Elektrotechnika. Ballagi Áron

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Elektrotechnika. Ballagi Áron"

Átírás

1 Elektrotechnika Ballagi Áron

2 Mágneses tér Elektrotechnika x/2

3 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat: a vezető kilendül, tehát erő hat rá! Változtassuk I áramerősséget és mérjük meg az F erőket! Változtassuk l vezetékhosszt és mérjük meg az F erőket! Végezzük el a kísérletet egy másik mágnessel is! Elektrotechnika x/3

4 Mágneses indukció kísérlet A kísérletből megállapítható, hogy a mágneses térben elhelyezett l hosszúságú vezetőre, amelyben I áram folyik, akkora F erő hat, F I l hogy az állandó. A villamos áram a vezető körül mágneses teret létesít. Elektrotechnika x/4

5 Mágneses indukció Mágneses indukció a F B = I l hányadossal megadott fizikai jellemző. jelölése: B Vs mértékegysége: tesla, jele: T 1 tesla (T) = 1 m 2 A mágneses térben ható erő vektorok az indukcióvonalak. Ha a mágneses tér homogén az indukcióvonalak párhuzamosak egymással. Az egyenes vezető körül kialakult mágneses tér indukcióvonalai koncentrikus körök, melyek a vezetőtől távolodva egyre ritkulnak. Elektrotechnika x/5

6 Indukcióvonalak Az indukcióvonalak irányának meghatározására a jobbcsavar szabályt használjuk. Elektrotechnika x/6

7 Indukcióvonalak Ha az áramirány két vezetőben ellentétes, a vezetők közötti térben kapjuk a legnagyobb erőhatást. Ha az áramirány megegyezik, a két vezető között az indukcióvonalak ellentétes irányúak, egymás hatását gyengítik. A több menetű tekercs szomszédos menetei között az erőhatás nagyon kicsi, így a tekercs külső terében gyakorlatilag nincs mágneses hatás, a tekercs mágneses tere csak a tekercs belsejében alakul ki. Elektrotechnika x/7

8 Mágneses fluxus Az mágnese indukció értelmezhető a felületegységen merőlegesen áthaladó indukcióvonalak számaként is. Mágneses fluxus az A felületen merőlegesen átmenő indukcióvonalak száma Φ = B A jelölése: Φ mértékegysége: weber, jele: Wb Vs weber (Wb) = 1 m = Vs m Elektrotechnika x/8

9 Mágneses térerő kísérlet Bocsássunk áramot egy N menetű tekercsbe. A tekercs mágneses teret hoz létre, melyben a B mágneses indukciót erőméréssel határozhatjuk meg. Az indukcióvonalak közepes hossza, a tekercs l hosszával azonos. Több mérést végezzünk különböző l,, I és N értékekkel. Elektrotechnika x/9

10 Mágneses térerő Mágneses térerősség a I N H = l hányadossal megadott fizikai jellemző. jelölése: H mértékegysége: A m A mágneses indukció és térerősség hányadosa légmagos tekercsben állandó abszolút vagy vákuum permeabilitás B = = Vs H μ π Am Elektrotechnika x/10

11 Mágnesezési görbék Vasanyagok mágnesezésekor a mágnese indukció és térerőség közötti összefüggés nem lineáris mágnesezési jelleggörbe írja le. A görbék a telítési szinthez tartanak, e felett a mágneses indukció már nem (vagy csak nagyon csekély mértékben) növekszik Elektrotechnika x/11

12 Permeabilitás Ha az áramtekercs nem légüres hanem valamilyen maggal rendelkezik, akkor a mágneses indukció és térerősség hányadosával megadott fizikai mennyiség az anyagra jellemző adat; a mágneses permeabilitás. B μ = H A permeabilitás két tényezőből áll: µ 0 vákuum (abszolút) permeabilitásból és a µ r relatív permeabilitásból. μ = μ0 μr Gyakorlatban a relatív permeabilitást szokás megadni. diamágneses anyagok: µ r < 1 és állandó, pl.:üveg, réz, víz paramágneses anyagok: µ r > 1 és állandó, pl.:al, Si ferromágnese anyagok: µ r >> 1 térerősség függő, pl.: Fe Elektrotechnika x/12

13 Példák 1. Mekkora a mágneses indukció abban a mágneses térben, amelyben elhelyezett vezetőre F = 3 N erő hat, a vezető hossza l = 20 cm, és benne I = 15 A erősségű áram folyik? B = F 3 Vs 1 1 T I 2 = l = m = Elektrotechnika x/13

14 Példák 2. Az N = 1000 menetű, l = 0.1 m hosszú tekercs átmérője d = 2 cm, az áramerősség I = 5 A. A tekercsben Φ = Vs fluxust kell létesíteni. Mekkora a mágneses térerősség és az indukció? I N 5000 A A mágneses térerősség: H = = = l 0.1 m Az indukcióvonalakra merőleges keresztmetszet: 2 2 d π 2 π A = = = 3.14 cm = m A mágneses indukció: 4 Φ Vs B = = = = T 4 2 A m Elektrotechnika x/14

15 Példák 3. Egy állandó mágnesű műszerben a lengőtekercs z = 42 vezetőből áll, a vezetők hossza l = 2 cm. A mágneses indukció a mérések szerint B = 0.1 T. Az áramerősség I = 15 ma. A lengőtekercs átmérője d = 2.5 cm. Számítsuk ki, hogy egy vezetőre és az egész tekercsre mekkora erő hat, és mekkora az erő nyomatéka! Egy vezetőre ható erő: AlA lengőtekercsre ő k kifejtett j erő: ő A lengőtekercsre ható nyomaték: F 6 1 = B I l = = N 6 6 F = z F 1 = = N M d = F = = N Elektrotechnika x/15

16 Mozgási indukció kísérlet B indukciójú állandó mágneses térben állandó v sebességgel mozgassunk egy l hosszúságú vezetőt! A vezető két végpontja közé kössünk egy milivoltmérőt! Változtassuk a B, l, és v értékét egyenként! Elektrotechnika x/16

17 Mozgási indukció Állandó mágneses térben az indukcióvonalakra merőlegesen mozgatva egy vezetőt, benne feszültség indukálódik. Ez a jelenség a mozgási indukció. A mozgási indukció során a vezetőben indukált feszültség egyenesen arányos a tér B mágneses indukciójával, a vezető l hosszával és a mozgás v sebességével Ui = B l v Lenz törvénye: Az indukált áram iránya mindig olyan, hogy a mágneses hatásával a létrehozó változást akadályozza. Elektrotechnika x/17

18 Nyugalmi indukció kísérlet Változtassunk egy N menetszámú tekercsben a mágneses fluxust egy vasmag mozgatásával! Mérjük az indukált feszültséget. Változtassunk egy N menetszámú tekercsben a mágneses fluxust egy vasmag mozgatásával! Mérjük az indukált feszültséget. Elektrotechnika x/18

19 Nyugalmi indukció Ha a mágneses térben levő nyugvó tekercs belsejében a mágneses fluxus megváltozik, a tekercsben (vezetőben) feszültség indukálódik. Ez a jelenség a nyugalmi indukció. A nyugalmi indukció során az indukált feszültség egyenesen arányos a tekercs menetszámával á lés a fluxusváltozással, á l és fordítottan arányos a fluxusváltozás időtartamával. U Δφ i = N Δt Elektrotechnika x/19

20 Kölcsönös indukció kísérlet Helyezzünk két tekercset egymás közelébe! Változtassuk az egyik tekercs mágneses fluxusát az áram ki- és bekapcsolásával, illetve az áramerősség változtatásával! A másik tekercsre kapcsolt voltmérő feszültséget jelez. Elektrotechnika x/20

21 Kölcsönös indukció Kölcsönös indukció jelensége akkor áll elő, ha két tekercs közül az egyik (primer tekercs) fluxusát változtatjuk. Ekkor a második tekercsben (szekunder tekercs) feszültség indukálódik. A kölcsönös indukció során a szekunder tekercsben indukált feszültségre hasonló összefüggés írható le mint a nyugalmi indukciónál. Elektrotechnika x/21

22 Önindukció kísérlet Változtassuk egy tekercsben az áramerősséget! Amíg az áramerősség-változás tart, a tekercsben feszültség indukálódik. Elektrotechnika x/22

23 Önindukció Ha egy vezetőben (tekercsben) változik az áramerősség, megváltozik a vezető körül a mágneses tér, tehát a vezetőben önindukciós feszültség ébred. Az önindukciós feszültség egyenesen arányos az áramerősség változással, és fordítottan arányos az áramerősség változás időtartamával. Δi Ui = L Δ t Az L arányossági tényezőt önindukciós tényezőnek induktivitásnak itá k nevezzük. ΔΦ Δi ΔΦ Δi ΔΦ Ui = N = N L N Δ t Δ i Δ i Δ t = Δ i Elektrotechnika x/23

24 Induktivitás Néhány fontos áramköri elem induktivitása Elektrotechnika x/24

25 Példák A B = 0.8 T indukciójú mágneses térben egy l = 12 cm hosszú vezetőt v = 1 m/s sebességgel mozgatunk. Mekkora feszültség indukálódik a vezetőben? Ui = B l v= = V = 96 mv Elektrotechnika x/25

26 Példák Egy l = 20 cm hosszú vezető v = 1.4 m/s sebességgel metszi a homogén mágneses teret. Az indukált feszültséget mérő műszer belső ellenállása R b = 2000 Ω; a vezető mozgatása közben a műszer I = 0.08 ma áramot vesz fel. Mekkora a mágneses indukció? Az indukált feszültség melyet a műszer mér Ohm törvénye alapján: U A mágneses indukció: i = I R = = 160 mv = 0.16 V b U i 0.16 Vs B = T l 2 = v = m = Elektrotechnika x/26

27 Vizsga! Sorszám Időpont Helyszín Max. létszám :00 F. fsz. F :00 C. fsz. C :00 D. fsz. D :00 D. fsz. D :00 A. fsz. A :00 F. fsz. F 50 Elektrotechnika x/27

28 Coulomb törvénye A pontszerű töltések között erő lép fel, amely egyenesen arányos a Q 1 és Q 2 töltésekkel, és fordítottan arányos a köztük lévő r távolság négyzetével. Q1 Q2 F =± k 2 r A k arányossági tényező értéke légüres térre: 1 ε = εε 0 r k = 4π ε vákuum dielektromos állandó (permittivitás) Dielektromos állandó: relatív permittivitás (ε r, anyag jellemző) k = Nm 2 C ε 0 = 8, As Vm Elektrotechnika x/28

29 Villamos térerősség A statikus villamos térben az Q töltésre ható F erő: ahol az E a villamos térerőség. F = Q E Párhuzamos fémlemezek között a tér homogén Ha d a lemezek közötti távolság a töltés által végzett mechanikai munka: Wmech = F d = Q E d A villamos tér munkája: W vill = Q U Az energia megmaradás elve alapján: Q E d = Q U E U = d mértékegysége: V m Elektrotechnika x/29

30 Villamos kapacitás Homogén szigetelő közegben, egymás környezetében elhelyezkedő két vezető anyagú test kapacitása az egységnyi g y feszültség hatására a vezető testekben szétváló villamos töltésmennyiséget adja meg. Q C = U jelölése: C mértékegysége:farad, jele: F F = As mv A villamos töltések befogadására a kondenzátorok alkalmasak Elektrotechnika x/30

31 Síkkondenzátor A síkkondenzátor kapacitása egyenesen arányos a szigetelő anyag ε permittivitásával és a lemezek A felületével, és fordítottan arányos a lemezek közti d távolsággal. C = A ε d Elektrotechnika x/31

32 Kondenzátorok párhuzamos kapcsolása Q= Q + Q + + Q 1 2 n, 1 1, n n Q= C U Q = C U Q = C U CU = C U + C U+ + C U 1 2 n = n = i= 1 C C C C C n i Elektrotechnika x/32

33 Kondenzátorok soros kapcsolása U = U + U + + U 1 2 Q Q Q U =, U1 =, Un = C C C Q Q Q Q = C C C C 1 2 n 1 n n n = = C C C C C 1 2 n i= 1 i Elektrotechnika x/33

34 KÖSZÖNÖM A FIGYELMET! KÉRDÉSEK? Elektrotechnika 34

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér Bevezetés az analóg és digitális elektronikába III. Villamos és mágneses tér Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos

Részletesebben

MÁGNESESSÉG. Türmer Kata

MÁGNESESSÉG. Türmer Kata MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

Elektrotechnika 9. évfolyam

Elektrotechnika 9. évfolyam Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

EHA kód:...2009-2010-1f. As,

EHA kód:...2009-2010-1f. As, MŰSZAKI FIZIKA I. RMINB135/22/v/4 1. ZH A csoport Név:... Mérnök Informatikus EHA kód:...29-21-1f ε 1 As = 9 4π 9 Vm µ = 4π1 7 Vs Am 1) Két ± Q = 3µC nagyságú töltés közti távolság d = 2 cm. Határozza

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket)

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket) Mágnesség Schay G. Magnesia Μαγνησία Itt találtak már az ókorban mágneses köveket (valószínű villámok áramának a tere mágnesezi fel őket) maghemit Köbös Fe 2 O 3 magnetit Fe 2 +Fe 3 +2O 4 mágnesvasérc

Részletesebben

Időben állandó mágneses mező jellemzése

Időben állandó mágneses mező jellemzése Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR

VILLANYSZERELŐ KÉPZÉS MÁGNESES TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR VIANYSZEREŐ KÉPZÉS 2 0 5 MÁGNESES TÉR ÖSSZEÁÍTOTTA NAGY ÁSZÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Mágneses tér fogalma, jellemzői...3 A mágneses tér hatása az anyagokra...4 Elektromágneses indukció...6 Mozgási

Részletesebben

Mágneses indukcióvektor begyakorló házi feladatok

Mágneses indukcióvektor begyakorló házi feladatok Mágneses indukcióvektor begyakorló házi feladatok 1. Egy vezető keret (lapos tekercs) területe 10 cm 2 ; benne 8A erősségű áram folyik, a menetek száma 20. A keretre ható legnagyobb forgatónyomaték 0,005

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

Elektromágneses indukció kísérleti vizsgálata

Elektromágneses indukció kísérleti vizsgálata A kísérlet célkitűzései: Kísérleti úton tapasztalja meg a diák, hogy mi a különbség a mozgási és a nyugalmi indukció között, ill. milyen tényezőktől függ az indukált feszültség nagysága. Eszközszükséglet:

Részletesebben

Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok

Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok Elektrotechnika 11/C Villamos áramkör A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen: Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

ELEKTROSZTATIKA. Ma igazán feltöltődhettek! ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

Orvosi Fizika 14. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Orvosi Fizika 14. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika 14. Elektromosságtan és mágnességtan az életfolyamatokban 3.. Bari Ferenc egyetemi tanár SZTE ÁOK-TTK Orvosi Fizikai és Orvosi nformatikai ntézet Szeged, 2011. december 19. 2. DEMO eredménye

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:

Részletesebben

MUNKAANYAG. Danás Miklós. Villamos és mágneses tér jellemzői, indukciós jelenségek. A követelménymodul megnevezése:

MUNKAANYAG. Danás Miklós. Villamos és mágneses tér jellemzői, indukciós jelenségek. A követelménymodul megnevezése: Danás Miklós Villamos és mágneses tér jellemzői, indukciós jelenségek A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító

Részletesebben

Tartalom. Bevezetés... 9

Tartalom. Bevezetés... 9 Tartalom Bevezetés... 9 1. Alapfogalmak...11 1.1. Az anyag szerkezete...11 1.2. A villamos töltés fogalma... 13 1.3. Vezető, szigetelő és félvezető anyagok... 15 1.4. Villamos feszültség és potenciál...

Részletesebben

Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet

Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet A hallgatói útmutatóban vázolt program a csoport felkészültsége

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

Vasmagok jellemzőinek mérése

Vasmagok jellemzőinek mérése Vasmagok jellemzőinek mérése 017.0.11. Összeállította: Mészáros András Műszerek és kellékek: Mérődoboz, Mérendő transzformátorok, Kondenzátorok 3 db, 0-4V toroid transzformátor, Hameg HM801 digitális multiméter

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása?

EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása? EGYENÁRAM 1. Mit utat eg az áraerısség? 2. Mitıl függ egy vezeték ellenállása? Ω 2 3. Mit jelent az, hogy a vas fajlagos ellenállása 0,04? 4. Írd le Oh törvényét! 5. Milyen félvezetı eszközöket isersz?

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése Mérési jegyzőkönyv Szőke Kálmán Benjamin 2010. november 9. Mérés célja: A mérési feladat hitelesíteni a Hall-szondát, és meghatározni a 3-as alumínium rúd, 5-ös réz rúd

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

Négypólusok helyettesítő kapcsolásai

Négypólusok helyettesítő kapcsolásai Transzformátorok Magyar találmány: Bláthy Ottó Titusz (1860-1939), Déry Miksa (1854-1938), Zipernovszky Károly (1853-1942), Ganz Villamossági Gyár, 1885. Felépítés, működés Transzformátor: négypólus. Működési

Részletesebben

Ha valahol a mágneses tér változik, akkor ott a tér bizonyos pontjai között elektromos potenciálkülönbség jön létre, ami például egy zárt vezető

Ha valahol a mágneses tér változik, akkor ott a tér bizonyos pontjai között elektromos potenciálkülönbség jön létre, ami például egy zárt vezető Ha valahol a mágneses tér változik, akkor ott a tér bizonyos pontjai között elektromos potenciálkülönbség jön létre, ami például egy zárt vezető hurokban elektromos áramot hoz létre. Mozgási indukció A

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása

Részletesebben

1. Elektromos alapjelenségek

1. Elektromos alapjelenségek 1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos

Részletesebben

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne: 3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő

Részletesebben

3.1. ábra ábra

3.1. ábra ábra 3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

Időben állandó mágneses mező (Vázlat)

Időben állandó mágneses mező (Vázlat) Időben állandó mágneses mező (Vázlat) 1. Mágneses alapjelenségek 2. Mágneses mező vizsgálata 3. Mágneses mező jellemzése Mágneses indukció Mágneses fluxus 4. Mágneses indukcióvonalak 5. Időben állandó

Részletesebben

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan

Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan Mágnesesség, indukció, váltakozó áram Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

A mágneses szuszceptibilitás vizsgálata

A mágneses szuszceptibilitás vizsgálata Bán Marcell ETR atonosító BAMTACT.ELTE Beadási határidő: 2012.12.13 A mágneses szuszceptibilitás vizsgálata 1.1 Mérés elve Anyagokat mágneses térbe helyezve, a tér hatására az anygban mágneses dipólusmomentum

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

Bevezető fizika (VBK) zh2 tesztkérdések

Bevezető fizika (VBK) zh2 tesztkérdések Mi a nyomás mértékegysége? NY) kg m 2 /s 2 TY) kg m 2 /s GY) kg/(m s 2 ) LY) kg/(m 2 s 2 ) Mi a fajhő mértékegysége? NY) kg m 2 /(K s 2 ) GY) J/K TY) kg m/(k s 2 ) LY) m 2 /(K s 2 ) Mi a lineáris hőtágulási

Részletesebben

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri

Részletesebben

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz Villamos mérések Analóg (mutatós) műszerek Készítette: Füvesi Viktor doktorandusz rodalom UrayVilmos Dr. Szabó Szilárd: Elektrotechnika o.61-79 1 Alapfogalmak Mutatós műszerek Legegyszerűbbek Közvetlenül

Részletesebben

1. fejezet. Gyakorlat C-41

1. fejezet. Gyakorlat C-41 1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,

Részletesebben

Fizika 8. oszt. Fizika 8. oszt.

Fizika 8. oszt. Fizika 8. oszt. 1. Statikus elektromosság Dörzsöléssel a testek elektromos állapotba hozhatók. Ilyenkor egyik testről töltések mennek át a másikra. Az a test, amelyről a negatív töltések (elektronok) átmennek, pozitív

Részletesebben

Vasmagok jellemzőinek mérése

Vasmagok jellemzőinek mérése Vasmagok jellemzőinek mérése 08.0.0. Összeállította: Mészáros András Műszerek és kellékek: Mérődoboz, Mérendő transzformátorok 3db, 0-4V toroid autótranszformátor, Hameg HM80 digitális multiméter, Hameg

Részletesebben

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/

Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/ Fizika belépő kérdések /Földtudományi alapszak I. Évfolyam II. félév/. Coulomb törvény: a pontszerű töltések között ható erő (F) egyenesen arányos a töltések (Q,Q ) szorzatával és fordítottan arányos a

Részletesebben