7. Mágneses szuszceptibilitás mérése

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "7. Mágneses szuszceptibilitás mérése"

Átírás

1 7. Mágneses szuszceptbltás mérése PÁPICS PÉTER ISTVÁN csllagász, 3. évfolyam Beadva:

2 1. A -ES MÉRHELYEN MÉRTEM. Elször a Hall-szondát kellett htelesítenem. Ehhez RI H -t konstans (bár a mérés végére pár tzed mv eltérés mutatkozott, melyet a laborvezet jóváhagyása mellett a számolás során elhanyagoltam) 5mV =,5V értéken tartottam, és a DC tápegységen az áramhatároló gombbal változtattam,5a lépésekben az áramersséget. A mérés során nyert adatam: I [A] U H [V] [Vs] B [T],17,8,8776,5,343,1, ,56,1,6711 1,5,71,34,31658,899,45,416576,5,187,56,544 3,16,6, ,5,146,69, ,157,769,79888 Megjegyezném, hogy az adatok leolvasás hbája U H [V] esetén ±,1mV míg a [Vs] esetén,1mvs volt. 7.1.: a htelestés görbe

3 B számításához a B = Φ nf képletet használtam, ahol F az átlagos menetfelület, és a következ képletbl adódk: F = π ( rk + rk rb + rb ) ahol a -es mágnesre vonatkozó 3 adatok: n = 194 r k =, 48m r b =, 313m ; mndkét esetben ±,5m hbával, am jelen esetben elhanyagolható; a képletben szerepl egyéb tagoktól ugyans nagyobb hba származk. A htelesítés görbe (7.1. ábra) egyenletét a GNUPlot programmal már az otthon számítások során határoztam meg, az llesztések matematka leírásához a továbbakban s ezt a programot fogom használn, a következ parancssorokkal: gnuplot> f(x)=(m*x)+ b gnuplot> FIT_LIMIT = 1e-6 gnuplot> ft f(x) 'meres.txt' usng 5:6 va m, b Itt a görbe (a továbbakban egyenes) meredeksége: m = (5,587±,5) T/V Míg tengelymetszete: b = (-,865±,5) T Azaz a htelesítés egyenes egyenlete: B[T] = (5,587[T/V] U H [V])-,865[T] A továbbakban anyagmnták szuszceptbltását kellett meghatározn. A. különböz anyagú rudakat a mérlegre akasztva mértem állandó RI H =,5V mellett, hogy mekkora a tömegnövekedés lletve az I áramersség növelésével fellép U H érték. Egy damágneses és két paramágneses mntát mértem végg. 19. MINTA (RÉZ) A mérés során nyert adatam: I [A] U H [V] F/g [kg] B [T] B [T ] F [N],17,,84795,7189,,5,346 -,4,1681, ,394 1,54 -,9,6588, ,889 1,5,717 -,17,314879, ,16677,91 -,3,41917, ,943,5,198 -,46,56956, ,4516 3,173 -,65,6475, , ,5,1436 -,84,715793, ,844 4,1596 -,16,85185, ,13986 Itt a 3. oszlopból a 6. oszlop adatat az F = m g képlet alapján g = 9,81 m s fgyelembevételével nyertem. A B értékét az 1. pont végeredményének felhasználásával kaptam. Ez után ábrázoltam az ert az ndukcó négyzetének függvényében (7.. ábra). 3

4 7..: a 19-es mnta Itt az egyenes meredeksége: m = (-,159±,1) N/T Míg tengelymetszete: b = (-,13±,3) N A tovább számoláshoz a mnta átmérje csavarmkrométerrel (±,5m): d [m] d [m] (d ) [m ],86,8,674,84,6,3844,793 -,48,34,79 -,58,3364,794 -,38,1444 Itt az átmérk átlaga =,7978m (ez lesz a d ). Valamnt emprkus szórása a következ módon adódk: d = d d. Az átlag 4

5 5 ( d ) = 1 S = =, 973m am nagyobb hba a leolvasás hbánál, tehát a d 5 4 továbbakban ezt kell használn: d = (,798 ±, 3)m Az átmérbl így a sugár: r = (,399 ±, )m A keresztmetszetre adódó hba: A r = =, A r A = = r π,514469m és felhasználva az elz képletet: A =, , =,5699 Így végül: (,5,3) m A = ± A szuszceptbltás kszámításához a leveg szuszceptbltása vákuum mágneses permeábltása µ = 4π 1 Vs Am = 3,77 1, míg a µ m 6 = + =, A Ehhez a hba: = m A + = 6, m A +, = 1, Ambl végül a szuszceptbltás: = 7, ± 9, A megfelel tzedes jegyekre redukálva: =,76 ±,1 5

6 14. MINTA (ALUMINIUM) A mérés során nyert adatam: I [A] U H [V] F/g [kg] B [T] B [T ] F [N],168,, ,541931,,5,35,3,11164,113575,943 1,539,15,146393,467, ,5,75,34, ,114789,33354,915,6,44715,18379,68,5,115,97,538635,818161, ,181,137,691947,395886, ,5,1456,18,76967,584813, ,1596,5,85185,64833,75 Itt a 3. oszlopból a 6. oszlop adatat az F = m g képlet alapján g = 9,81 m s fgyelembevételével nyertem. A B értékét az 1. pont végeredményének felhasználásával kaptam. Ez után ábrázoltam az ert az ndukcó négyzetének függvényében (7.3. ábra). 6

7 Itt az egyenes meredeksége: m = (,349±,8) N/T Míg tengelymetszete: b = (-,8±,3) N A tovább számoláshoz a mnta átmérje csavarmkrométerrel (±,5m): d [m] d [m] (d ) [m ],773,75,565,77 -,5,65,77 -,5,65,77 -,5,65 Itt az átmérk átlaga =,775m (ez lesz a d ). Valamnt emprkus szórása a következ módon adódk: d = d d. Az átlag 4 ( d ) = 1 S = =, 5m am ksebb a leolvasás hbánál, ezért a továbbakban d 4 3 nkább azt kell használn: d = (,773 ±, 5)m Az átmérbl így a sugár: r = (,386 ±, 3)m A keresztmetszetre adódó hba: A r = =, A r A = = r π, m és felhasználva az elz képletet: A = 7, Így végül: 8 (,4686,7) m A = ± A szuszceptbltás kszámításához a leveg szuszceptbltása vákuum mágneses permeábltása µ = 4π 1 Vs Am = 3,77 1, míg a m = + = 1, A µ 5 7

8 Ehhez a hba: = m A + =, m A +, = 3, Ambl végül a szuszceptbltás: = 1, ± 7, A megfelel tzedes jegyekre redukálva: =,1866 ±,7 14. MINTA (ALUMINIUM) A mérés során nyert adatam: I [A] U H [V] F/g [kg] B [T] B [T ] F [N],168,, ,541931,,5,357,5,119559,17594,495 1,536,19,1963,453533, ,5,733,44,3371,143465,43164,915,75,44715,18379,73575,5,11,113,587,788579, ,188,161,633156,488, ,5,1448,9,74976,58,59 4,1598,58,8637,6514,5398 Itt a 3. oszlopból a 6. oszlop adatat az F = m g képlet alapján g = 9,81 m s fgyelembevételével nyertem. A B értékét az 1. pont végeredményének felhasználásával kaptam. Ez után ábrázoltam az ert az ndukcó négyzetének függvényében (7.4. ábra). Itt az egyenes meredeksége: m = (,39±,) N/T Míg tengelymetszete: b = (,13±,7) N A tovább számoláshoz a mnta átmérje csavarmkrométerrel (±,5m): d [m] d [m] (d ) [m ],773,15,5,77,5,5,771 -,5,5,77 -,15,5 8

9 Itt az átmérk átlaga =,7715m (ez lesz a d ). Valamnt emprkus szórása a következ módon adódk: d = d d. Az átlag 7.4.: a 11-es mnta 4 ( d ) = 1 S = =, 6454m am nagyobb a leolvasás hbánál, ezért a d 4 3 továbbakban ezt kell használn: d = (,7715 ±, 6)m Az átmérbl így a sugár: r = (,3858 ±, 3)m A keresztmetszetre adódó hba: 9

10 A r = =,15559 A r A 5 = r π = 4, m és felhasználva az elz képletet: A = 7, Így végül: 8 (,4676,7) m A = ± A szuszceptbltás kszámításához a leveg szuszceptbltása vákuum mágneses permeábltása µ = 4π 1 Vs Am = 3,77 1, míg a µ m 5 = + =, A Ehhez a hba: = m A + = 5, m A +,15559 = 6, Ambl végül a szuszceptbltás: =, ± 1, A megfelel tzedes jegyekre redukálva: =,13 ±,1 1

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 7. Mágneses szuszceptibilitás mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 22. Leadás dátuma: 2008. 11. 05. 1 1. A mérési összeállítás A mérési összeállítás sematikus ábrája

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása

Részletesebben

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv (-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése 2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

3. Hangfrekvenciás mechanikai rezgések vizsgálata

3. Hangfrekvenciás mechanikai rezgések vizsgálata 3. Hangfrekvenciás mechanikai rezgések vizsgálata Tóth Bence fizikus,. évfolyam 005.03.04. péntek délelőtt beadva: 005.03.. . A mérés első részében a megvastagított végű rúd (a D jelű) felharmonikusait

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv (-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát

Részletesebben

4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK

4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK 71400510854-9. évfolyam Magyar nyelv 46 71400510854-9. évfolyam Matematika 31 71479247326-9. évfolyam Magyar nyelv 37 71479247326-9. évfolyam Matematika 25 71507778014-9. évfolyam Magyar nyelv 43 71507778014-9.

Részletesebben

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy

Részletesebben

1. Gauss-eloszlás, természetes szórás

1. Gauss-eloszlás, természetes szórás 1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális

Részletesebben

(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely)

(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) (III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) Mérést végezte: Szalontai Gábor Mérőtárs neve: Nagy Dániel Mérés időpontja: 2012.11.22. Bevezető A hétköznapi és kézzelfogható

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

Mag-mágneses rezonancia

Mag-mágneses rezonancia Mag-mágneses rezonancia jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csorba Ottó Mérés dátuma: 2010. március 25. Leadás dátuma: 2010. április 7. Mérés célja A labormérés célja a mag-mágneses

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

19. A fényelektromos jelenségek vizsgálata

19. A fényelektromos jelenségek vizsgálata 19. A fényelektromos jelenségek vizsgálata PÁPICS PÉTER ISTVÁN csillagász, 3. évfolyam Mérőpár: Balázs Miklós 2006.04.19. Beadva: 2006.05.15. Értékelés: A MÉRÉS LEÍRÁSA Fontos megállapítás, hogy a fénysugárzásban

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Gyakorló feladatok a 2. zh-ra MM hallgatók számára

Gyakorló feladatok a 2. zh-ra MM hallgatók számára Gyakorló feladatok a. zh-ra MM hallgatók számára 1. Egy vállalat termelésének technológiai feltételeit a Q L K függvény írja le. Rövid távon a vállalat 8 egységnyi tőkét használ fel. A tőke ára 000, a

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése Rugalmas állandók mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/30/2011 Beadás ideje: 12/07/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Oktatási azonosító Vizsga idıpontja Vizsga típusa Tantárgy Elért pontszám

Oktatási azonosító Vizsga idıpontja Vizsga típusa Tantárgy Elért pontszám 71358932434 71457472261 71605522862 71650660111 71660992975 71665377048 71679875605 71768484518 71768486497 71769281879 71833697122 71872475320 71943429914 71959440135 71959443861 2015-01-17 10:00 9. évfolyam

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 4 ÉETTSÉGI VIZSGA 04. október. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ EMEI EŐFOÁSOK MINISZTÉIMA Egyszerű, rövid feladatok

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint ÉETTSÉG VZSGA 0. október 5. ELEKTONKA ALAPSMEETEK EMELT SZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladatok Maximális

Részletesebben

SZÁMÍTÁSI FELADATOK I.

SZÁMÍTÁSI FELADATOK I. SZÁMÍTÁSI FELADATOK I. A feladatokat figyelmesen olvassa el! A válaszokat a feladatban előírt módon adja meg! A számítást igénylő feladatoknál minden esetben először írja fel a megfelelő összefüggést (képletet),

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport

Részletesebben

19. Az elektron fajlagos töltése

19. Az elektron fajlagos töltése 19. Az elektron fajlagos töltése Hegyi Ádám 2015. február Tartalomjegyzék 1. Bevezetés 2 2. Mérési összeállítás 4 2.1. Helmholtz-tekercsek.............................. 5 2.2. Hall-szonda..................................

Részletesebben

Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról

Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról Mérési jegyzőkönyv a 5. mérés A/D és D/A átalakító vizsgálata című laboratóriumi gyakorlatról A mérés helyszíne: A mérés időpontja: A mérést végezték: A mérést vezető oktató neve: A jegyzőkönyvet tartalmazó

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

63/2004. (VII. 26.) ESzCsM rendelet

63/2004. (VII. 26.) ESzCsM rendelet 63/2004. (VII. 26.) ESzCsM rendelet a 0 Hz-300 GHz között frekvencatartományú elektromos, mágneses és elektromágneses terek lakosságra vonatkozó egészségügy határértékeről Az egészségügyről szóló 1997.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint ÉETTSÉGI VIZSGA. május. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ NEMZETI EŐOÁS MINISZTÉIM Egyszerű, rövid feladatok

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Elektronikai

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

oktatási segédlet Kovács Norbert SZE, Gazdálkodástudományi tanszék 2007. október

oktatási segédlet Kovács Norbert SZE, Gazdálkodástudományi tanszék 2007. október Fogyasztók a tõkepacon oktatás segédlet Kovács Norbert SZE, Gazdálkodástudomány tanszék 007. október Költségvetés egyenes kamatláb esetén. dõszak fogyasztása A. év fogyasztásának maxmuma költségvetés egyenes

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

KOMPETENCIA MÉRÉS ÉVFOLYAM

KOMPETENCIA MÉRÉS ÉVFOLYAM KOMPETENCIA MÉRÉS 2015. 6. ÉVFOLYAM MATEMATIKA A tanulók átlageredménye: Telephely: 1464 Országos: 1497 Városi ált. isk.: 1480 Megyeszékh. ált. isk.: 1530 Iskolánk átlageredménye rosszabb, mint az országos,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint ÉETTSÉGI VIZSG 0. május 5. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ NEMZETI EŐFOÁS MINISZTÉIM Egyszerű, rövid feladatok Maximális

Részletesebben

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:

Részletesebben

Érettségi eredmények 2005-től (Békéscsabai Andrássy Gyula Gimnázium és Kollégium)

Érettségi eredmények 2005-től (Békéscsabai Andrássy Gyula Gimnázium és Kollégium) 2005/db közép 2005/db emelt 2005/db összes 2005/jegy közép 2005/jegy emelt 2005/jegy összes 2005/% közép 2005/% emelt 2005/% összes 51 119 170 3,53 5,00 4,42 59,90 99,17 84,27 22 17 39 4,45 4,94 4,7 75,68

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM Matematika középszint Javítási-értékelési útmutató 063 MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÉRETTSÉGI VIZSGA 006. február. OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

EGYENES ILLESZTÉSE (OFFICE

EGYENES ILLESZTÉSE (OFFICE EGYENES ILLESZTÉSE (OFFICE 2007) 1. Írjuk a mérési adatokat az x-szel és y-nal jelzett oszlopokba. Ügyeljünk arra, hogy az első oszlopba a független, a második oszlopba a függő változó kerüljön! 2. Függvény

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Közgazdaságtan I. Tökéletes verseny - kidolgozott feladatok

Közgazdaságtan I. Tökéletes verseny - kidolgozott feladatok Közgazdaságtan I. Tökéletes verseny - kidolgozott feladatok Kiss Olivér 01. november 11. Ebben a dokumentumban Berde Éva: Mikroökonómiai és piacelméleti feladatgy jtemény c. feladatgy jteményéb l találtok

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát!

Rácsvonalak parancsot. Válasszuk az Elsődleges függőleges rácsvonalak parancs Segédrácsok parancsát! Konduktometriás titrálás kiértékelése Excel program segítségével (Office 2007) Alapszint 1. A mérési adatokat írjuk be a táblázat egymás melletti oszlopaiba. Az első oszlopba kerül a fogyás, a másodikba

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

A gravitáció összetett erőtér

A gravitáció összetett erőtér A gravitáció összetett erőtér /Az indukált gravitációs erőtér című írás (hu.scribd.com/doc/95337681/indukaltgravitacios-terer) 19. fejezetének bizonyítása az alábbiakban./ A gravitációs erőtér felbontható

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. A k valós paraméter értékétől függően

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 5 ÉETTSÉGI VIZSG 05. május 9. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMBEI EŐFOÁSOK MINISZTÉIUM Egyszerű, rövid feladatok

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.)

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.) Elektotechnikai alapismeetek Mágneses té 14 Mintapéldák 1 feladat: Az ába szeinti homogén anyagú zát állandó keesztmetszetű köben hatáozzuk meg a Φ B és étékét! Ismet adatok: a = 11 cm A = 4 cm μ = 8 I

Részletesebben

Prímszámok statisztikai analízise

Prímszámok statisztikai analízise Prímszámok statisztikai analízise Puszta Adrián 28. április 18. Kivonat Munkám során a prímszámok és a páros prímek eloszlását, illetve különbségét vizsgáltam, majd ebből következtettem a véletlenszerű

Részletesebben

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93 . Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű

Részletesebben

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Egy sík és a koordinátasíkok metszésvonalainak meghatározása 1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 006. májs 8. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI MINISZTÉRIM Teszt jellegű kérdéssor

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

A Mössbauer-effektus vizsgálata

A Mössbauer-effektus vizsgálata A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK

LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK LINEÁRIS REGRESSZIÓ (I. MODELL) ÉS KORRELÁCIÓ FELADATOK 2004 november 29. 1.) Lisztbogarak súlyvesztése 9 lisztbogár-csapat súlyát megmérték, (mindegyik 25 bogárból állt, mert egyenként túl kis súlyúak

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd

Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd Integrálszámítás 4. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 2015 november 30. Filip Ferdinánd 2015 november 30. Integrálszámítás 4. 1 / 12 Az el adás vázlata Területszámítás

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

1. Görbe illesztés a legkissebb négyzetek módszerével

1. Görbe illesztés a legkissebb négyzetek módszerével GÖRBE ILLESZTÉS A LEGKISSEBB ÉGYZETEK MÓDSZERÉVEL. Görbe illesztés a legkissebb négyzetek módszerével Az előző gyakorlaton megismerkedtünk a korrelációs együttható fogalmával és számítási módjával. A korrelációs

Részletesebben

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1 Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben