET (Középszint)

V. ANYAGSZERKEZET (Középszint) V. ANYAGSZERKEZET (Középszint) V. 1 2. FELELETVÁLASZTÁSOS TESZTEK 0 1 2 4 5 6 7 8 9 0 B D D A C B B A B 1 C C A C C D C A C A 2 B B A D B D A V.. TÁBLÁZATKIEGÉSZÍTÉS Veyületek összehasonlítása A ekula

Részletesebben

Bevezetés és gyakorlati tanácsok Az első lépés minden tudomány elsajátítása felé az, hogy megértjük az alapjait, és megbízható tudást szerzünk

Bevezetés és gyakorlati tanácsok Az első lépés minden tudomány elsajátítása felé az, hogy megértjük az alapjait, és megbízható tudást szerzünk Bevezetés és gyakorlati tanácsok Az első lépés minden tudomány elsajátítása felé az, hogy megértjük az alapjait, és megbízható tudást szerzünk belőle. A következő az, hogy a megszerzett tudást elmélyítjük.

Részletesebben

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének

Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői, állapotváltozásai Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála:

Részletesebben

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADAT (1997)

KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADAT (1997) KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADAT (1997) Fiyelem! A kidolozáskor tömör és lényere törő mefoalmazásra törekedjék! A meadott tematikus sorrendet sziorúan tartsa be! Csak a vázlatpontokban folaltak

Részletesebben

5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet

5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet 5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet Ideális gáz Az ideális gáz állapotegyenlete pv=nrt empírikus állapotegyenlet, a Boyle-Mariotte (pv=konstans) és

Részletesebben

Földgáz égéshıjének és főtıértékének meghatározása

Földgáz égéshıjének és főtıértékének meghatározása BME Eneretikai Géek é Rendzerek Tanzék Földáz ééhıjének é főtıértékének ehatározáa 1. A éré célja A éré célja a tüzelétechnikai célra felhaználható ázok közül a laboratóriuban rendelkezére álló földáz

Részletesebben

FIZIKA 10. OSZTÁLY - HŐTAN

FIZIKA 10. OSZTÁLY - HŐTAN FIZIKA 10. OSZTÁLY - HŐTAN 1 Hőtani alapjelenségek Bevezető: Fizikai alapmennyiség: Hőmérséklet (jele: T, me.: C, K, F) Termikus kölcsönhatás során a két test hőmérséklete kiegyenlítődik. Hőmérsékleti

Részletesebben

1 Kémia műszakiaknak

1 Kémia műszakiaknak 1 Kémia műszakiaknak 2 Tartalomjegyzék Tartalomjegyzék.2 Bevezetés.6 I. Általános kémia 6 1. Az anyagmegmaradás törvényei..7 1.1. Az anyag fogalma..7 1.2. A tömegmegmaradás törványe 7 1.3. Az energia megmaradás

Részletesebben

Kémia Kutasi, Istvánné dr.

Kémia Kutasi, Istvánné dr. Kémia Kutasi, Istvánné dr. Kémia Kutasi, Istvánné dr. Publication date 2014 Szerzői jog 2014 Kutasi Istvánné dr. Tartalom Bevezetés... vi I. Általános kémia... 1 1. Az anyagmegmaradás törvényei... 4 1.

Részletesebben

II. fejezet Hőtan. Többet gőzzel, mint erővel...

II. fejezet Hőtan. Többet gőzzel, mint erővel... II fejezet Hőtan Többet gőzzel, mint erővel Hőtan 2 Hőmérsékleti skálák, hőtágulás Az egészséges ember testhőmérséklete 98,24 F Mekkora ez a hőmérséklet Celsius-fokban? Mekkora ez az érték az abszolút

Részletesebben

A feladatlap 5 6. o. Országos döntı Számkeresztrejtvény

A feladatlap 5 6. o. Országos döntı Számkeresztrejtvény A feladatlap 6. o. Országos döntı.. 8. Számkeresztrejtvény Azonosító: a b c Pontozás: A táblázatba beírt számokra - pont, összesen 7. A megoldásokra feladatonként pont, összesen 8 = 6 pont. Szerezhetı

Részletesebben

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató

Részletesebben