63/2004. (VII. 26.) ESzCsM rendelet

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "63/2004. (VII. 26.) ESzCsM rendelet"

Átírás

1 63/2004. (VII. 26.) ESzCsM rendelet a 0 Hz-300 GHz között frekvencatartományú elektromos, mágneses és elektromágneses terek lakosságra vonatkozó egészségügy határértékeről Az egészségügyről szóló év CLIV. törvény a (2) bekezdésének de) és df) pontjaban kapott felhatalmazás alapján a következőket rendelem el: 1. (1) E rendeletben foglaltakat a lakosságnak az elektromos, mágneses és elektromágneses terek expozícójából származó káros hatások ellen védelme egészségügy követelményere kell alkalmazn. (2) Nem kell alkalmazn e rendeletben foglaltakat, ha az (1) bekezdés szernt expozícó orvos beavatkozás során vagy terápás célból történk. 2. E rendelet alkalmazásában a) alapkorlátok: olyan korlátozások az dőben változó elektromos, mágneses és elektromágneses terek expozícójára, amelyek közvetlenül a megállapított egészség hatásokon alapulnak. A tér frekvencájától függően ezeknek a korlátoknak a meghatározására szolgáló fzka mennység lehet mágneses ndukcó (B), áramsűrűség (J), fajlagosan elnyelt teljesítmény (SAR), lletve a teljesítménysűrűség (S); b) áramsűrűség (J): valamely vezetőben, például az ember testben vagy annak egy részében, az áram rányára merőlegesen elhelyezkedő egységny keresztmetszeten átfolyó áram. Mértékegysége: amper per négyzetméter (A/m 2 ); c) elektromágneses tér (EMF): a 0 Hz-300 GHz között frekvencatartományú elektromágneses erőtér; d) elektromos térerősség (E): a térvektor nagysága egy pontban, amely egy poztív pontszerű (q) töltésre ható (F) erő osztva a töltéssel. Mértékegysége: volt per méter (V/m); e) expozícó: a lakosság elektromos, mágneses, lletve elektromágneses térnek való ktettsége; f) érntés áram (I ): egy személy és valamely tárgy között folyó áram. Mértékegysége: amper (A); C g) fajlagos energaelnyelés (SA): egységny tömegű élő szövet által elnyelt energa. Mértékegysége: joule per klogramm (J/kg); h) fajlagosan elnyelt teljesítmény (SAR): az egész testre vagy a test egy részére átlagolva annak kfejezése, hogy egységny tömegű testszövet mekkora teljesítményt nyel el. Mértékegysége: watt per klogramm (W/kg). Az egész test SAR mellett a hely SAR értékekre s szükség van a test ks részeben különleges sugárterhelés feltételek között létrejövő túlzott energaelnyelés korlátozásához; ) mágneses térerősség (H): a térvektor nagysága egy pontban, amelyben a v sebességgel mozgó q töltésre F erőt fejt k. [F = q (v x µ H)]. Mértékegysége: amper per méter (A/m); j) mágneses ndukcó (B): a térvektor nagysága, amely egyenlő a H mágneses térerősségnek és a közeg permeabltásának (µ) szorzatával [B =µ H]. Mértékegysége: tesla (T). Szabad térben és élő anyagban a mágneses térerősség és a mágneses ndukcó átszámíthatók az alább egyenlet segítségével: 1 A m -1 = 4π10-7 T; k) teljesítménysűrűség (S): a felületre merőlegesen beeső sugárzott teljesítmény osztva a felület területével. Mértékegysége: watt per négyzetméter (W/m 2 ); l) vonatkoztatás határértékek: a gyakorlatban végzett expozícó mérések céljara az alapkorlátokból származtatott határértékek, annak eldöntésére, hogy valószínűsíthető-e az alapkorlátok túllépése. A származtatott mennységek közé tartozk az elektromos térerősség, a mágneses térerősség, a mágneses ndukcó (B) és a teljesítménysűrűség (S), valamnt a végtagáram (I ). A közvetett hatásokkal kapcsolatos L mennységek közé tartozk az (érntés) áram (I ), valamnt az mpulzusos terek esetében a fajlagos C energaelnyelés (SA). Ezeknek a mennységeknek bármely sugárterhelés helyzetben mért vagy számított értéket össze lehet hasonlítan a megfelelő vonatkoztatás határértékkel. 3. A 0 Hz-300 GHz frekvencájú elektromos, mágneses és elektromágneses terek lakosságra vonatkozó egészségügy határértéket az 1. számú melléklet tartalmazza.

2 4. (1) A lakosság expozícójának várható mértékét, a vonatkoztatás határértékek betartását az Állam Népegészségügy és Tsztorvos Szolgálat lletékes Sugár-egészségügy Decentruma ellenőrzk. Abban az esetben, amennyben a) előzetes számítások alapján a vonatkoztatás sznt túllépése valószínűsíthető, b) külön jogszabály előírja, c) az elővgyázatosság elv alapján ndokolt, vagy d) az közegészségügy szempontból szükséges, a vonatkoztatás sznt teljesülését méréssel kell gazoln. (2) Az (1) bekezdés szernt gazoló méréseket a berendezés, létesítmény tulajdonosától, beruházójától, üzemeltetőjétől független, külön jogszabály szernt erre a feladatra akkredtált laboratórummal kell elvégeztetn. (3) Az expozícó értékelésénél a mért mennységet a vonatkoztatás határértékkel kell összehasonlítan. A vonatkoztatás határértéknek való megfelelés egyúttal bztosítja az alapkorlátnak való megfelelőséget s. (4) Amennyben a mért mennységek értéke nagyobb, mnt a vonatkoztatás határérték, akkor kértékelést kell végezn annak megállapítására, hogy az expozícós szntek alatta vannak-e az alapkorlátoknak. Lokáls expozícó esetében közvetlenül a hely alapkorlátoknak való megfelelést kell vzsgáln, a vonatkoztatás határértékek nem alkalmazhatók. 5. Az egynél több frekvencán sugárzó forrásokról származó expozícó értékelésére a 2. számú mellékletben meghatározott képleteket kell alkalmazn. 6. (1) Ez a rendelet a khrdetését követő 8. napon lép hatályba. (2) E rendelet hatálybalépésével egydejűleg a vezeték nélkül távközlés építmény által kbocsátott elektromágneses sugárzás egészségügy határértékeről szóló 32/2000. (XI. 16.) EüM rendelet, valamnt az azt módosító 15/2003. (IV. 9.) ESzCsM rendelet hatályát veszt. (3) Az elektromos, mágneses, lletve elektromágneses teret kbocsátó, már meglevő berendezéseknek, létesítményeknek augusztus 31-g kell megfelelnük az e rendeletben foglalt előírásoknak. (4) Ez a rendelet a lakosságot érő elektromágneses sugárterhelés (0 Hz-300 GHz) korlátozásáról szóló, júlus /519/EK tanács ajánlásnak való megfelelést szolgálja. 1. számú melléklet a 63/2004. (VII. 26.) ESzCsM rendelethez A 0 Hz-300 GHz frekvencájú elektromos, mágneses és elektromágneses terek lakosságra vonatkozó egészségügy határértéke 1. Alapkorlátok az elektromos, mágneses és elektromágneses terekre (0 Hz-300 GHz) Frekvencatartomány Mágneses Áramsűrűség Egésztest Hely SAR Hely SAR ndukcó (ma/m 2 ) átlagos SAR (fej és törzs) (végtagok) Teljesítmény- (mt) (effektív (W/kg) (W/kg) (W/kg) sűrűség érték) S (W/m 2 ) 0 Hz > 0-1 Hz l-4 Hz - 8/f Hz Hz- 100 khz - f/ khz-10 MHz - f/500 0, MHz-10 GHz - - 0, GHz-300 GHz Megjegyzések: 1. f a frekvenca Hz-ben.

3 2. A test elektromos nhomogentása matt az áramsűrűséget átlagoln kell az áram rányára merőleges 1 cm 2 -es keresztmetszetre. 3. A 100 khz alatt frekvencákra az áramsűrűség csúcsértéke az effektív érték 1,414-gyel való szorzásával kapható meg. A t mpulzus dőtartam esetén az alapkorlátokra alkalmazható egyenértékű p frekvencát f = 1/(2t ) összefüggéssel kell számítan. p 4. A 100 khz alatt frekvencákon és az mpulzussorozat jellegű mágneses terekre az mpulzusok okozta maxmáls áramsűrűség a fel- és lefutás dőből és a mágneses ndukcó változás legnagyobb sebességéből számítható. Ezután az ndukált áramsűrűség összehasonlítható a megfelelő alapkorláttal. 5. Mnden SAR értéket bármely 6 perces dőtartamra kell átlagoln. 6. A hely SAR átlagolás tömeg bármely 10 g folytonos szövet; az így kapott legnagyobb SAR-nak kell lenne az expozícó meghatározáshoz használt értéknek. Ezeknek a 10 g szöveteknek a közel homogén elektromos tulajdonságú folytonos szövet egy részének kellene lenne. 7. A t mpulzus dőtartam esetén az alapkorlátokra alkalmazható egyenértékű frekvencát f=1/(2t ) p p képlettel kell számítan. Továbbá, mpulzusos expozícóra a 0,3-10 GHz frekvencatartományban és a fej hely expozícójára, a termoelasztkus kterjedés okozta hallás hatások elkerülésére az SA nem haladhatja meg a 10 g szövetre átlagolt 2 mj/kg értéket. 2. Vonatkoztatás határértékek Az expozícó vonatkoztatás határértéke a mérhető mennységek értékevel való összehasonlítás céljából vannak megadva. Vonatkoztatás határértékek az elektromos, mágneses és elektromágneses terekre (0 Hz-300 GHz, effektív értékek) Frekvencatartomány Elektromos térerősség (V/m) Mágneses térerősség (A/m) Mágneses ndukcó (µt) Ekvvalens síkhullám teljesítménysűrűség S (W/m 2 ) eq 0-1 Hz - 3,2 x x Hz ,2 x 10 4 /f 2 4 x 10 4 /f Hz /f 5000/f - 0,025-0,8 khz 250/f 4/f 5/f - 0,8-3 khz 250/f 5 6, khz ,25-0,15-1 MHz 87 0,73/f 0,92/f MHz 87/f 1/2 0,73/f 0,92/f MHz 28 0,073 0, MHz l,375f 1/2 0,0037 f 1/2 0,0046 f 1/2 f/ GHz 61 0,16 0,20 10 Megjegyzések: 1. f a frekvenca az első oszlopban megadott mértékegységben kfejezve. 2. A 100 khz és 10 GHz között frekvencák esetében az S, E 2, H 2 és B 2 mennységeket átlagoln kell eq mnden 6 perces dőszakra.

4 3. A 10 GHz felett frekvencák esetében S eq, E 2, H 2 és B 2 mennységeket átlagoln kell mnden 68/f 1,05 perces dőszakra (f GHz-ben). 3. Vonatkoztatás határértékek a vezető tárgyaktól származó érntés áramokra (I C ) (f khz-ben) Frekvencatartomány Legnagyobb érntés áram (ma) 0 Hz-2,5 khz 0,5 2,5 khz-100 khz 0,2 f 100 khz-110 MHz Vonatkoztatás határérték végtagáramra A 10 MHz-110 MHz-es frekvencatartományban bármelyk végtagon átfolyó áram nem lehet több 45 ma-nél. 2. számú melléklet a 63/2004. (VII. 26.) ESzCsM rendelethez Több frekvencán sugárzó forrásokról származó expozícó Olyan helyzetekben, amkor különböző frekvencájú elektromágneses terek egydejű expozícója áll fenn, fgyelembe kell venn, hogy ezeknek a sugárterheléseknek a hatása összeadódnak. Az lyen összeadódó hatásokra vonatkozó számításokat mnden hatás esetében külön-külön kell elvégezn. Alapkorlátok Olyan helyzetekben, amkor különböző frekvencájú elektromágneses terek egydejű expozícója áll fenn, az alapkorlátokkal kapcsolatosan a következő krtérumoknak kell teljesülnük. Az 1 Hz és 10 MHz között frekvencájú expozícó esetében: A 100 khz-től releváns termkus hatások esetében: ahol J az áramsűrűség frekvencán; J az 1. számú melléklet 1. pontjában megadott, az frekvencán az áramsűrűségre vonatkozó L, alapkorlát;

5 SAR az frekvencán expozícó által okozott SAR; SAR az 1. számú melléklet 1. pontjában megadott, SAR-ra vonatkozó alapkorlát; L S a teljesítménysűrűség frekvencán; S az 1. számú melléklet 1. pontjában megadott, a teljesítménysűrűségre vonatkozó alapkorlát. L Vonatkoztatás határértékek: Az alapkorlátok alkalmazásához a térerősség vonatkoztatás határértékere vonatkozó alább krtérumokat kell alkalmazn. A 10 MHz felett frekvencán a következő két követelménynek kell teljesülne a térerősség szntjere: valamnt ahol E az elektromos térerősség frekvencán; E az 1. számú melléklet 1. pontjában megadott, az frekvencán az elektromos térerősség L, vonatkoztatás határértéke; H a mágneses térerősség j frekvencán; j H az 1. számú melléklet 2. pontjában megadott, a mágneses térerősségre vonatkozó vonatkoztatás L,j határérték; a = 87 V/m; b = 5 A/m (6,25 µt). A 100 khz-től releváns termkus hatás esetében a következő két követelménynek kell teljesülne a térerősség szntjere:

6 ahol E az elektromos térerősség frekvencán; E az 1. számú melléklet 2. pontjában megadott, az frekvencán az elektromos térerősségre vonatkozó L, vonatkoztatás határérték; H a mágneses térerősség j frekvencán; j H az 1. számú melléklet 2. pontjában megadott, a mágneses térerősségre vonatkozó vonatkoztatás L,j határérték; c = 87/f 1/2, V/m; d = 0,73/f A/m. A végtagáramra és érntés áramra az alább követelményeket kell alkalmazn: ahol I a végtagáram összetevő k frekvencán; k I a végtagáramra vonatkozó vonatkoztatás határérték, 45 ma; L,k I az érntés áram összetevő n frekvencán; n I az 1. számú melléklet 3. pontjában megadott frekvencán az érntés áramra vonatkozó C,n vonatkoztatás határérték. A fent összegző képletek a legrosszabb esetekben előálló fázs körülményeket tételezk fel a több forrásból származó terek között. Ennek eredményeként a tpkus sugárterhelés helyzetek a gyakorlatban a vonatkoztatás határértékként fent bemutatott egyenletek által jelzetteknél kevésbé korlátozó expozícósznteket eredményezhetnek.

11. Alacsonyfrekvenciás elektromos- és mágneses terek vizsgálata

11. Alacsonyfrekvenciás elektromos- és mágneses terek vizsgálata 11. Alacsonyfrekvenciás elektromos- és mágneses terek vizsgálata A MÉRÉS CÉLJA: Elektromos berendezések keltette elektromos- és mágneses terek vizsgálata, a sugáregészségügyi jellemzők megismerése. Alacsonyfrekvenciás

Részletesebben

Összefoglaló jegyzőkönyv

Összefoglaló jegyzőkönyv Mérésügyi Főosztály Összefoglaló jegyzőkönyv Lakókörnyezet elektromágneses expozíciójáról A vizsgálat elvégzése a lakossági elektromágneses kitettséget mérő program keretében történt. A mérőprogramról,

Részletesebben

AZ EURÓPAI PARLAMENT ÉS A TANÁCS 2004/40/EK IRÁNYELVE

AZ EURÓPAI PARLAMENT ÉS A TANÁCS 2004/40/EK IRÁNYELVE 2004L0040 HU 26.04.2008 001.001 1 Ez a dokumentum kizárólag tájékoztató jellegű, az intézmények semmiféle felelősséget nem vállalnak a tartalmáért B AZ EURÓPAI PARLAMENT ÉS A TANÁCS 2004/40/EK IRÁNYELVE

Részletesebben

Az elektromágneses terek szabályozása és környezet-egészségügyi vizsgálata

Az elektromágneses terek szabályozása és környezet-egészségügyi vizsgálata Az elektromágneses terek szabályozása és környezet-egészségügyi vizsgálata Thuróczy György Országos Sugárbiológiai és Sugáregészségügyi Kutató Intézet Nem-Ionizáló Sugárzások Főosztálya 1221 Budapest,

Részletesebben

Magyar joganyagok - 33/2016. (XI. 29.) EMMI rendelet - a fizikai tényezők (elektrom 2. oldal 6. expozíciós határértékek: biofizikai és biológiai szemp

Magyar joganyagok - 33/2016. (XI. 29.) EMMI rendelet - a fizikai tényezők (elektrom 2. oldal 6. expozíciós határértékek: biofizikai és biológiai szemp Magyar joganyagok - 33/2016. (XI. 29.) EMMI rendelet - a fizikai tényezők (elektrom 1. oldal 33/2016. (XI. 29.) EMMI rendelet a fizikai tényezők (elektromágneses terek) hatásának kitett munkavállalókra

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

HONVÉDELMI MINISZTÉRIUM TECHNOLÓGIAI HIVATAL LÉGVÉDELMI FEJLESZTÉSI PROGRAMIRODA

HONVÉDELMI MINISZTÉRIUM TECHNOLÓGIAI HIVATAL LÉGVÉDELMI FEJLESZTÉSI PROGRAMIRODA HONVÉDELMI MINISZTÉRIUM TECHNOLÓGIAI HIVATAL LÉGVÉDELMI FEJLESZTÉSI PROGRAMIRODA KIVONAT ELEKTROMÁGNESES EXPOZÍCIÓ VÁRHATÓ TERHELÉSE AZ ORSZÁG TERÜLETÉRE TELEPÍTENDO 3D RADAROK KÖRNYEZETÉBEN (TELEPÍTÉS

Részletesebben

Az elektromágneses terek munkahelyi megengedett határértékeiről szóló rendelet értelmezése kockázatértékelés

Az elektromágneses terek munkahelyi megengedett határértékeiről szóló rendelet értelmezése kockázatértékelés Az elektromágneses terek munkahelyi megengedett határértékeiről szóló rendelet értelmezése kockázatértékelés Jánossy Gábor OKI (volt OSSKI) Nem-ionizáló Sugárzások Osztálya Témakörök Elektromágneses terek

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

,...,q 3N és 3N impulzuskoordinátával: p 1,

,...,q 3N és 3N impulzuskoordinátával: p 1, Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

BUDAPEST FŐVÁROS XVI. KERÜLETI ÖNKORMÁNYZAT POLGÁRMESTERE

BUDAPEST FŐVÁROS XVI. KERÜLETI ÖNKORMÁNYZAT POLGÁRMESTERE BUDAPEST FŐVÁROS XVI. KERÜLETI ÖNKORMÁNYZAT POLGÁRMESTERE Készült a Képviselő-testület 2015. október 28-i ülésére. Készítette: Tóth Miklós főépítész Tisztelt Képviselő-testület! Tárgy: Budapest, XVI. kerületi

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Vezetéknélküli infokommunikációs eszközök aktuális egészségügyi kérdései

Vezetéknélküli infokommunikációs eszközök aktuális egészségügyi kérdései Vezetéknélküli infokommunikációs eszközök aktuális egészségügyi kérdései Dr.Thuróczy György Ph.D. Országos Közegészségügyi Központ Országos Sugárbiológiai és Sugáregészségügyi Kutató Igazgatóság (OKK OSSKI)

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

A feszültség alatti munkavégzés (FAM) élettani hatásai

A feszültség alatti munkavégzés (FAM) élettani hatásai Budapesti Műszaki és Gazdaságtudományi Egyetem Nagyfeszültségű Laboratórium A feszültség alatti munkavégzés (FAM) élettani hatásai Göcsei Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

Statisztika I. 3. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 3. előadás. Előadó: Dr. Ertsey Imre Statsztka I. 3. előadás Előadó: Dr. Ertsey Imre Vszonyszámok Statsztka munka: adatgyűjtés, rendszerezés, összegzés, értékelés. Vszonyszámok: Két statsztka adat arányát kfejező számok, Az un. leszármaztatott

Részletesebben

Elektromos zajok. Átlagérték Időben változó jel átlagértéke alatt a jel idő szerinti integráljának és a közben eltelt időnek a hányadosát értik:

Elektromos zajok. Átlagérték Időben változó jel átlagértéke alatt a jel idő szerinti integráljának és a közben eltelt időnek a hányadosát értik: Elektromos zajok Átlagérték, négyzetes átlag, effektív érték Átlagérték dőben változó jel átlagértéke alatt a jel dő szernt ntegráljának és a közben eltelt dőnek a hányadosát értk: τ τ dt Négyzetes átlag

Részletesebben

Lajos Máté. Országos Közegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Kutató Igazgatóság (OSSKI) 2. MTA Energiatudományi Kutatóközpont

Lajos Máté. Országos Közegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Kutató Igazgatóság (OSSKI) 2. MTA Energiatudományi Kutatóközpont 1 Lajos Máté 1 Salk Á., 1 Tóth N., 1 Juhász L., 2 Pázmánd T., 2 Zagyva P. 1 Országos Közegészségügy Központ Sugárbológa és Sugáregészségügy Kutató Igazgatóság (OSSKI) 2 MTA Energatudomány Kutatóközpont

Részletesebben

Hely és elmozdulás - meghatározás távolságméréssel

Hely és elmozdulás - meghatározás távolságméréssel Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja

Részletesebben

Az SI mértékegységrendszer

Az SI mértékegységrendszer PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN Az SI mértékegységrendszer http://hu.wikipedia.org/wiki/si_mértékegységrendszer 1 2015.09.14.. Az SI mértékegységrendszer Mértékegységekkel szembeni

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptbltás mérése PÁPICS PÉTER ISTVÁN csllagász, 3. évfolyam 5.9.. Beadva: 5.9.9. 1. A -ES MÉRHELYEN MÉRTEM. Elször a Hall-szondát kellett htelesítenem. Ehhez RI H -t konstans (bár a mérés

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

KOLTAY Eszter. TÉMAVEZETŐ: FINTA Viktória ELTE-TTK, Atomfizikai Tanszék 2011.

KOLTAY Eszter. TÉMAVEZETŐ: FINTA Viktória ELTE-TTK, Atomfizikai Tanszék 2011. KOLTAY Eszter TÉMAVEZETŐ: FINTA Viktória ELTE-TTK, Atomfizikai Tanszék 2011. CÉLKITŰZÉS 6 budapesti bázisállomás közelében 90 lakó rádiófrekvenciás és mikrohullámú elektromágneses expozíciójának meghatározása

Részletesebben

Egészségügyi háttér. 1. Az elektromágneses tér közvetít az antenna és a mobiltelefon között

Egészségügyi háttér. 1. Az elektromágneses tér közvetít az antenna és a mobiltelefon között Egészségügyi háttér 1. Az elektromágneses tér közvetít az antenna és a mobiltelefon között Az élet a Földön már kezdetektől fogva elektromágneses környezetben alakult ki, de a mesterségesen keltett környezeti

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

11. A KÖZÚTI FORGALOM OKOZTA ZAJ (az MSz 07 3720-1990 alapján)

11. A KÖZÚTI FORGALOM OKOZTA ZAJ (az MSz 07 3720-1990 alapján) 11. A KÖZÚTI FORGALOM OKOZTA ZAJ (az MSz 07 3720-1990 alapján) A számítás elve A számítás a közút forgalomból származó, a terhelés pontban várható, az előírásokkal összevethető mértékadó hangnyomásszntet

Részletesebben

Milyen hatással van a villamos hálózat mágneses tere az egészségünkre?

Milyen hatással van a villamos hálózat mágneses tere az egészségünkre? Milyen hatással van a villamos hálózat mágneses tere az egészségünkre? Lakossági konzultáció Pilisszántó, 2017. 03. 17. Villamos Energetika Villamos Művek és Környezet Csoport Az összejövetel célja: Az

Részletesebben

Mechanika - Versenyfeladatok

Mechanika - Versenyfeladatok Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

Egy irodahelyiség elektromos sugárzásának bemérése és az alkalmazott technológia rövid leírása

Egy irodahelyiség elektromos sugárzásának bemérése és az alkalmazott technológia rövid leírása Egy irodahelyiség elektromos sugárzásának bemérése és az alkalmazott technológia rövid leírása Az elektroszmog -ról "A köztudatba újabban beleivódott az "elektroszmog" kifejezés, amely negatív irányba

Részletesebben

KÖSZÖNETNYILVÁNÍTÁS. KÜLÖN KÖSZÖNET ILLETI AZOKAT A LEGFONTOSABB SZERZÔKET, AKIK AZ ANYAG MEGÍRÁSÁBAN RÉSZT VETTEK: n n n n n n n n

KÖSZÖNETNYILVÁNÍTÁS. KÜLÖN KÖSZÖNET ILLETI AZOKAT A LEGFONTOSABB SZERZÔKET, AKIK AZ ANYAG MEGÍRÁSÁBAN RÉSZT VETTEK: n n n n n n n n KÖSZÖNETNYILVÁNÍTÁS KÜLÖN KÖSZÖNET ILLETI AZOKAT A LEGFONTOSABB SZERZÔKET, AKIK AZ ANYAG MEGÍRÁSÁBAN RÉSZT VETTEK: n n n n n n n n KIHÍVÁSOK Kockázatbecslés Kockázatérzékelés Tudományos szaktudás Kommunikációs

Részletesebben

Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző

Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző lektrokéma 03. Cellareakcó potencálja, elektródreakcó potencálja, Nernst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loránd Tudományegyetem Budapest Cellareakcó Közvetlenül nem mérhető (

Részletesebben

Időben állandó mágneses mező jellemzése

Időben állandó mágneses mező jellemzése Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

Elektroszmog elleni védelem EU direktívája

Elektroszmog elleni védelem EU direktívája Elektroszmog elleni védelem EU direktívája.és a magyar jogszabály (2016. július 1 ig)? Tar Zoltán munkavédelmi szakmérnök AZ EURÓPAI PARLAMENT ÉS A TANÁCS 2013/35/EU IRÁNYELVE (2013.június 26.) a munkavállalók

Részletesebben

Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció

Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció Közlekedés létesítmények élettartamra vonatkozó hatékonyság vzsgálat módszerenek fejlesztése PhD Dsszertácó Budapest, 2006 Alulírott kjelentem, hogy ezt a doktor értekezést magam készítettem, és abban

Részletesebben

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Geometriai és hullámoptika. Utolsó módosítás: május 10.. Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)

Részletesebben

2013/35/EU irányelv az elektromágneses terekről

2013/35/EU irányelv az elektromágneses terekről Biztonság elektromágneses terekben 2013/35/EU irányelv az elektromágneses terekről Felelősség a vállalatért, biztonság a dolgozókért Az átvétel hosszú útja A dolgozók védelmét, biztonságát és egészségét

Részletesebben

A gravitáció összetett erőtér

A gravitáció összetett erőtér A gravitáció összetett erőtér /Az indukált gravitációs erőtér című írás (hu.scribd.com/doc/95337681/indukaltgravitacios-terer) 19. fejezetének bizonyítása az alábbiakban./ A gravitációs erőtér felbontható

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

Balogh Edina Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetemi tanár

Balogh Edina Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetemi tanár Balogh Edna Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetem tanár Budapest Műszak és Gazdaságtudomány Egyetem Építőmérnök Kar 202 . Bevezetés,

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Galvanomágneses jelenségek

Galvanomágneses jelenségek isme d meg Galvanomágneses jelenségek Azokat a jelenségeket, amelyek az áramátjárta vezetőben mágneses tér hatására jönnek létre galvanomágneses jelenségebiek nevezzük. Ezek a jelenségek a közegben haladó

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

DINAMIKA ALAPJAI. Tömeg és az erő

DINAMIKA ALAPJAI. Tömeg és az erő DINAMIKA ALAPJAI Tömeg és az erő NEWTON ÉS A TEHETETLENSÉG Tehetetlenség: A testek maguktól nem képesek megváltoztatni a mozgásállapotukat Newton I. törvénye (tehetetlenség törvénye): Minden test nyugalomban

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

3.1. ábra ábra

3.1. ábra ábra 3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

1. fejezet. Gyakorlat C-41

1. fejezet. Gyakorlat C-41 1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

A klasszikus mechanika alapjai

A klasszikus mechanika alapjai A klasszikus mechanika alapjai FIZIKA 9. Mozgások, állapotváltozások 2017. október 27. Tartalomjegyzék 1 Az SI egységek Az SI alapegységei Az SI előtagok Az SI származtatott mennyiségei 2 i alapfogalmak

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér: forrásos

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

Összegzés a 92/2011.(XII.30.) NFM rendelet 9. melléklete alapján

Összegzés a 92/2011.(XII.30.) NFM rendelet 9. melléklete alapján NEMZETBIZTONSÁGI SZAKSZOLGÁLAT GAZDASÁGI VEZETŐ 1399 Budapest 62. Pf.: 710/4-2. Ikt.sz.: 30700/21293- /2015. 1. számú példány Összegzés a 92/2011.(XII.30.) NFM rendelet 9. melléklete alapján 1. Az ajánlatkérő

Részletesebben

Útmutatás és a gyártó nyilatkozata Elektromágneses kibocsátás és zavartűrés

Útmutatás és a gyártó nyilatkozata Elektromágneses kibocsátás és zavartűrés Útmutatás és a gyártó nyilatkozata Elektromágneses kibocsátás és zavartűrés Magyar Oldal AirSense 10 AirCurve 10 1-3 S9 -as sorozat 4-6 Stellar 7-9 S8 & S8 -as sorozat II VPAP -as sorozat III 10-12 AirSense

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával

Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával AGY 4, Kecskemét Ötvözetek mágneses tulajdonságú fázsanak vzsgálata a hperbolkus modell alkalmazásával Dr. Mészáros István egyetem docens Budapest Műszak és Gazdaságtudomány Egyetem Anyagtudomány és Technológa

Részletesebben

Audiometria 1. ábra 1. ábra 1. ábra 1. ábra 1. ábra

Audiometria 1. ábra 1. ábra 1. ábra 1. ábra 1. ábra Audiometria 1. Az izophongörbék (más néven azonoshangosság- görbék; gyakjegyzet 1. ábra) segítségével adjuk meg a táblázat hiányzó értékeit Az egy sorban lévő adatok egyazon tiszta szinuszos hangra vonatkoznak.

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Adatsorok jellegadó értékei

Adatsorok jellegadó értékei Adatsorok jellegadó értéke Varga Ágnes egyetem tanársegéd varga.ag14@gmal.com Terület és térnformatka kvanttatív elemzés módszerek BCE Geo Intézet Terület elemzés forgatókönyve vacsora hasonlat Terület

Részletesebben

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc.

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc. Vllamosságtan Dr. adács László főskola docens A3 épület,. emelet, 7. ajtó Telefon: -3 e-mal: Honlap: elkrad@un-mskolc.hu www.un-mskolc.hu/~elkrad Ajánlott rodalom Demeter Károlyné - Dén Gábor Szekér Károly

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

Nem-ionizáló sugárzások fajtái, fizikai tulajdonságai és biológiai hatásai, jogszabályi előírások

Nem-ionizáló sugárzások fajtái, fizikai tulajdonságai és biológiai hatásai, jogszabályi előírások Témakörök Nem-ionizáló sugárzások fajtái, fizikai tulajdonságai és biológiai hatásai, jogszabályi előírások Jánossy Gábor OKI Nem-ionizáló Sugárzások Osztálya Nem-ionizáló sugárzások spektruma Egyen Extrém

Részletesebben

Schlüter -KERDI-BOARD. Közvetlenűl burkolható felületű építőlemez, többrétegű vízszigetelés

Schlüter -KERDI-BOARD. Közvetlenűl burkolható felületű építőlemez, többrétegű vízszigetelés Schlüter -KERDI-BOARD Közvetlenűl burkolható felületű építőlemez, többrétegű vízszgetelés Schlüter -KERDI-BOARD Schlüter -KERDI-BOARD A csempeburkolat készítésének unverzáls alapfelülete Pontosan, ahogy

Részletesebben

Darupályák ellenőrző mérése

Darupályák ellenőrző mérése Darupályák ellenőrző mérése A darupályák építésére, szerelésére érvényes 15030-58 MSz szabvány tartalmazza azokat az előírásokat, melyeket a tervezés, építés, műszak átadás során be kell tartan. A geodéza

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

A mágneses szuszceptibilitás vizsgálata

A mágneses szuszceptibilitás vizsgálata Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő: 2012.12.13 A mágneses szuszceptibilitás vizsgálata 1.1 Mérés elve Anyagokat mágneses térbe helyezve, a tér hatására az anygban mágneses dipólusmomentum

Részletesebben

SZÁMÍTÁSI FELADATOK I.

SZÁMÍTÁSI FELADATOK I. SZÁMÍTÁSI FELADATOK I. A feladatokat figyelmesen olvassa el! A válaszokat a feladatban előírt módon adja meg! A számítást igénylő feladatoknál minden esetben először írja fel a megfelelő összefüggést (képletet),

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

2.2.10. VISZKOZITÁS MEGHATÁROZÁSA ROTÁCIÓS VISZKOZIMÉTERREL

2.2.10. VISZKOZITÁS MEGHATÁROZÁSA ROTÁCIÓS VISZKOZIMÉTERREL 2.2.10. Vszkztás meghatárzása Ph. Hg. VIII. Ph. Eur. 5.3. - 1 01/2006:20210 2.2.10. VISZKOZITÁS MEGHATÁOZÁSA OTÁCIÓS VISZKOZIMÉTEEL A módszer annak az erőnek a mérésén alapul, amely egy flyadékban állandó

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

Elektromos áram. telep a) b)

Elektromos áram. telep a) b) TÓTH : lektromos áram/1 (kbővített óravázlat) 1 lektromos áram Ha elektromos töltések rendezett mozgással egyk helyről a máskra átmennek, elektromos áramról beszélünk lektromos áram folyt pl egy korább

Részletesebben

NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II.

NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II. NKFP6-BKOMSZ05 Célzott mérőhálózat létrehozása a globáls klímaváltozás magyarország hatásanak nagypontosságú nyomon követésére II. Munkaszakasz 2007.01.01. - 2008.01.02. Konzorcumvezető: Országos Meteorológa

Részletesebben

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

A NEM-IONIZÁLÓ SUGÁRZÁSOK. Elektromágneses sugárzások és jellemzőik

A NEM-IONIZÁLÓ SUGÁRZÁSOK. Elektromágneses sugárzások és jellemzőik A NEM-IONIZÁLÓ SUGÁRZÁSOK Fóti Zoltán 1 E tanulmány célja az iparban egyre szélesebb körben alkalmazott és mind többször hallott, sokak számára zavaros nem-ionizáló sugárzás fogalmának ismertetése, felosztása,

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Elosztott rendszerek játékelméleti elemzése: tervezés és öszönzés. Toka László

Elosztott rendszerek játékelméleti elemzése: tervezés és öszönzés. Toka László adat Távközlés és Médanformatka Tanszék Budapest Műszak és Gazdaságtudomány Egyetem Eurecom Telecom Pars Elosztott rendszerek játékelmélet elemzése: tervezés és öszönzés Toka László Tézsfüzet Témavezetők:

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

MÉRÉSI JEGYZŐKÖNYV T: +36703394791. Típus: HS-71-H No: HS-0010596/14

MÉRÉSI JEGYZŐKÖNYV T: +36703394791. Típus: HS-71-H No: HS-0010596/14 MÉRÉSI JEGYZŐKÖNYV Hivatkozási szám: Megrendelő: Kapcsolat tartó személy: Vizsgált termék: Vizsgálati körülmények: EMC-140702/2 Víztisztító Szervíz Kft. H1138. Budapest, Váci út 108.. Panker Teodóra T:

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van?

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van? SZÁMOLÁSI FELADATOK 1. Egy fehérje kcsapásához tartozó standard reakcóentalpa 512 kj/mol és standard reakcóentrópa 1,60 kj/k/mol. Határozza meg, hogy mlyen hőmérséklettartományban játszódk le önként a

Részletesebben