2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető
|
|
- Ida Mészárosné
- 9 évvel ezelőtt
- Látták:
Átírás
1 . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék felrajzolása mért adatok alapján.. Elméleti bevezető. Az érzékelő bemutatása A termisztorok működése a termoreziztivitás jelenségén, azaz az elektromos ellenállás hőmérséklet-függőségén alapszik. Minden anyag változtatja fajlagos ellenállását hőmérséklet hatására, de a változás mértéke és az azt leiró egyenletek formája anyagonként változik. Félvezetők esetében a fajlagos ellenállás változást leíró törvény a következő: w w k k 0e + e ρ = ρ ρ () ahol: ρ 0, ρ a tiszta, illetve szennyezett félvezető fajlagos ellenállása 0 =0 0 K hőmérsékleten. Δw Δw / tiszta illetve szennyezett félvezető anyagban a töltéshordozók egyik energia szintről a másik energia szintre történő átugráshoz szükséges energia hőmérséklet, melyen a fajlagos ellenállást számoljuk 3 k Boltzmann féle állandó, k =,38 0 J 0 K Amint látjuk, a fajlagos ellenállás változása exponenciális. Az elektromos fajlagos ellenállás hőmérsékletfüggőségét felhasználva, hőmérsékletre érzékeny ellenállást kapunk, melynek meghatározott hőmérséklet-intervallumra a fajlagos ellenállása következő: ahol a gyorsan változó tényező az exponenciális. Viszonylag kis hőmérsékleten (00 C C-ig) a b paraméter értéke zérónak tekinthető, tehát az előző a következőképpen alakul: 6 w b k A e ρ = = () σ
2 w k ρ = A e (3) Ezt írhatjuk az alábbi alakba is, ami a termisztor hőmérsékleti jelleggörbéjének egyenlete B = A e (4) ahol: A hőmérséklettől független anyagállandó B hőmérsékletérzékenységi mutatónak nevezett állandó, Kelvin fokban kifejezve - hőmérséklet Mivel a termisztorok ellenállása nő vagy csökken a hőmérséklet növekedésével, megkülönböztetünk pozitermisztorokat (PC), ahol α >0 és negatermisztorokat (NC), ahol α <0 (α hőmérséklet változási együttható). Az. ábrán a termisztorok hőmérséklet függvényében történő ellenállásváltozása látható, összehasonlítva a fémek ellenállás-változásával. ermisztorok gyártásához a IV. főcsoportbeli fémek (Cr, Mn, Fe, Co, Ni) oxidjait használják fel. Negatermisztorok gyártásához 50 C hőmérsékletig NiO+MnO, NiO+MnO+CoO, Cu O+MnO, Cu O+ZnO vegyületeket használnak.a pozitermisztorok gyártásához általában titánötvözeteket használnak. A termisztorokat széles körben alkalmazzák hőmérséklet-érzékelőként, hőmérsékletszabályozó, túlmelegedés-védő áramkörökben, valamint a hőmérsékletváltozáskor fellépő nyomás stabilizálására, áramkorlátozásra, stb...a termisztorok paraméterei A termisztorok helyes használatához ismerni kell azok jelleggörbéit és paramétereit. 7
3 A hőmérséklet-érzékenységi mutató (B) meghatározása feltételezi két hőmérsékleten mért ellenállás ismeretét, melyek értéke ( ) és ( ). Ezek segitségével kifejezhetjük a B paramétert. ln B = Szabvány szerint ez a két hőmérséklet a =98,5 K (+5 C) és =358,5 K (+85 C) értékeket veszi fel, de lehet más érétkekkel is számolni. A B paraméter nagyságrendje 000 és 4000 között változik. Az ellenállás változás együtthatóját (hőmérséklet függvényében) (α ) a következő írja le: d α = [ / K ] (6) d Ez az együttható módosúl a hőmérséklet függvényében, ezért minden hőmérsékleten meg kell határozni. Egy adott és értékek közti hőmérsékletintervallumra meg lehet határozni egy = hőmérséklet értéknek megfelelő α középértéket, a következő egyenlet alapján: ( ) α = ln (7) A hőmérsékleti időállandó (τ), amit termisztor-inerciának is neveznek a termisztor válaszidejét méri.ezt több féle képen is meghatározhatjuk: Közvetett melegítésű termisztor esetén a τ állandó azt az időt jelenti, mialatt a termisztort 00 C-os környezetbe téve, a termisztor ellenállása eléri a 0 C hőmérsékleten mért ellenállás 37%-át (negatermisztorral dolgozva). Önmelegítésű termisztorok esetén τ az az idő, mialatt az átfolyó áram hőhatására felmelegedett termisztor ellenállása 63%-ot csökken, ha lekapcsoljuk róla a feszültséget. Az időállandó függ a termisztor méreteitől, anyagától és névleges teljesítményétől. A feszültség-áram U=f(I) átviteli jelleggörbe adott hőmérsékleten a termisztor típusától függ. Ezt a jelleggörbét a. ábra szemlélteti.. Ábra A termisztor U=f(I) jelleggörbéje. 8
4 Az ábra segitségével két ellenállásértéket határozunk meg, a statikus illetve dinamikus ellenállást melyeket egy adott P pontban a következő képletek adnak meg: A munkapont, általában az U=f(I) jelleggörbe lineáris szakaszán található. 3. A mérés menete: U P S U U = = = tgα tgβ (9) (8) I I P I D = U P I P I.lépés: Az U = f ( I ) karakterisztika meghatározása. A mérés környezeti hőmérsékleten történik. A termisztorra rákötjük az egyenáramú tápot a 3. ábra szerint. Növeljük a feszültséget az -es táblázatban megadott értékekre és lejegyezzük a megfelelő áramértékeket. Grafikusan ábrázoljuk az eredményt. 3. Ábra A termisztor bekötése az U = f ( I ) karakterisztika meghatározásához.. áblázat ermisztor U (V) I (ma) II. lépés: Az = f ( ) karakterisztika meghatározása. A termisztort a környezeti hőmérsékleten levő vízbe helyezzük. A vizet melegíteni kezdjük (Maximum 60 fokig!). Ugyanabban az időben leolvassuk a termisztoron mért ellenállás és a referencia hőmérséklet értékeket. A termisztoron az ellenállást LC mérővel mérjük, a referencia hőmérsékletet a higanyos hőmérő szolgáltatja. Kitöltjük a -es táblázatot, majd grafikusan ábrázoljuk az eredményt. 4. Ábra A termisztor = f ( ) karakterisztikájának meghatározásához 9
5 . áblázat t ( C) (k Ω) III. lépés Számítások. A -es táblázatból kiemelünk két mérési eredményt, például =5 C és =60 C valamint az ezeknek megfelelő ellenállásértékeket jelölve és vel. Kiszámítjuk a B és az α paramétereket az (5) valamint a (7) ek segitségével. Az U = f (I) karakterisztika grafikonján felveszünk egy P pontot, majd leolvassuk a koordinátákat (U, I) a feszültséget és az áramot. Ennek segitségével meghatározzuk az S statikus ellenállást a (8) alapján. A leolvasott (U, I) pont körűl még leolvasunk két (U, I) értékpárt, egyet a P pont felett, a másikat a P pont alatt. Ezekkel kiszámítjuk az D dinamikus ellenállást a (9) szerint. Kitöltjük a 3-as táblázatot. 3. áblázat Paraméterek.táblázat alapján (5) (7) (8) (9) ermisztor (5) (47) B α S D [Ω] [Ω] [ K] [/ C] [Ω] [Ω] 4. Kérdések és feladatok.. Az α paraméter értékét milyen hőmérsékletre határoztuk meg? (lásd. alfejezet). Milyen mérőhidat használnánk, ha termisztorral mért hőmérsékletet feszültséggé kellene átalakítani. ajzoljuk le a javasolt mérőáramkört. 3. A mérés során használt termisztor negatermisztor vagy pozitermisztor volt? 4. Keressünk alkalmazásokat a termisztor használatára! 0
3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS
3. Laboratóriumi gyakorlat A HŐELLENÁLLÁS 1. A gyakorlat célja A Platina100 hőellenállás tanulmányozása kiegyensúlyozott és kiegyensúlyozatlan Wheatstone híd segítségével. Az érzékelő ellenállásának mérése
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti
5. Laboratóriumi gyakorlat. A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE
5. Laboratóriumi gyakorlat A p-n ÁTMENET HŐMÉRSÉKLETFÜGGÉSE 1. A gyakorlat célja: A p-n átmenet hőmérsékletfüggésének tanulmányozása egy nyitóirányban polarizált dióda esetében. A hőmérsékletváltozási
Mérésadatgyűjtés, jelfeldolgozás.
Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások
4. Laboratóriumi gyakorlat A HŐELEM
4. Laboratóriumi gyakorlat A HŐELEM 1. A gyakorlat célja: A hőelemek és mérőáramkörei működésének és használatának tanulmányozása. Az U=f(T) karakterisztika felrajzolása. 2. Elméleti bevezető 2.1. Hőelemek
7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL
7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív
ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o
ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:
Feszültségérzékelők a méréstechnikában
5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika
HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás. 2010/2011.BSc.II.évf.
HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás 2010/2011.BSc.II.évf. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók 1.Ellenállás változáson alapuló
Az Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó.
Ohm törvénye Az Ohm törvény Az áramkörben folyó áram erőssége függ az alkalmazott áramforrás feszültségétől. Könnyen elvégezhető kísérlettel mérhetjük az áramkörbe kapcsolt fogyasztón a feszültséget és
SCHWARTZ 2012 Emlékverseny
SCHWARTZ 2012 Emlékverseny A TRIÓDA díjra javasolt feladat ADY Endre Líceum, Nagyvárad, Románia 2012. november 10. Befejezetlen kísérlet egy fecskendővel és egy CNC hőmérővel A kísérleti berendezés. Egy
HŐMÉRSÉKLETMÉRÉS. Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja. 961,93 C Ezüst dermedéspontja. 444,60 C Kén olvadáspontja
Hőmérsékletmérés HŐMÉRSÉKLETMÉRÉS Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja 961,93 C Ezüst dermedéspontja 444,60 C Kén olvadáspontja 0,01 C Víz hármaspontja -182,962 C Oxigén forráspontja
Áramköri elemek mérése ipari módszerekkel
3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek
HŐMÉRSÉKLETMÉRÉS. Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja. 961,93 C Ezüst dermedéspontja. 444,60 C Kén olvadáspontja
Hőmérsékletmérés HŐMÉRSÉKLETMÉRÉS Elsődleges etalonok / fix pontok / 1064,00 C Arany dermedéspontja 961,93 C Ezüst dermedéspontja 444,60 C Kén olvadáspontja 0,01 C Víz hármaspontja -182,962 C Oxigén forráspontja
Gépész BSc Nappali MFEPA31R03. Dr. Szemes Péter Tamás 2. EA, 2012/2013/1
Gépész BSc Nappali MFEPA31R03 Dr. Szemes Péter Tamás 2. EA, 2012/2013/1 Tartalom Beavatkozók és hatóműveik Szabályozó szelepek Típusok, jellemzői, átfolyási jelleggörbéi Csapok Hajtóművek Segédenergia
Termoelektromos hűtőelemek vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja
Analóg telemetriagyűjtés módszereinek áttekintése. Hőmérsékletmérők és árammérők típusai, méretezése
Analóg telemetriagyűjtés módszereinek áttekintése. Hőmérsékletmérők és árammérők típusai, méretezése Űrtechnológia a gyakorlatban Kocsis Gábor BME Űrkutató Csoport, 708-as labor kocsis@mht.bme.hu Kommunikációs
Zener dióda karakterisztikáinak hőmérsékletfüggése
A mérés célja 18. mérés Zener dióda karakterisztikáinak hőmérsékletfüggése A Zener dióda nyitóirányú és záróirányú karakterisztikájának, a karakterisztika hőmérsékletfüggésének vizsgálata, a Zener dióda
Ellenállásmérés Ohm törvénye alapján
Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos
10. Laboratóriumi gyakorlat TENZOMETRIKUS ÁTALAKÍTÓK
10. Loratóriumi gyakorlat TENZOMETIKS ÁTALAKÍTÓK 1.A gyakorlat célja Mechanikai megnyúlások mérése nyúlásmérő bélyegekkel. Nyúlásmérő átalakítokjellegzetes mérőköreinek tanulmányozása. A mért elektromos
9. Gyakorlat - Optoelektronikai áramköri elemek
9. Gyakorlat - Optoelektronikai áramköri elemek (Componente optoelectronice) (Optoelectronic devices) 1. Fénydiódák (LED-ek) Elnevezésük az angol Light Emitting Diode rövidítéséből származik. Áramköri
1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?
Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését
2.Előadás ( ) Munkapont és kivezérelhetőség
2.lőadás (207.09.2.) Munkapont és kivezérelhetőség A tranzisztorokat (BJT) lineáris áramkörbe ágyazva "működtetjük" és a továbbiakban mindig követelmény, hogy a tranzisztor normál aktív tartományban működjön
MÉRÉSI UTASÍTÁS. A jelenségek egyértelmű leírásához, a hőmérsékleti skálán fix pontokat kellett kijelölni. Ilyenek a jégpont, ill. a gőzpont.
MÉRÉSI UTASÍTÁS Megállapítások: A hőmérséklet állapotjelző. A hőmérsékletkülönbségek hozzák létre a hőáramokat. Bizonyos természeti jelenségek meghatározott feltételek mellett mindig ugyanazon hőmérsékleten
Fázisátalakulások vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 6. MÉRÉS Fázisátalakulások vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. szeptember 28. Szerda délelőtti csoport 1. A mérés célja A mérés
PN átmenet kivitele. (B, Al, Ga, In) (P, As, Sb) A=anód, K=katód
PN átmenet kivitele A pn átmenet: Olyan egykristályos félvezető tartomány, amelyben egymással érintkezik egy p és egy n típusú övezet. Egy pn átmenetből álló eszköz a dióda. (B, Al, Ga, n) (P, As, Sb)
Mérés és adatgyűjtés
Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény
2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával.
2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával. A MÉRÉS CÉLJA Az elterjedten alkalmazott hőmérséklet-érzékelők (ellenállás-hőmérő, termisztor, termoelem) megismerése,
FIZIKA II. Egyenáram. Dr. Seres István
Dr. Seres István Áramerősség, Ohm törvény Áramerősség: I Q t Ohm törvény: U I Egyenfeszültség állandó áram?! fft.szie.hu 2 Seres.Istvan@gek.szie.hu Áramerősség, Ohm törvény Egyenfeszültség U állandó Elektromos
Elektromos egyenáramú alapmérések
Elektromos egyenáramú alapmérések A mérés időpontja: 8.. 5. hétf ő,.-4. Készítették: 5.mérőpár - Lele István (CYZH7) - Nagy Péter (HQLOXW) A mérések során elektromos egyenáramú köröket vizsgálunk feszültség-
Speciális passzív eszközök
Varisztorok Voltage Dependent Resistor VDR Variable resistor - varistor Speciális passzív eszközök Feszültségfüggő ellenállás, az áram erősen függ a feszültségtől: I=CU α ahol C konstans, α értéke 3 és
1. Feladat. 1. ábra. Megoldás
. Feladat Az. ábrán látható egyenáramú áramkörben, kezdetben mindkét kapcsoló nyitott állásba található. A0 pillanatban zárjuk a kapcsolót, majd megvárjuk, hogy a létrejövő tranziens folyamat során a kondenzátor
Kiegészítő tudnivalók a fizikai mérésekhez
Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók
MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1
MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi
Fázisátalakulások vizsgálata
Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk
Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.
Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2
Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
ÁRAMKÖRÖK SZIMULÁCIÓJA
ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg
III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján?
III. félvezetők elméleti kérdések 1 1.) Milyen csoportokba sorolhatók az anyagok a fajlagos ellenállásuk alapján? 2.) Mi a tiltott sáv fogalma? 3.) Hogyan befolyásolja a tiltott sáv szélessége az anyagok
KÖZÖS EMITTERŰ FOKOZAT BÁZISOSZTÓS MUNKAPONTBEÁLLÍTÁSA
KÖZÖS EMITTERŰ FOKOZT BÁZISOSZTÓS MUNKPONTBEÁLLÍTÁS Mint ismeretes, a tranzisztor bázis-emitter diódájának jelentős a hőfokfüggése. Ugyanis a hőmérséklet növekedése a félvezetőkben megnöveli a töltéshordozók
Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele
Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek
Átmeneti jelenségek egyenergiatárolós áramkörökben
TARTALOM JEGYZÉK 1. Egyenergiatárolós áramkörök átmeneti függvényeinek meghatározása Példák az egyenergiatárolós áramkörök átmeneti függvényeinek meghatározására 1.1 feladat 1.2 feladat 1.3 feladat 1.4
3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc. Mérés dátuma: 28... Leadás dátuma: 28.. 8. . Mérések ismertetése A Peltier-elemek az. ábrán látható módon vannak elhelyezve
2. Érzékelési elvek, fizikai jelenségek. a. Termikus elvek
2. Érzékelési elvek, fizikai jelenségek a. Termikus elvek Az érzékelés célja Open loop: A felhasználó informálására (mérés) Más felhasználó rendszer informálása Felügyelet Closed loop Visszacsatolás (folyamatszabályzás)
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7.
Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 7. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs
Fizika A2E, 8. feladatsor
Fizika AE, 8. feladatsor ida György József vidagyorgy@gmail.com. feladat: Az ábrán látható áramkörben határozzuk meg az áramer sséget! 4 5 Utolsó módosítás: 05. április 4., 0:9 El ször ki kell számolnunk
Fajhő mérése. (Mérési jegyzőkönyv) Hagymási Imre február 26. (hétfő délelőtti csoport)
Fajhő mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. február 26. (hétfő délelőtti csoport) 1. A mérés elméleti háttere Az anyag fajhőjének mérése legegyszerűbben a jólismert Q = cm T m (1) összefüggés
Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.
A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység
MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata
MÉRÉSI JEGYZŐKÖNYV A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata A mérés helye: Irinyi János Szakközépiskola és Kollégium
Tranziens jelenségek rövid összefoglalás
Tranziens jelenségek rövid összefoglalás Átmenet alakul ki akkor, ha van energiatároló (kapacitás vagy induktivitás) a rendszerben, mert ezeken a feszültség vagy áram nem jelenik meg azonnal, mint az ohmos
6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban
6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.
6. Laboratóriumi gyakorlat KAPACITÍV SZINTÉRZÉKELŐK
6. Lbortóriumi gykorlt KAPAITÍV SZINTÉRZÉKELŐK. A gykorlt célj A kpcitív szintmérés elvének bemuttás. A (x) jelleggörbe ábrázolás szigetelő és vezető olyékok esetén. Egy stbil multivibrátor elhsználás
3 Ellenállás mérés az U és az I összehasonlítása alapján. 3.a mérés: Ellenállás mérése feszültségesések összehasonlítása alapján.
3 Ellenállás mérés az és az I összehasonlítása alapján 3.a mérés: Ellenállás mérése feszültségesések összehasonlítása alapján. A mérés célja: A feszültségesések összehasonlításával történő ellenállás mérési
Világítástechnikai mérés
1. gyakorlat Világítástechnikai mérés A gyakorlat során a hallgatók 3 mérési feladatot végeznek el: 1. Fotometriai távolságtörvény érvényességének vizsgálata Mérés célja: A fotometriai távolságtörvény
(2006. október) Megoldás:
1. Állandó hőmérsékleten vízgőzt nyomunk össze. Egy adott ponton az edény alján víz kezd összegyűlni. A gőz nyomását az alábbi táblázat mutatja a térfogat függvényében. a)ábrázolja nyomás-térfogat grafikonon
Fázisátalakulások vizsgálata
Fázisátalakulások vizsgálata Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/12/2011 Beadás ideje: 10/19/2011 1 1. A mérés rövid leírása Mérésem
Analóg-digitál átalakítók (A/D konverterek)
9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk
Minden mérésre vonatkozó minimumkérdések
Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a
Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása
l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék
Bevezetés az elektronikába
Bevezetés az elektronikába 2. Feladatsor: Feszültségosztó, dióda karakterisztika, alternatív kapcsolás, kapcsoló logika Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Feszültségosztó
Logaritmikus erősítő tanulmányozása
13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két
A töltőfolyadék térfogatváltozása alapján, egy viszonyítási skála segítségével határozható meg a hőmérséklet.
1. HŐTÁGULÁSON ALAPULÓ ÁTALAKÍTÓK: HŐMÉRSÉKLET A hőmérséklet változását elmozdulássá alakítják át 1.1 Folyadéktöltésű hőmérők (helyzet változássá) A töltőfolyadék térfogatváltozása alapján, egy viszonyítási
25/1. Stacionárius és tranziens megoldás. Kezdeti és végérték tétel.
25/1. Stacionárius és tranziens megoldás. Kezdeti és végérték tétel. A gerjesztı jelek hálózatba történı be- vagy kikapcsolása után átmeneti (tranziens) jelenség játszódik le. Az állandósult (stacionárius)
100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F
III. HőTAN 1. A HŐMÉSÉKLET ÉS A HŐ Látni fogjuk: a mechanika fogalmai jelennek meg mikroszkópikus szinten 1.1. A hőmérséklet Mindennapi általános tapasztalatunk van. Termikus egyensúly a résztvevők hőmérséklete
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás
5. Sók oldáshőjének meghatározása kalorimetriás módszerrel Előkészítő előadás 2019.02.04. Célja: hő mérése A kalorimetriás mérések Használatával meghatározható: átalakulási hő reakcióhő oldáshő hidratációs
Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel
Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel Előadó: Zsély István Gyula Készült Sziráki Laura, Szalma József 2012 előadása alapján Laborelőkészítő előadás,
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet
Peltier-elemek vizsgálata
Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre
ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés
ÖRVÉNYSZIVATTYÚ MÉRÉSE A berendezés 1. A mérés célja A mérés célja egy egyfokozatú örvényszivattyú jelleggörbéinek felvétele. Az örvényszivattyú jellemzői a Q térfogatáram, a H szállítómagasság, a Pö bevezetett
Elektromos áramerősség
Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Fizika A2E, 9. feladatsor
Fizika 2E, 9. feladatsor Vida György József vidagyorgy@gmail.com 1. feladat: hurokáramok módszerével határozzuk meg az ábrán látható kapcsolás ágaiban folyó áramokat! z áramkör két ablakból áll, így két
a NAT-2-0244/2008 nyilvántartási számú akkreditált státuszhoz
Nemzeti Akkreditáló Testület BÕVÍTETT RÉSZLETEZÕ OKIRAT a NAT-2-0244/2008 nyilvántartási számú akkreditált státuszhoz A GAMMA-DIGITAL Fejlesztõ és Szolgáltató Kft. (1119 Budapest, Petzval J. u. 52.) kalibrálólaboratóriuma
5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
A hőmérséklet kalibrálás gyakorlata
A hőmérséklet kalibrálás gyakorlata A vezérlőelem lehet egy szelep, ami nyit, vagy zár, hogy több gőzt engedjen a fűtő folyamatba, vagy több tüzelőanyagot az égőbe. A két legáltalánosabban elterjedt érzékelő
EGYENÁRAMÚ TÁPEGYSÉGEK
dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan
Határozott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
Függvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.
Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Kérdések. Sorolja fel a PC vezérlések típusait! (angol rövidítés + angol név + magyar név) (4*0,5p + 4*1p + 4*1p)
Sorolja fel az irányító rendszerek fejlődésének menetét! (10p) Milyen tulajdonságai és feladatai vannak a pneumatikus irányító rendszereknek? Milyen előnyei és hátrányai vannak a rendszer alkalmazásának?
A mérési feladat (1) A fotoellenállás R ellenállása függ a megvilágítás erősségétől (E), amely viszont arányos az izzószál teljesítmény-sűrűségével:
A mérési feladat 1900-ban Planck felvetett egy új hipotézist, miszerint a fény kibocsátása hv nagyságú energiakvantumokban történik. 1905-ben Einstein kiegészítette ezt a feltevést: a fény a kibocsátás
Az éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin
Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar
Folyamatirányítás Számítási gyakorlatok Gyakorlaton megoldandó feladatok Készítette: Dr. Farkas Tivadar 2010 I.-II. RENDŰ TAGOK 1. feladat Egy tökéletesen kevert, nyitott tartályban folyamatosan meleg
8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ
8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 1. A gyakorlat célja: Az inkrementális adók működésének megismerése. Számítások és szoftverfejlesztés az inkrementális adók katalógusadatainak feldolgozására
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
A ventilátor teljesítményfelvétele. csökken a teljes fordulatszám 50%-ánál. Hagyományos centrifugálventilátor
A ventilátor teljesítményfelvétele %-kal csökken a teljes fordulatszám %-ánál. Alacsony profilú vegyes áramlású ventilátorok önkenő motorcsapágyazással és kefe nélküli DC motorral, magas hatásfok és alacsony
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Diszkrét aktív alkatrészek és egyszerû alkalmazásaik. Elmélet A diszkrét aktív elektronikai alkatrészek (dióda, különbözõ tranzisztorok, tirisztor) elméleti
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS
I. Félvezetődiódák. Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára. Farkas Viktor
I. Félvezetődiódák Tantárgy: Villamos mérések 2. Szakközépiskola 12. évfolyam számára Farkas Viktor Bevezetés Szilícium- és Germánium diódák A fénykibocsátó dióda (LED) Zener dióda Mérési elrendezések
Tápegység tervezése. A felkészüléshez szükséges irodalom Alkalmazandó műszerek
Tápegység tervezése Bevezetés Az elektromos berendezések működéséhez szükséges energiát biztosító források paraméterei gyakran különböznek a berendezés részegységeinek követelményeitől. A megfelelő paraméterű
Nagyfeszültségű távvezetékek termikus terhelhetőségének dinamikus meghatározása az okos hálózat eszközeivel
Nagyfeszültségű távvezetékek termikus terhelhetőségének dinamikus meghatározása az okos hálózat eszközeivel Okos hálózat, okos mérés konferencia 2012. március 21. Tárczy Péter Energin Kft. Miért aktuális?
Elektronikus fekete doboz vizsgálata
Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői
Hőtan ( első rész ) Hőmérséklet, szilárd tárgyak és folyadékok hőtágulása, gázok állapotjelzői Hőmérséklet Az anyagok melegségének mérésére hőmérsékleti skálákat találtak ki: Celsius-skála: 0 ºC pontja