Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)"

Átírás

1 Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda óra Jegyzőkönyv elkészülte: 8-1-8

2

3 A mérés célja A feladat egy mágneses térerősségmérő eszköz hitelesítése és néhány anyag κ mágneses szuszceptibilitásának vizsgálata. Elvi alapok A szonda legfontosabb része egy kiterjed méretű ellenállás (félvezető), melyen áramot folyatunk. Feltételezve, hogy azon az áram egyenletesen folyik, az áram haladási irányára merőlegesen a szemközti oldalak közötti feszültségkülönbség. Ha mágneses térbe helyezzük a berendezést, akkor az előbbi két pont között feszültség lesz mérhető, mert a mágneses tér eltéríti az elektronokat. Különböző mágneses térerősségeket alkalmazva különböző feszültéseket kaphatunk, melyből felvehetünk egy U ( ) B kapcsolatot. Az ezt leíró függvény várt alakja U = C I B, ahol C a szondára jellemző állandó, értéke C = R / d, ahol d az ellenálláslapka vastagsága. A hitelesítéshez tudni kell, mekkora a mágneses térerősség nagysága adott feszültség esetén. Ennek méréséhez a mágneses indukció jelenségét használjuk fel. Egy ismert tekercset a mágneses tér közepébe helyezünk, majd onnan ismert mágneses térbe visszük. A mágneses fluxussűrűség változására feszültség jelenik meg a tekercs végpontjai között, ezt felintegrálva az elmozdítás kezdetétől a mozgás befejeztéig, megállapíthatjuk a mágneses térerősség nagyságát, ha ismerjük a tekercs paramétereit. Ha a vizsgált anyag egyik végét a mágneses tér középbe, másik végét az ismert nagyságú térbe tesszük úgy, hogy végpontonként a forgásszimmetrikus minta tengelye merőleges legyen a mágneses térre, akkor a mintára erő fog hatni, melynek nagysága F szuszceptibilitása és A a minta keresztmetszete. A mérési módszer ismertetése ( κ κ) AB, ahol κ a levegő μ = A mágneses teret egy elektromágnessel állítjuk elő, melyen átfolyó áram erősségének változtatásával szabályozhatjuk a mágneses tér nagyságát. A tekercs vasmagos, így néhány A segítségével hozzávetőleg 1T nagyságú mágneses teret hozhatunk létre. Áramgenerátort kapcsolunk a szondára, melynek értékét 5mA körül állítjuk be és a teljes mérés közben stabil értéken tartjuk. Gyakorlati okok miatt a szonda mágneses térben is mutat feszültséget, ezért ugyan a mágneses térrel nem egyenesen lesz arányos, de lineáris függvénye marad. Továbbá megemlítendő, hogy a hiszterézis miatt a tekercsen átfolyó áram mellett is lesz mágneses tér. A hitelesítéshez egy ismert tekercset teszünk a tér közepébe (az indukcióvektorokra merőlegesen), melyet homogénnek tekintünk azon a tartományon belül. Eközben egy mérőműszer (fluxmérő) van a két kivezetésére csatlakoztatva, mely időre felintegrálja (egy jelzett kezdőpillanattól) a mérhető feszültséget. A műszer mérési pontosságára való tekintettel a tekercset határozott, ámde nem túl gyors mozdulattal kivesszük a mágneses térből, feltételezve, hogy a tekercsek közötti térhez képest attól már fél méterre a mágnes tér. A fluxmérő 1. oldal Tüzes Dániel, mágneses szuszceptibilitás szuszceptibilitás mérése I H 1 Ω U H DVM U H szonda I H

4 kijelzett értékéből a tekercs pa ramétereinek ismeretében megadhatjuk a mágneses tér nagyságát az alábbi összefüggés szerint: B = ΔΦ / nf, ahol ΔΦ a fluxmérő kijelzett vég Udt értéke, n a tekercs me netszáma, n = 194, F pedig az átlagos menetfelület. Ezt az értéket megkapjuk az π F = r + r r + r összefüggésből, ahol r k a tekercs külső, r b a belső átmérő fele. Különböző ( ) 3 k k b b erősségű mágneses térben vizsgáljuk a szonda feszültségét és a mágneses tér nagyságát. Ismert átmérőjű, elég hosszú tárgyat lógatunk a mágneses térbe, a felfüggesztési pontja egy nagypontosságú mérleggel van összekötve. Különböző nagyságú mágneses tereket létrehozva vizsgáljuk a mérleggel a kijelzett érték változását, melyből meghatározhatjuk a testre ható erő megváltozását. Tekintsük a jobbra lévő ábrát a mérési elrendezéssel! Mérési eredmények, hibaszámítás a szonda hitelesítése A hitelesítés során mért értékeket az alábbi táblázatban foglalom össze. U ( mv ) vég Udt átlag ( Vs) B (T) 69,6 1,16 1,15 1,15 1,16 1,16 1,156,119 79,3 1,9 1,9 1,91 1,91 1,91 1,96,196 9,7,79,78,79,79,79,788,86 1,4 3,71 3,69 3,69 3,69 3,68 3,69, , 4,6 4,6 4,6 4,6 4,6 4,6,481 15,5 5,49 5,49 5,46 5,46 5,46 5,47, ,7 6,33 6,33 6,34 6,35 6,35 6,34,65 147,7 7,17 7,17 7,18 7,16 7,16 7,168, ,1 7,97 7,97 7,97 7,97 7,97 7,97, , 8,74 8,74 8,75 8,77 8,76 8,75,897 Az eredményeket grafikusan is ábrázoltam: B (T),9,8,7,6,5,4,3,,1 szonda hitelesítési görbéje y = 8,657x -,4394,5,6,7,8,9,1,11,1,13,14,15,16,17 U (V) Tüzes Dániel, mágneses szuszceptibilitás mérése. oldal

5 π A mágneses térerősség értékének meghatározásához szü kség volt F = ( rk + rkrb + rb ) értékének 3 meghatározására. Ehhez az alábbi adatokat használtam: r = ( 48, ± 1, ) m m, r = ( 35, ± 1, ) mm, így a tekercs teljes felülete F = F n = ( 95, 5± 7) cm, ahol n a menetszá m, n=194. A görbe meredekségéből meghatározható a szondára jellemző R / d állandó értéke. A s zondán I = ( 5, ± 5, ) ma áram folyt a mérés során. Az illesztett egyenes meredeksége 8657, ± 341, 5 R d d T R Ω. U = I B B = U = 8, 66 = 4, 8 Az d I R I R V d T k illesztett egyenes hibája meglepően kicsi, a legnagyobb hibát az áramerősség leolvasási pontatlansága és a fluxmérő felülete jelenti. Így a -állandója a műszernek R / d = ( 4, 8 ±, 4) Ω / T. A nagy hibának oka, hogy a fluxmérő drótjának vastagsága nem elhanyagolható a fluxmérő tekercshez képest, így a fluxmérő tekercs teljes méretében jelentős hiba lép fel. szuszceptibilitás mérése Különböző mintáknál feljegyeztem az U l l értékek hez tartozó tömegváltozás nagyságát: Ha 5-ös mi nta 1-es minta 3-as minta U mv ( B T ) m( mg ) F ( N ) U ( mv ) ( B T ) m( m g) F ( N ) U ( mv ) ( B T ) ( g) ( ) m m F ( N) 58,4,1, 58,,1, 58,3,1, 67,9,1,7,7 67,9,1 -, -, 67,8,1,6,6 79,,39 1,5,15 79,,39 -,4 -,4 79,,39 1,6,16 9,6,85,5,5 9,7,85 -,7 -,7 9,6,85 3,8,37 1,3,149 3,,31 1,5,15-1,3 -,13 1,5,15 6,6,65 114,1,31 3,7,36 114,3,33 -,3 -,1 114,3,33 1,1,99 15,7,33 3,9,38 15,9,33-3,1 -,9 15,8,331 14,, ,8,441 3,9,38 136,9,44-4, -,4 137,,443 18,9, ,8,567 3,3,3 147,9,568-5,6 -,55 148,,569 4,,35 158,,7,6,6 158,,7-7,1 -,7 158,3,71 9,1,85 168,,841 1,6,16 168,3,843-8,7 -,85 168,,841 34,7,34 178,6 1,,3,3 179, 1,9-1,9 -,17 177,8,989 4,4, ,5 1,134 -,9 -,9 186,6 1,136-1,4 -,1 186,7 1,137 46,, , 1,85 -,3 -,3 195,1 1,86-14,1 -, ,1 1,86 51,8,58,9 1,433-3,4 -,33,9 1,433-15,6 -,153,9 1,433 57,7,566 ( κ κ) AB A mérési eredmények alapján számolhatu nk mágneses szuszceptibilitást a F = k éplet μ alapján. Ehhez kell ismerni a minták keresztmetszetét. Henger alapú minták esetén elegendő az átmérő ismerete is. Minden minta átmérőjét 5 helyen mértem meg, ezek: anyag átmé rő (mm) átmé rő (mm) átmérő (mm) átmérő (mm) átmérő (mm) átla g (mm) ( A mm) 5-ös 7,93 8, 7,98 8,3 8, 7,99 5, 16 ±, 5 1-es 6,95 6,99 6,96 6,96 6,97 6,966 38, 11±, ± 3-as 8,1 8,1 8,1 8,1 8,1 8,1,, b 3. oldal Tüzes Dániel, mágneses szuszceptibilitás szuszceptibilitás mérése

6 7,E-4 6,E-4 5,E-4 4,E-4 3,E-4,E-4 1,E-4 Szuszceptibilitás mérése y = 3,9994E-4x 5-ös minta 1-es minta 3-as minta,e+,,1,,3,4,5,6,7,8,9 1, 1,1 1, 1,3 1,4 1,5 1,6-1,E-4 y = -1,77E-4x -,E-4 Az 1-es és 3-as mintára egyenest lehetett illeszteni, melynek meredekségét az ábrán feltüntettem. κ κ Az előző képletből adódóan A a meredekség, így κ értékeire kapjuk, hogy μ 6 5 κ 1 = ( 6, 73±, 6) 1 és κ 3 = ( 3, ±, ). A hibáka t a minták felületméréséből, a mérleg és az 6 illesztés hibájából számoltam. Az egyenesillesztés hibája Δm 1 =± 81, ill Δm 3 = 411, Az 5-ös minta szuszceptibilitását ilyen módszerrel nem lehet meghatározni, mert értéke függ a mágneses térerősség nagyságától. Szabad szemmel egyébként látható volt, hogy míg valószínűleg az 1- es minta réz, a 3-as alumínium, addig az 1-es valamilyen ötvözet. A jelenség egy lehetséges magyarázata a következő. Az ötvözet nagymennyiségben tartalmaz rezet és kismennyiségben ferromágneses anyagot. A mágneses tér kicsiny növelésére ez utóbbi érzékenyebb, így hatása jobban érvényesül, ezért az kezdeti κ >. Azonban a kis koncentráció miatt hamar telítődik a mágneses tere a ferromágneses anyagnak, így tovább nem tud hatást kifejteni. A növekvő térerősségben a réz mind jobban érvényesíti hatását, hisz még nem telítődött. Kellő nagyságú tér alkalmazása esetén így akár negatív κ is elérhető. A telítődés jelenségét kicsiben a 3-as mintában (alumínium) is észrevehetjük. Melléklet Az elméleti levezetéseket megtaláljuk a következő műben: Havancsák Károly: Mérések a klasszikus fizika laboratóriumban, ELTE Eötvös Kiadó, Budapest, 3. 6 Tüzes Dániel, mágneses szuszceptibilitás mérése 4. oldal

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása

Részletesebben

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 7. Mágneses szuszceptibilitás mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 22. Leadás dátuma: 2008. 11. 05. 1 1. A mérési összeállítás A mérési összeállítás sematikus ábrája

Részletesebben

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3) Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptbltás mérése PÁPICS PÉTER ISTVÁN csllagász, 3. évfolyam 5.9.. Beadva: 5.9.9. 1. A -ES MÉRHELYEN MÉRTEM. Elször a Hall-szondát kellett htelesítenem. Ehhez RI H -t konstans (bár a mérés

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése 2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának

Részletesebben

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv (-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc. Mérés dátuma: 28... Leadás dátuma: 28.. 8. . Mérések ismertetése A Peltier-elemek az. ábrán látható módon vannak elhelyezve

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

Elektromágneses indukció kísérleti vizsgálata

Elektromágneses indukció kísérleti vizsgálata A kísérlet célkitűzései: Kísérleti úton tapasztalja meg a diák, hogy mi a különbség a mozgási és a nyugalmi indukció között, ill. milyen tényezőktől függ az indukált feszültség nagysága. Eszközszükséglet:

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely)

(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) (III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) Mérést végezte: Szalontai Gábor Mérőtárs neve: Nagy Dániel Mérés időpontja: 2012.11.22. Bevezető A hétköznapi és kézzelfogható

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Mag-mágneses rezonancia

Mag-mágneses rezonancia Mag-mágneses rezonancia jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csorba Ottó Mérés dátuma: 2010. március 25. Leadás dátuma: 2010. április 7. Mérés célja A labormérés célja a mag-mágneses

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves

Részletesebben

1. Gauss-eloszlás, természetes szórás

1. Gauss-eloszlás, természetes szórás 1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

19. A fényelektromos jelenségek vizsgálata

19. A fényelektromos jelenségek vizsgálata 19. A fényelektromos jelenségek vizsgálata PÁPICS PÉTER ISTVÁN csillagász, 3. évfolyam Mérőpár: Balázs Miklós 2006.04.19. Beadva: 2006.05.15. Értékelés: A MÉRÉS LEÍRÁSA Fontos megállapítás, hogy a fénysugárzásban

Részletesebben

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv (-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése Rugalmas állandók mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/30/2011 Beadás ideje: 12/07/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

Szupravezető alapjelenségek

Szupravezető alapjelenségek Szupravezető alapjelenségek A méréseket összeállította és az útmutatót írta: Balázs Zoltán 1. Meissner effektus bemutatása: Mérési összeállítás: 1. A csipesszel helyezze a polisztirol hab csészébe a szupravezető

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

Kompenzációs kör vizsgálata. LabVIEW 7.1 4. előadás

Kompenzációs kör vizsgálata. LabVIEW 7.1 4. előadás Kompenzációs kör vizsgálata LabVIEW 7.1 4. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-4/1 Mágneses hiszterézis mérése előírt kimeneti jel mellett DAQ Rn Un etalon ellenállás etalon ellenállás

Részletesebben

Világítástechnikai mérés

Világítástechnikai mérés 1. gyakorlat Világítástechnikai mérés A gyakorlat során a hallgatók 3 mérési feladatot végeznek el: 1. Fotometriai távolságtörvény érvényességének vizsgálata Mérés célja: A fotometriai távolságtörvény

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Fázisátalakulások vizsgálata Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/12/2011 Beadás ideje: 10/19/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:

Részletesebben

Jelgenerálás virtuális eszközökkel. LabVIEW 7.1

Jelgenerálás virtuális eszközökkel. LabVIEW 7.1 Jelgenerálás virtuális eszközökkel (mágneses hiszterézis mérése) LabVIEW 7.1 3. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-3/1 Folytonos idejű jelek diszkrét idejű mérése A mintavételezési

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)

Részletesebben

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével

Részletesebben

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II.

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II. Oktatási Hivatal A 8/9. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja FIZIKÁBÓL II. kategóriában Feladat a Fizika Országos Középiskolai Tanulmányi Verseny harmadik fordulójára.

Részletesebben

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

Mágneses indukcióvektor begyakorló házi feladatok

Mágneses indukcióvektor begyakorló házi feladatok Mágneses indukcióvektor begyakorló házi feladatok 1. Egy vezető keret (lapos tekercs) területe 10 cm 2 ; benne 8A erősségű áram folyik, a menetek száma 20. A keretre ható legnagyobb forgatónyomaték 0,005

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel

A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina

Részletesebben

Országos Szakiskolai Közismereti Tanulmányi Verseny 2008/2009 MATEMATIKA FIZIKA

Országos Szakiskolai Közismereti Tanulmányi Verseny 2008/2009 MATEMATIKA FIZIKA Országos Szakiskolai Közismereti Tanulmányi Verseny 2008/2009 MATEMATIKA FIZIKA III. (országos) forduló 2009. április 17. Kecskeméti Humán Középiskola, Szakiskola és Kollégium Széchenyi István Idegenforgalmi

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz Villamos mérések Analóg (mutatós) műszerek Készítette: Füvesi Viktor doktorandusz rodalom UrayVilmos Dr. Szabó Szilárd: Elektrotechnika o.61-79 1 Alapfogalmak Mutatós műszerek Legegyszerűbbek Közvetlenül

Részletesebben

3. Mesterséges izom:

3. Mesterséges izom: 3. Mesterséges izom: Erősíts polimer horgászzsinórt egy elektromos fúróra, majd kezdd el feltekerni a megfeszített zsinórt. Egy idő után a zsinóron rugó-szerű elrendezésben feszes spirálok képződnek. Hő

Részletesebben

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata. El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Részletesebben

Elektrotechnika 9. évfolyam

Elektrotechnika 9. évfolyam Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

Fizika Vetélkedő 8 oszt. 2013

Fizika Vetélkedő 8 oszt. 2013 Fizika Vetélkedő 8 oszt. 2013 Osztályz«grade» Tárgy:«subject» at: Dátum:«date» 1 Hány proton elektromos töltése egyenlő nagyságú 6 elektron töltésével 2 Melyik állítás fogadható el az alábbiak közül? A

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 5. Fajhő mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 08. Leadás dátuma: 2008. 10. 15. 1 1. A mérési összeállítás A mérés során a 6-os számú minta fajhőjét akarjuk meghatározni.

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

MÁGNESESSÉG. Türmer Kata

MÁGNESESSÉG. Türmer Kata MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak

Részletesebben

Jegyzőkönyv. mikroszkóp vizsgálatáról 8

Jegyzőkönyv. mikroszkóp vizsgálatáról 8 Jegyzőkönyv a mikroszkóp vizsgálatáról 8 Készítette: Tüzes Dániel Mérés ideje: 008 0 08, szerda 4 8 óra Jegyzőkönyv elkészülte: 008 0 5 mérés célja feladat egy mikroszkópon lévő lencsék jellemzőinek meghatározása,

Részletesebben

SCHWARTZ 2012 Emlékverseny

SCHWARTZ 2012 Emlékverseny SCHWARTZ 2012 Emlékverseny A TRIÓDA díjra javasolt feladat ADY Endre Líceum, Nagyvárad, Románia 2012. november 10. Befejezetlen kísérlet egy fecskendővel és egy CNC hőmérővel A kísérleti berendezés. Egy

Részletesebben

Fényhullámhossz és diszperzió mérése

Fényhullámhossz és diszperzió mérése Fényhullámhossz és diszperzió mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/09/011 Beadás ideje: 11/16/011 1 1. A mérés rövid leírása

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási

Részletesebben

Transzformátorok tervezése

Transzformátorok tervezése Transzformátorok tervezése Többféle céllal használhatunk transzformátorokat, pl. a hálózati feszültség csökken-tésére, invertereknél a feszültség növelésére, ellenállás illesztésre, mérőműszerek méréshatárának

Részletesebben

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje:

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje: Fajhő mérése Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: 206. 0. 20. egyzőkönyv leadásának ideje: 206.. 0. Bevezetés Mérésem során az -es számú minta fajhőjét kellett megmérnem.

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009.04.27. A mérés száma és címe: 12, Folyadékáramlás 2D-ben, Kármán örvényút Értékelés: A beadás dátuma: A mérést végezte: Meszéna Balázs, Tüzes Dániel

Részletesebben

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata

Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata Ferromágneses anyagok mikrohullámú tulajdonságainak vizsgálata Lutz András Gábor Kutatási beszámoló 2015, Budapest Feladat A mikrohullámú non reciprok eszközök paramétereit döntően meghatározzák a bennük

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben