2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető"

Átírás

1 . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék felrajzolása mért adatok alapján.. Elméleti bevezető. Az érzékelő bemutatása A termisztorok működése a termoreziztivitás jelenségén, azaz az elektromos ellenállás hőmérséklet-függőségén alapszik. Minden anyag változtatja fajlagos ellenállását hőmérséklet hatására, de a változás mértéke és az azt leiró egyenletek formája anyagonként változik. Félvezetők esetében a fajlagos ellenállás változást leíró törvény a következő: w w k k 0e + e ρ = ρ ρ () ahol: ρ 0, ρ a tiszta, illetve szennyezett félvezető fajlagos ellenállása 0 =0 0 K hőmérsékleten. Δw Δw / tiszta illetve szennyezett félvezető anyagban a töltéshordozók egyik energia szintről a másik energia szintre történő átugráshoz szükséges energia hőmérséklet, melyen a fajlagos ellenállást számoljuk 3 k Boltzmann féle állandó, k =,38 0 J 0 K Amint látjuk, a fajlagos ellenállás változása exponenciális. Az elektromos fajlagos ellenállás hőmérsékletfüggőségét felhasználva, hőmérsékletre érzékeny ellenállást kapunk, melynek meghatározott hőmérséklet-intervallumra a fajlagos ellenállása következő: ahol a gyorsan változó tényező az exponenciális. Viszonylag kis hőmérsékleten (00 C C-ig) a b paraméter értéke zérónak tekinthető, tehát az előző a következőképpen alakul: 6 w b k A e ρ = = () σ

2 w k ρ = A e (3) Ezt írhatjuk az alábbi alakba is, ami a termisztor hőmérsékleti jelleggörbéjének egyenlete B = A e (4) ahol: A hőmérséklettől független anyagállandó B hőmérsékletérzékenységi mutatónak nevezett állandó, Kelvin fokban kifejezve - hőmérséklet Mivel a termisztorok ellenállása nő vagy csökken a hőmérséklet növekedésével, megkülönböztetünk pozitermisztorokat (PC), ahol α >0 és negatermisztorokat (NC), ahol α <0 (α hőmérséklet változási együttható). Az. ábrán a termisztorok hőmérséklet függvényében történő ellenállásváltozása látható, összehasonlítva a fémek ellenállás-változásával. ermisztorok gyártásához a IV. főcsoportbeli fémek (Cr, Mn, Fe, Co, Ni) oxidjait használják fel. Negatermisztorok gyártásához 50 C hőmérsékletig NiO+MnO, NiO+MnO+CoO, Cu O+MnO, Cu O+ZnO vegyületeket használnak.a pozitermisztorok gyártásához általában titánötvözeteket használnak. A termisztorokat széles körben alkalmazzák hőmérséklet-érzékelőként, hőmérsékletszabályozó, túlmelegedés-védő áramkörökben, valamint a hőmérsékletváltozáskor fellépő nyomás stabilizálására, áramkorlátozásra, stb...a termisztorok paraméterei A termisztorok helyes használatához ismerni kell azok jelleggörbéit és paramétereit. 7

3 A hőmérséklet-érzékenységi mutató (B) meghatározása feltételezi két hőmérsékleten mért ellenállás ismeretét, melyek értéke ( ) és ( ). Ezek segitségével kifejezhetjük a B paramétert. ln B = Szabvány szerint ez a két hőmérséklet a =98,5 K (+5 C) és =358,5 K (+85 C) értékeket veszi fel, de lehet más érétkekkel is számolni. A B paraméter nagyságrendje 000 és 4000 között változik. Az ellenállás változás együtthatóját (hőmérséklet függvényében) (α ) a következő írja le: d α = [ / K ] (6) d Ez az együttható módosúl a hőmérséklet függvényében, ezért minden hőmérsékleten meg kell határozni. Egy adott és értékek közti hőmérsékletintervallumra meg lehet határozni egy = hőmérséklet értéknek megfelelő α középértéket, a következő egyenlet alapján: ( ) α = ln (7) A hőmérsékleti időállandó (τ), amit termisztor-inerciának is neveznek a termisztor válaszidejét méri.ezt több féle képen is meghatározhatjuk: Közvetett melegítésű termisztor esetén a τ állandó azt az időt jelenti, mialatt a termisztort 00 C-os környezetbe téve, a termisztor ellenállása eléri a 0 C hőmérsékleten mért ellenállás 37%-át (negatermisztorral dolgozva). Önmelegítésű termisztorok esetén τ az az idő, mialatt az átfolyó áram hőhatására felmelegedett termisztor ellenállása 63%-ot csökken, ha lekapcsoljuk róla a feszültséget. Az időállandó függ a termisztor méreteitől, anyagától és névleges teljesítményétől. A feszültség-áram U=f(I) átviteli jelleggörbe adott hőmérsékleten a termisztor típusától függ. Ezt a jelleggörbét a. ábra szemlélteti.. Ábra A termisztor U=f(I) jelleggörbéje. 8

4 Az ábra segitségével két ellenállásértéket határozunk meg, a statikus illetve dinamikus ellenállást melyeket egy adott P pontban a következő képletek adnak meg: A munkapont, általában az U=f(I) jelleggörbe lineáris szakaszán található. 3. A mérés menete: U P S U U = = = tgα tgβ (9) (8) I I P I D = U P I P I.lépés: Az U = f ( I ) karakterisztika meghatározása. A mérés környezeti hőmérsékleten történik. A termisztorra rákötjük az egyenáramú tápot a 3. ábra szerint. Növeljük a feszültséget az -es táblázatban megadott értékekre és lejegyezzük a megfelelő áramértékeket. Grafikusan ábrázoljuk az eredményt. 3. Ábra A termisztor bekötése az U = f ( I ) karakterisztika meghatározásához.. áblázat ermisztor U (V) I (ma) II. lépés: Az = f ( ) karakterisztika meghatározása. A termisztort a környezeti hőmérsékleten levő vízbe helyezzük. A vizet melegíteni kezdjük (Maximum 60 fokig!). Ugyanabban az időben leolvassuk a termisztoron mért ellenállás és a referencia hőmérséklet értékeket. A termisztoron az ellenállást LC mérővel mérjük, a referencia hőmérsékletet a higanyos hőmérő szolgáltatja. Kitöltjük a -es táblázatot, majd grafikusan ábrázoljuk az eredményt. 4. Ábra A termisztor = f ( ) karakterisztikájának meghatározásához 9

5 . áblázat t ( C) (k Ω) III. lépés Számítások. A -es táblázatból kiemelünk két mérési eredményt, például =5 C és =60 C valamint az ezeknek megfelelő ellenállásértékeket jelölve és vel. Kiszámítjuk a B és az α paramétereket az (5) valamint a (7) ek segitségével. Az U = f (I) karakterisztika grafikonján felveszünk egy P pontot, majd leolvassuk a koordinátákat (U, I) a feszültséget és az áramot. Ennek segitségével meghatározzuk az S statikus ellenállást a (8) alapján. A leolvasott (U, I) pont körűl még leolvasunk két (U, I) értékpárt, egyet a P pont felett, a másikat a P pont alatt. Ezekkel kiszámítjuk az D dinamikus ellenállást a (9) szerint. Kitöltjük a 3-as táblázatot. 3. áblázat Paraméterek.táblázat alapján (5) (7) (8) (9) ermisztor (5) (47) B α S D [Ω] [Ω] [ K] [/ C] [Ω] [Ω] 4. Kérdések és feladatok.. Az α paraméter értékét milyen hőmérsékletre határoztuk meg? (lásd. alfejezet). Milyen mérőhidat használnánk, ha termisztorral mért hőmérsékletet feszültséggé kellene átalakítani. ajzoljuk le a javasolt mérőáramkört. 3. A mérés során használt termisztor negatermisztor vagy pozitermisztor volt? 4. Keressünk alkalmazásokat a termisztor használatára! 0

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS

3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 1. A gyakorlat célja A Platina100 hőellenállás tanulmányozása kiegyensúlyozott és kiegyensúlyozatlan Wheatstone híd segítségével. Az érzékelő ellenállásának mérése

Részletesebben

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE

5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:

Részletesebben

HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás. 2010/2011.BSc.II.évf.

HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás. 2010/2011.BSc.II.évf. HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás 2010/2011.BSc.II.évf. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók 1.Ellenállás változáson alapuló

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

SCHWARTZ 2012 Emlékverseny

SCHWARTZ 2012 Emlékverseny SCHWARTZ 2012 Emlékverseny A TRIÓDA díjra javasolt feladat ADY Endre Líceum, Nagyvárad, Románia 2012. november 10. Befejezetlen kísérlet egy fecskendővel és egy CNC hőmérővel A kísérleti berendezés. Egy

Részletesebben

HŐMÉRSÉKLETMÉRÉS. Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja. 961,93 C Ezüst dermedéspontja. 444,60 C Kén olvadáspontja

HŐMÉRSÉKLETMÉRÉS. Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja. 961,93 C Ezüst dermedéspontja. 444,60 C Kén olvadáspontja Hőmérsékletmérés HŐMÉRSÉKLETMÉRÉS Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja 961,93 C Ezüst dermedéspontja 444,60 C Kén olvadáspontja 0,01 C Víz hármaspontja -182,962 C Oxigén forráspontja

Részletesebben

HŐMÉRSÉKLETMÉRÉS. Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja. 961,93 C Ezüst dermedéspontja. 444,60 C Kén olvadáspontja

HŐMÉRSÉKLETMÉRÉS. Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja. 961,93 C Ezüst dermedéspontja. 444,60 C Kén olvadáspontja Hőmérsékletmérés HŐMÉRSÉKLETMÉRÉS Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja 961,93 C Ezüst dermedéspontja 444,60 C Kén olvadáspontja 0,01 C Víz hármaspontja -182,962 C Oxigén forráspontja

Részletesebben

Gépész BSc Nappali MFEPA31R03. Dr. Szemes Péter Tamás 2. EA, 2012/2013/1

Gépész BSc Nappali MFEPA31R03. Dr. Szemes Péter Tamás 2. EA, 2012/2013/1 Gépész BSc Nappali MFEPA31R03 Dr. Szemes Péter Tamás 2. EA, 2012/2013/1 Tartalom Beavatkozók és hatóműveik Szabályozó szelepek Típusok, jellemzői, átfolyási jelleggörbéi Csapok Hajtóművek Segédenergia

Részletesebben

Analóg telemetriagyűjtés módszereinek áttekintése. Hőmérsékletmérők és árammérők típusai, méretezése

Analóg telemetriagyűjtés módszereinek áttekintése. Hőmérsékletmérők és árammérők típusai, méretezése Analóg telemetriagyűjtés módszereinek áttekintése. Hőmérsékletmérők és árammérők típusai, méretezése Űrtechnológia a gyakorlatban Kocsis Gábor BME Űrkutató Csoport, 708-as labor kocsis@mht.bme.hu Kommunikációs

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

10. Laboratóriumi gyakorlat TENZOMETRIKUS ÁTALAKÍTÓK

10. Laboratóriumi gyakorlat TENZOMETRIKUS ÁTALAKÍTÓK 10. Loratóriumi gyakorlat TENZOMETIKS ÁTALAKÍTÓK 1.A gyakorlat célja Mechanikai megnyúlások mérése nyúlásmérő bélyegekkel. Nyúlásmérő átalakítokjellegzetes mérőköreinek tanulmányozása. A mért elektromos

Részletesebben

9. Gyakorlat - Optoelektronikai áramköri elemek

9. Gyakorlat - Optoelektronikai áramköri elemek 9. Gyakorlat - Optoelektronikai áramköri elemek (Componente optoelectronice) (Optoelectronic devices) 1. Fénydiódák (LED-ek) Elnevezésük az angol Light Emitting Diode rövidítéséből származik. Áramköri

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését

Részletesebben

PN átmenet kivitele. (B, Al, Ga, In) (P, As, Sb) A=anód, K=katód

PN átmenet kivitele. (B, Al, Ga, In) (P, As, Sb) A=anód, K=katód PN átmenet kivitele A pn átmenet: Olyan egykristályos félvezető tartomány, amelyben egymással érintkezik egy p és egy n típusú övezet. Egy pn átmenetből álló eszköz a dióda. (B, Al, Ga, n) (P, As, Sb)

Részletesebben

2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával.

2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával. 2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával. A MÉRÉS CÉLJA Az elterjedten alkalmazott hőmérséklet-érzékelők (ellenállás-hőmérő, termisztor, termoelem) megismerése,

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

Kiegészítő tudnivalók a fizikai mérésekhez

Kiegészítő tudnivalók a fizikai mérésekhez Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók

Részletesebben

Speciális passzív eszközök

Speciális passzív eszközök Varisztorok Voltage Dependent Resistor VDR Variable resistor - varistor Speciális passzív eszközök Feszültségfüggő ellenállás, az áram erősen függ a feszültségtől: I=CU α ahol C konstans, α értéke 3 és

Részletesebben

Elektromos egyenáramú alapmérések

Elektromos egyenáramú alapmérések Elektromos egyenáramú alapmérések A mérés időpontja: 8.. 5. hétf ő,.-4. Készítették: 5.mérőpár - Lele István (CYZH7) - Nagy Péter (HQLOXW) A mérések során elektromos egyenáramú köröket vizsgálunk feszültség-

Részletesebben

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1 MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?

III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc. Mérés dátuma: 28... Leadás dátuma: 28.. 8. . Mérések ismertetése A Peltier-elemek az. ábrán látható módon vannak elhelyezve

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata MÉRÉSI JEGYZŐKÖNYV A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata A mérés helye: Irinyi János Szakközépiskola és Kollégium

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

6. Laboratóriumi gyakorlat KAPACITÍV SZINTÉRZÉKELŐK

6. Laboratóriumi gyakorlat KAPACITÍV SZINTÉRZÉKELŐK 6. Lbortóriumi gykorlt KAPAITÍV SZINTÉRZÉKELŐK. A gykorlt célj A kpcitív szintmérés elvének bemuttás. A (x) jelleggörbe ábrázolás szigetelő és vezető olyékok esetén. Egy stbil multivibrátor elhsználás

Részletesebben

Világítástechnikai mérés

Világítástechnikai mérés 1. gyakorlat Világítástechnikai mérés A gyakorlat során a hallgatók 3 mérési feladatot végeznek el: 1. Fotometriai távolságtörvény érvényességének vizsgálata Mérés célja: A fotometriai távolságtörvény

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Fázisátalakulások vizsgálata Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/12/2011 Beadás ideje: 10/19/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két

Részletesebben

A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet.

A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet. 1. HŐTÁGULÁSON ALAPULÓ ÁTALAKÍTÓK: HŐMÉRSÉKLET A hőmérséklet változását elmozdulássá alakítják át 1.1 Folyadéktöltésű hőmérők (helyzet változássá) A töltőfolyadék térfogatváltozása alapján, egy viszonyítási

Részletesebben

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban 6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.

Részletesebben

A mérési feladat (1) A fotoellenállás R ellenállása függ a megvilágítás erősségétől (E), amely viszont arányos az izzószál teljesítmény-sűrűségével:

A mérési feladat (1) A fotoellenállás R ellenállása függ a megvilágítás erősségétől (E), amely viszont arányos az izzószál teljesítmény-sűrűségével: A mérési feladat 1900-ban Planck felvetett egy új hipotézist, miszerint a fény kibocsátása hv nagyságú energiakvantumokban történik. 1905-ben Einstein kiegészítette ezt a feltevést: a fény a kibocsátás

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 1. A gyakorlat célja: Az inkrementális adók működésének megismerése. Számítások és szoftverfejlesztés az inkrementális adók katalógusadatainak feldolgozására

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

a NAT-2-0244/2008 nyilvántartási számú akkreditált státuszhoz

a NAT-2-0244/2008 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület BÕVÍTETT RÉSZLETEZÕ OKIRAT a NAT-2-0244/2008 nyilvántartási számú akkreditált státuszhoz A GAMMA-DIGITAL Fejlesztõ és Szolgáltató Kft. (1119 Budapest, Petzval J. u. 52.) kalibrálólaboratóriuma

Részletesebben

5. Laboratóriumi gyakorlat

5. Laboratóriumi gyakorlat 5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar

Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar Folyamatirányítás Számítási gyakorlatok Gyakorlaton megoldandó feladatok Készítette: Dr. Farkas Tivadar 2010 I.-II. RENDŰ TAGOK 1. feladat Egy tökéletesen kevert, nyitott tartályban folyamatosan meleg

Részletesebben

Elektronikus fekete doboz vizsgálata

Elektronikus fekete doboz vizsgálata Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel

Részletesebben

I. Félvezetődiódák. Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára. Farkas Viktor

I. Félvezetődiódák. Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára. Farkas Viktor I. Félvezetődiódák Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára Farkas Viktor Bevezetés Szilícium- és Germánium diódák A fénykibocsátó dióda (LED) Zener dióda Mérési elrendezések

Részletesebben

Tápegység tervezése. A felkészüléshez szükséges irodalom Alkalmazandó műszerek

Tápegység tervezése. A felkészüléshez szükséges irodalom  Alkalmazandó műszerek Tápegység tervezése Bevezetés Az elektromos berendezések működéséhez szükséges energiát biztosító források paraméterei gyakran különböznek a berendezés részegységeinek követelményeitől. A megfelelő paraméterű

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Diszkrét aktív alkatrészek és egyszerû alkalmazásaik. Elmélet A diszkrét aktív elektronikai alkatrészek (dióda, különbözõ tranzisztorok, tirisztor) elméleti

Részletesebben

A ventilátor teljesítményfelvétele. csökken a teljes fordulatszám 50%-ánál. Hagyományos centrifugálventilátor

A ventilátor teljesítményfelvétele. csökken a teljes fordulatszám 50%-ánál. Hagyományos centrifugálventilátor A ventilátor teljesítményfelvétele %-kal csökken a teljes fordulatszám %-ánál. Alacsony profilú vegyes áramlású ventilátorok önkenő motorcsapágyazással és kefe nélküli DC motorral, magas hatásfok és alacsony

Részletesebben

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész

33 522 01 0000 00 00 Elektronikai műszerész Elektronikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

Nagyfeszültségű távvezetékek termikus terhelhetőségének dinamikus meghatározása az okos hálózat eszközeivel

Nagyfeszültségű távvezetékek termikus terhelhetőségének dinamikus meghatározása az okos hálózat eszközeivel Nagyfeszültségű távvezetékek termikus terhelhetőségének dinamikus meghatározása az okos hálózat eszközeivel Okos hálózat, okos mérés konferencia 2012. március 21. Tárczy Péter Energin Kft. Miért aktuális?

Részletesebben

A hőmérséklet kalibrálás gyakorlata

A hőmérséklet kalibrálás gyakorlata A hőmérséklet kalibrálás gyakorlata A vezérlőelem lehet egy szelep, ami nyit, vagy zár, hogy több gőzt engedjen a fűtő folyamatba, vagy több tüzelőanyagot az égőbe. A két legáltalánosabban elterjedt érzékelő

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

Elektronika alapjai. Témakörök 11. évfolyam

Elektronika alapjai. Témakörök 11. évfolyam Elektronika alapjai Témakörök 11. évfolyam Négypólusok Aktív négypólusok. Passzív négypólusok. Lineáris négypólusok. Nemlineáris négypólusok. Négypólusok paraméterei. Impedancia paraméterek. Admittancia

Részletesebben

Passzív és aktív aluláteresztő szűrők

Passzív és aktív aluláteresztő szűrők 7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.

Részletesebben

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I.2. Konverziók Geokémiai vizsgálatok során gyakran kényszerülünk arra, hogy különböző kémiai koncentrációegységben megadott adatokat hasonlítsunk össze vagy alakítsuk

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF -

Márkus Zsolt Tulajdonságok, jelleggörbék, stb BMF - Márkus Zsolt markus.zsolt@qos.hu Tulajdonságok, jelleggörbék, stb. 1 A hatáslánc részegységekből épül fel, melyek megvalósítják a jelátvitelt. A jelátviteli sajátosságok jellemzésére (leírására) létrehozott

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál

8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál 8. első energia, entalpia és entrópia ideális és nem ideális gázoknál első energia első energia (U): a vizsgált rendszer energiája, DE nem tartozik hozzá - a teljes rendszer együttes mozgásából adódó mozgási

Részletesebben

EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA

EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA Az elektronikával foglalkozó emberek sokszor építenek házilag erősítőket, nagyrészt tranzisztorokból. Ehhez viszont célszerű egy olyan berendezést

Részletesebben

601H-R és 601H-F típusú HŐÉRZÉKELŐK

601H-R és 601H-F típusú HŐÉRZÉKELŐK 601H-R és 601H-F típusú HŐÉRZÉKELŐK 1. BEVEZETÉS A 601H-R és 601H-F hőérzékelők a mennyezetre szerelhető, aljzatra illeszthető 600-as sorozatú érzékelők közé tartoznak. Kétvezetékes hálózatba szerelhető,

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Nagyteljesítményű LEDek fénytechnikai és elektromos tulajdonságai valós működési körülmények között

Nagyteljesítményű LEDek fénytechnikai és elektromos tulajdonságai valós működési körülmények között tulajdonságai valós működési körülmények között 2010.02.24 MEE-VTT LED konferencia Előadó: Szegulja Márton (M.Eng) 1 LEDek fényárammérése (Diplomamunka) Verfahren und Messanordnung für LED Lichtstrommessungen

Részletesebben

Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris.

Attól függően, hogy a tranzisztor munkapontját melyik karakterisztika szakaszon helyezzük el, működése kétféle lehet: lineáris és nemlineáris. Alapkapcsolások (Attól függően, hogy a tranzisztor három csatlakozási pontja közül melyiket csatlakoztatjuk állandó potenciálú pólusra, megkülönböztetünk): földelt emitteres földelt bázisú földelt kollektoros

Részletesebben

ELLENÁLL 1. MÉRŐ ÉRINTKEZŐK:

ELLENÁLL 1. MÉRŐ ÉRINTKEZŐK: 1. MÉŐ ÉINTKEZŐK: 1. MÉŐ ÉINTKEZŐK (folytatás): á tm F ö s s z e s z o rító 1. MÉŐ ÉINTKEZŐK (folytatás): meghibásodott érintkezők röntgen felvételei EED CSÖVES ÉINTKEZŐ: É D 2. CSÚSZÓÉINTKEZŐS ÁTALAKÍTÓK

Részletesebben

Hőérzékelés 2006.10.05. 1

Hőérzékelés 2006.10.05. 1 Hőérzékelés 2006.10.05. 1 Hőérzékelés Hőmérséklet fizikai állapotjelző abszolút és relatív fogalom klasszikus elmélet: elemi mozgások, hőtermelés, hőmérséklet relatív fogalom relatív skálák Hőérzékelés/2

Részletesebben

Ellenállásmérés Wheatstone híddal

Ellenállásmérés Wheatstone híddal Ellenállásmérés Wheatstone híddal A nagypontosságú elektromos ellenállásmérésre a gyakorlatban sokszor szükség van. Nagyon sok esetben nem elektromos mennyiségek mérését is visszavezethetjük ellenállásmérésre.

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet

Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Óbudai Egyetem Kandó Kálmán Villamosmérnöki Kar Mikroelektronikai és Technológia Intézet Mikro- és nanotechnika (KMENT14TNC) Szenzorok és mikroáramkörök (KMESM11TNC) Laboratóriumi gyakorlatok Mérési útmutató

Részletesebben

A 31. Nemzetközi Fizikai Diákolimpia feladatai 1

A 31. Nemzetközi Fizikai Diákolimpia feladatai 1 A 31. Nemzetközi Fizikai Diákolimpia feladatai 1 Kísérleti forduló l. feladat. Mágneses korong. Ebben a mérési feladatban szükséges a mérési hiba feltüntetése minden mért adatnál eredménynél és a grafikonokon.

Részletesebben

Nagyteljesítményű LEDek fénytechnikai és elektromos tulajdonságai valós működési körülmények között

Nagyteljesítményű LEDek fénytechnikai és elektromos tulajdonságai valós működési körülmények között tulajdonságai valós működési körülmények között 2012.02. 07 MEE-VTT 3. LED konferencia Előadó: SZEGULJA, Márton (M.Eng) 1 a) c) b) d) 1. Ábra: Mérőhelyek és mérőberendezések: a) LED mérőhely FH-Hannover;

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

I. Nyitó lineáris tartomány II. Nyitó exponenciális tartomány III. Záróirányú tartomány IV. Letörési tartomány

I. Nyitó lineáris tartomány II. Nyitó exponenciális tartomány III. Záróirányú tartomány IV. Letörési tartomány A DIÓDA. A dióda áramiránytól függı ellenállású alkatrész. Az egykristály félvezetı diódákban a p-n átmenet tulajdonságait használják ki. A p-n átmenet úgy viselkedik, mint egy áramszelep, az áramot az

Részletesebben

OMRON MŰSZAKI INFORMÁCIÓK OMRON

OMRON MŰSZAKI INFORMÁCIÓK OMRON A hőmérséklet A stabil hőmérséklethoz szükséges idő függ a szabályozott rendszertől. A válaszidő megrövidítése rendszerint, túllövést vagy lengő rendszert fog eredményezni. Ha csökkentjük a hőmérséklet

Részletesebben

MIKROELEKTRONIKAI ÉRZÉKELŐK I

MIKROELEKTRONIKAI ÉRZÉKELŐK I MIKROELEKTRONIKAI ÉRZÉKELŐK I Dr. Pődör Bálint BMF KVK Mikroelektronikai és Technológia Intézet és MTA Műszaki Fizikai és Anyagtudományi Kutató Intézet 2. ELŐADÁS: LABORMÉRÉSEK 2008/2009 tanév 1. félév

Részletesebben

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! 1 Óbudai Egyetem 2 TARTALOMJEGYZÉK I. Bevezetés 3 I-A. Beüzemelés.................................. 4 I-B. Változtatható ellenállások...........................

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

Tippek-trükkök a BAUSOFT programok használatához. Kazánok tulajdonságainak változása az égéstermék tömegáramának függvényében

Tippek-trükkök a BAUSOFT programok használatához. Kazánok tulajdonságainak változása az égéstermék tömegáramának függvényében Tippek-trükkök a BAUSOFT programok használatához Kazánok tuladonságainak változása az égéstermék tömegáramának függvényében Baumann Mihály ügyvezető BAUSOFT Pécsvárad Kft. Ú szabványok bevezetésekor gyakran

Részletesebben

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata. El. II. 4. mérés. 1. Áramgenerátorok bipoláris tranzisztorral A mérés célja: Áramgenerátorok alapeseteinek valamint FET ekkel és FET bemenetű műveleti erősítőkkel felépített egyfokozatú erősítők vizsgálata.

Részletesebben

Ellenállások. Alkalmazás - áramkorlátozás - feszültség beállítás, feszültségosztás - fűtőtest, fűtőellenállás

Ellenállások. Alkalmazás - áramkorlátozás - feszültség beállítás, feszültségosztás - fűtőtest, fűtőellenállás Ellenállások Alkalmazás - áramkorlátozás - feszültség beállítás, feszültségosztás - fűtőtest, fűtőellenállás Fajtái Ellenállás szerint - állandó értékű - változtatható értékű -speciális (termisztorok,

Részletesebben

Ellenáramú hőcserélő

Ellenáramú hőcserélő Ellenáramú hőcserélő Elméleti összefoglalás, emlékeztető A hőcserélő alapvető működésével és az egyszerűsített számolásokkal a Vegyipari műveletek. tárgy keretében ismerkedtek meg. A mérés elvégzéséhez

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

1. konferencia: Egyenáramú hálózatok számítása

1. konferencia: Egyenáramú hálózatok számítása 1. konferencia: Egyenáramú hálózatok számítása 1.feladat: 20 1 kω Határozzuk meg az R jelű ellenállás értékét! 10 5 kω R z ellenállás értéke meghatározható az Ohm-törvény alapján. Ehhez ismernünk kell

Részletesebben