Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása"

Átírás

1 l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék szilárdoldatok kristályosodási folyamatainak szimulációjánál az ötvözetrendszer egyensúlyi fázisdiagramjának számszerű ismerete szükséges, azaz ismerni kell adatszerűen a likvidusz és szolidusz hőmérsékleteket, valamint az úgynevezett megoszlási hányadosokat a koncentrációk függvényében. Kétalkotós ötvözet esetében a likvidusz és szolidusz görbék ismerete elegendő, mert az egyensúlyi fázis diagramokból meghatározható az adott hőmérsékleten egymással egyensúlyt tartó olvadék és szilárd fázis összetétele, így a kettő hányadosaként ismert a k megoszlási hányados is. Három és többalkotós esetben az egynél több szabadsági fokú folyamatok esetén a mért egyensúlyi fázis diagramokból nem határozhatók meg a megoszlási hányadosok N alkotó esetén N- 1 független megoszlási hányados van pedig ezeknek az ismerete alapvető fontosságú a kristályosodási folyamatok szimulációjánál. számszerű adatok származhatnak valamely termodinamikai alapon működő szoftver számítási eredményéből vagy kísérletekkel meghatározott egyensúlyi fázis diagramokból. Meg kell jegyezni, hogy termodinamikai függvényekből is csak akkor számolhatók ki a fenti adatok, ha a rendszer úgynevezett illesztési fit paramétereit előzőleg a számolt és a mért egyensúlyi fázisdiagramok összehasonlításával meghatározták, azaz csak azon fázis diagrammok számíthatók termodinamikai függvényekkel, amelyeket előzőleg már méréssel meghatároztak. termodinamikai számításoknak azonban jelentős előnye, hogy a megoszlási hányadosokat is szolgáltatja három vagy többalkotós ötvözetrendszerek esetén egynél nagyobb szabadsági fokú folyamatok esetén is pl. háromalkotós ötvözetek esetében szilárdoldat kristályosodása olvadékból. termodinamikai számításoknak jelentős hátránya, hogy meglehetősen komplikáltak, a szoftverek és az adatmezők igen drágák, és a szoftverek futási ideje sokszor jelentősen nagyságrenddel meghaladják a kristályosodási folyamatokat szimuláló szoftverek futási idejét. mért többalkotós egyensúlyi fázis diagramokból a likvidusz és szolidusz hőmérsékletek csak igen komplikáltan, a megoszlási hányadosok pedig közvetlenül egyáltalán nem határozhatók meg. megoszlási hányadosoknak a mért adatokból való becslésére az [1]-ben mutattunk be eljárást. Jelen cikkünkben a likvidusz és szolidusz felületek és a megoszlási hányadosok közelítésére szolgáló eljárást ismertetünk. z eljárás részletei a []-ben találhatók.

2 likvidusz görbét és a megoszlási hányadost leiró Függvények állandóinak meghatározása a kétalkotós l-si és l- ötvözetrendszerek esetében ikvidusz görbe z l-si és l- ötvözetrendszerek egyensúlyi fázisdiagramjainak likvidusz és szolidusz görbéit digitalizáltuk oly módon, hogy az alumínium olvadáspontjától az eutektikus hőmérsékletig l-si: 577, l-: os lépésekkelben meghatároztuk az összetartozó olvadék és szilárd fázis koncentrációkat. megoszlási hányadost a szilárd és az olvadék fázisok koncentrációjának hányadosa adta. Kétalkotós esetben a T likvidusz hőmérsékletet az alábbi egyszerű egyenlettel számíthatjuk: T = T /1 + F 1 ahol T az színfém olvadáspontja. Átrendezve: T / T 1 = F Harmadfokú polinomot használva: F = ahol a elem koncentrációja az olvadékban, a primer vagy szekunder szilárdoldat oldószerének színelem vagy vegyület koncentrációja, 1,, állandók. 1. táblázat likvidusz hőmérséklet kiszámításának együtthatói 1 T - Si Si E-7 inér l-si, R= E E E-7 inér l- R= Si Ternér lsi R=.957

3 harmadfokú polinom állandóit regresszióval határoztuk meg. z állandók értékeit és R értékét az 1. táblázat tartalmazza. Mind az l-si ötvözet, mind az l- ötvözet esetében a primer l alapú szilárd oldat = likvidusz görbéjének egyenletét határoztuk meg. Megoszlási hányados megoszlási hányados értékét az olvadék fázis ötvözőfémtartalmának a függvényében, a közelítéshez most is harmadfokú polinomot használva, az alábbi egyszerű egyenlet adja meg: ln k = ahol, 1,, állandók. polinom állandóit a binér l, a binér lsi és a ternér lsi rendszerekre ez esetben is regresszióval határoztuk meg. z állandókat és R értékét a. ksi és. k táblázatok tartalmazzák. számított és mért likviduszgörbéket, valamint a megoszlási hányadossal számított és mért szolidusz görbéket az 1. l-si és. l- ábrák mutatják. számított és mért értékek mérési hibán belül egyeznek. K Si Si Si 1. táblázat K Si együtthatói E-5 Si Si inér l-si, R=.997 lnksi Ternér lsi R=.996. táblázat K együtthatói 1 K Si Si Si Si E-6 inér l- R=.9956 lnk Ternér lsi R=.987

4 l-si egyensúlyi fázisdiagram likvidusz és szolidusz görbéje 7 T leolvasott értékek [] számolt értékek Si tömeg% 1. ábra l- egyensúlyi fázisdiagram likvidusz és szolidusz görbéje T leolvasott értékek [] számított értékek tömeg%. ábra likvidusz felületet és a megoszlási hányadosokat leíró függvények állandóinak meghatározása a háromalkotós l--si ötvözetrendszer esetében ikvidusz felület z háromalkotós ötvözetrendszer egyensúlyi fázis diagramjának izotermákkal megadott likvidusz felületét digitalizáltuk, majd egyenletes eloszlásban szelőt jelöltünk ki a felületen. szelők keresztül mentek az

5 színfémet jelző sarokponton. Meghatároztuk a szelők, valamint az izotermák metszéspontjához tartozó koncentráció adatokat. z 1. egyenlet ekkor az alábbiak szerint irható fel: T = T /1 + F + F + F, 5 Átrendezés után: F ahol, = T / T 1 F F 6 F, = 1,1 +,1 + 1, 7 7. egyenlet állandóit regresszióval határoztuk meg. z állandókat az 1. táblázat tartalmazza. értéke szín l az oldószer. mért és a számított likvidusz hőmérsékletek eltérése az esetek nagy részében kisebb, mint 1 K. számított likvidusz felület a. ábrán látható T 4 8 Si % % ábra

6 lsi ötvözetrendszer likvidusz felülete Megoszlási hányadosok megoszlási hányadosokat az [1]-ben leírtak szerint számítottuk azzal a különbséggel, hogy a kétalkotós ötvözetekre vonatkozó ln k függvényeket a kétalkotós ötvözetekből határoztuk meg. harmadik elem hatását tartalmazó lnk értékeket a háromalkotós ötvözet adataiból az alábbiak szerint kaptuk: ln k, = ln k ln k 8 függvényeket ismét harmadfokú polinommal közelítve: ln k, = 1,1 +,1 + 1, 9 számításoknál az eutektikus vályú ismert összetartozó olvadék és szilárd fázis koncentrációit használtuk az [1]-ben leírtak szerint. függvények állandóit valamint R értékét az Si esetében a. táblázat, az esetében a. táblázat tartalmazza. Összefoglalás, következtetések cikkben egy új módszert mutatunk be a sokalkotós egyensúlyi fázis diagramok matematikai leírására. számítás alapjául szolgáló hőmérséklet és megoszlási hányados adatok származhatnak mérésből vagy mérésekkel ellenőrzött termodinamikai számításokból. z eljárás használhatóságát l-si és l- binér valamint l-si- ternér ötvözetek esetében mutattuk be. z ismertetett eljárással kapott függvények alkalmasak arra, hogy a kristályosodási szimulációkat nagymértékben egyszerűsítsék. Irodalomjegyzék [1]. Roósz, J. Szőke and M. Rettenmayr : Z. Metallk. 91 1, []. Roósz, G. Kaptay : The concept of the ESTimated PHse Diagram ESTPHD system Z. Metallk. to be published [] EQUIIRIUM DIGRMS OF UMINIUM OY SYSTEMS; Published by The luminium Development ssociation, 1961., 4.

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV.

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBFÁZISÚ, TÖBBKOMPONENS RENDSZEREK Kétkomponens szilárd-folyadék egyensúlyok Néhány fogalom: - olvadék - ötvözetek - amorf anyagok Állapotok feltüntetése:

Részletesebben

A DIFFUZIÓ ÉS A MEGOSZLÁSI HÁNYADOS HATÁSA A MIKRODÚSULÁSRA KÉTALKOTÓS SZILÁRDOLDATOK KRISTÁLYOSODÁSÁNÁL

A DIFFUZIÓ ÉS A MEGOSZLÁSI HÁNYADOS HATÁSA A MIKRODÚSULÁSRA KÉTALKOTÓS SZILÁRDOLDATOK KRISTÁLYOSODÁSÁNÁL Anyagmérnöki Tudományok, 38/1. (2013), pp. 255 276. A DIFFUZIÓ ÉS A MEGOSZÁSI HÁNYADOS HATÁSA A MIKRODÚSUÁSRA KÉTAKOTÓS SZIÁRDODATOK KRISTÁYOSODÁSÁNÁ THE EFFECT OF DIFFUZION AND PARTITION RATIO ON THE

Részletesebben

Az ESTPHAD módszer fejlesztése és alkalmazása kettő-, három- és négyalkotós rendszerek likvidusz hőmérsékletének közelítésére

Az ESTPHAD módszer fejlesztése és alkalmazása kettő-, három- és négyalkotós rendszerek likvidusz hőmérsékletének közelítésére Kerpely Antal Anyagtudományok és Tehnológiák Doktori skola Az ESTPHAD módszer fejlesztése és alkalmazása kettő- három- és négyalkotós rendszerek likvidusz hőmérsékletének közelítésére PhD értekezés Mende

Részletesebben

A metastabilis Fe-Fe 3 C ikerdiagram (Heyn - Charpy - diagram)

A metastabilis Fe-Fe 3 C ikerdiagram (Heyn - Charpy - diagram) A metastabilis Fe-Fe 3 C ikerdiagram (Heyn - Charpy - diagram) A vas-karbon egyensúlyi diagram alapvető fontosságú a vasötvözetek tárgyalásánál. Az Fe-C ötvözetekre vonatkozó ismereteket általában kettős

Részletesebben

Színfémek és ötvözetek egyensúlyi lehőlése

Színfémek és ötvözetek egyensúlyi lehőlése Színfémek és ötvözetek egyensúlyi lehőlése 1 Színfém lehőlési görbéje (nincs allotróp átalakulás) F + Sz = K + 1. K = 1 1. Szakasz F=1 olvadék Sz =1 T változhat 2. Szakasz F=2 olvadék + szilárd Sz= 0 T

Részletesebben

Színfémek és ötvözetek egyensúlyi lehűlése. Összeállította: Csizmazia Ferencné dr.

Színfémek és ötvözetek egyensúlyi lehűlése. Összeállította: Csizmazia Ferencné dr. Színfémek és ötvözetek egyensúlyi lehűlése Összeállította: Csizmazia Ferencné dr. 1 Színfém lehűlési görbéje (nincs allotróp átalakulás) F + Sz = K + 1. K = 1 1. Szakasz F=1 olvadék Sz =1 T változhat 2.

Részletesebben

ÖNÉLETRAJZ. Mende Tamás. Munkahely: Miskolci Egyetem, Fémtani és Képlékenyalakítástani Tanszék 3515, Miskolc-Egyetemváros Telefon: (46) 565-111 / 1538

ÖNÉLETRAJZ. Mende Tamás. Munkahely: Miskolci Egyetem, Fémtani és Képlékenyalakítástani Tanszék 3515, Miskolc-Egyetemváros Telefon: (46) 565-111 / 1538 ÖNÉLETRAJZ Mende Tamás Személyes adatok: Név: Mende Tamás Születési idő: 1982. 08. 17. Születési hely: Szikszó Cím: 3535 Miskolc, Vasverő u. 60. Telefon: (20) 341-0250 E-mail: kohme@freemail.hu Munkahelyi

Részletesebben

FÁZISÁTALAKULÁSOK. 4.5. ábra Tiszta fém hűlésgörbéje.

FÁZISÁTALAKULÁSOK. 4.5. ábra Tiszta fém hűlésgörbéje. FÁZISÁTALAKULÁSOK Lehűlési görbék A későbbiekben szükség lesz a Gibbs-féle fázisszabály ismeretére, de a lehűlési görbék értelmezéséhez is segítséget nyújt. Gibbs-féle fázisszabály: F + Sz = K +1 (4.9.)

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS Műszaki Földtudományi Közlemények, 83. kötet, 1. szám (2012), pp. 271 276. HULLADÉKOK TEHERBÍRÁSÁNAK MEGHATÁROZÁSA CPT-EREDMÉNYEK ALAPJÁN DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST

Részletesebben

Az extrakció. Az extrakció oldószerszükségletének meghatározása

Az extrakció. Az extrakció oldószerszükségletének meghatározása Az extrakció Az extrakció oldószerszükségletének meghatározása Az extrakció fogalma és fajtái olyan szétválasztási művelet, melynek során szilárd vagy folyadék fázisból egy vagy több komponens kioldását

Részletesebben

SZÉLTURBINÁKAT TARTALMAZÓ MÉRLEGKÖRÖK KIEGYENLÍTŐ ENERGIA KÖLTSÉGEINEK MINIMALIZÁLÁSA

SZÉLTURBINÁKAT TARTALMAZÓ MÉRLEGKÖRÖK KIEGYENLÍTŐ ENERGIA KÖLTSÉGEINEK MINIMALIZÁLÁSA SZÉLTURBINÁKAT TARTALMAZÓ MÉRLEGKÖRÖK KIEGYENLÍTŐ ENERGIA KÖLTSÉGEINEK MINIMALIZÁLÁSA Varga László E.ON Hungária ZRt. Hirsch Tamás Országos Meteorológiai Szolgálat XXVII. Magyar Operációkutatási Konferencia

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

A technológiai paraméterek hatása az Al 2 O 3 kerámiák mikrostruktúrájára és hajlítószilárdságára

A technológiai paraméterek hatása az Al 2 O 3 kerámiák mikrostruktúrájára és hajlítószilárdságára Bevezetés A technológiai paraméterek hatása az Al 2 O 3 kerámiák mikrostruktúrájára és hajlítószilárdságára Csányi Judit 1, Dr. Gömze A. László 2 1 doktorandusz, 2 tanszékvezető egyetemi docens Miskolci

Részletesebben

Tippek-trükkök a BAUSOFT programok használatához. Kazánok tulajdonságainak változása az égéstermék tömegáramának függvényében

Tippek-trükkök a BAUSOFT programok használatához. Kazánok tulajdonságainak változása az égéstermék tömegáramának függvényében Tippek-trükkök a BAUSOFT programok használatához Kazánok tuladonságainak változása az égéstermék tömegáramának függvényében Baumann Mihály ügyvezető BAUSOFT Pécsvárad Kft. Ú szabványok bevezetésekor gyakran

Részletesebben

Öntészeti szimuláció, hıfizikai adatbázis. Szerzı: Dr. Molnár Dániel

Öntészeti szimuláció, hıfizikai adatbázis. Szerzı: Dr. Molnár Dániel Öntészeti szimuláció, hıfizikai adatbázis Szerzı: Dr. Molnár Dániel Tartalom 1. Fázisdiagramok...4 2. Öntészeti ötvözetek kémiai összetétele...7 2.1 Alumínium nyomásos öntészeti ötvözetek kémiai összetétele...7

Részletesebben

41. ábra A NaCl rács elemi cellája

41. ábra A NaCl rács elemi cellája 41. ábra A NaCl rács elemi cellája Mindkét rácsra jellemző, hogy egy tetszés szerint kiválasztott pozitív vagy negatív töltésű iont ellentétes töltésű ionok vesznek körül. Különbség a közvetlen szomszédok

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek 1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Kiegészítő tudnivalók a fizikai mérésekhez

Kiegészítő tudnivalók a fizikai mérésekhez Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók

Részletesebben

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja László András Wigner Fizikai Kutatóintézet, Részecske- és Magfizikai Intézet 1 Kivonat Az erősen kölcsönható anyag és fázisai Megfigyelések a fázisszerkezettel

Részletesebben

A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA

A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA A Ga-B OLVADÉK TRMODINAMIKAI OPTIMALIZÁLÁSA Végh Ádám, Mekler Csaba, Dr. Kaptay György, Mskolc gyetem, Khelyezett Nanotechnológa tanszék, Mskolc-3, gyetemváros, Hungary Bay Zoltán Közhasznú Nonproft kft.,

Részletesebben

Paksi Atomerőmű üzemidő hosszabbítása. 4. melléklet

Paksi Atomerőmű üzemidő hosszabbítása. 4. melléklet 4. melléklet A Paksi Atomerőmű Rt. területén található dízel-generátorok levegőtisztaság-védelmi hatásterületének meghatározása, a terjedés számítógépes modellezésével 4. melléklet 2004.11.15. TARTALOMJEGYZÉK

Részletesebben

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves

Részletesebben

Ellenáramú hőcserélő

Ellenáramú hőcserélő Ellenáramú hőcserélő Elméleti összefoglalás, emlékeztető A hőcserélő alapvető működésével és az egyszerűsített számolásokkal a Vegyipari műveletek. tárgy keretében ismerkedtek meg. A mérés elvégzéséhez

Részletesebben

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I.2. Konverziók Geokémiai vizsgálatok során gyakran kényszerülünk arra, hogy különböző kémiai koncentrációegységben megadott adatokat hasonlítsunk össze vagy alakítsuk

Részletesebben

8. Gőz-folyadék egyensúly tanulmányozása kétkomponensű elegyekben. Előkészítő előadás 2015.02.09.

8. Gőz-folyadék egyensúly tanulmányozása kétkomponensű elegyekben. Előkészítő előadás 2015.02.09. 8. Gőz-folyadék egyensúly tanulmányozása kétkomponensű elegyekben Előkészítő előadás 2015.02.09. Elméleti áttekintés Gőznyomás: adott hőmérsékleten egy anyag folyadék fázisával egyensúlyt tartó gőzének

Részletesebben

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. 1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton

Részletesebben

Hőkezelő technológia tervezése

Hőkezelő technológia tervezése Miskolci Egyetem Gépészmérnöki Kar Gépgyártástechnológiai Tanszék Hőkezelő technológia tervezése Hőkezelés és hegesztés II. című tárgyból Név: Varga András Tankör: G-3BGT Neptun: CP1E98 Feladat: Tervezze

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Bevásárlóközpontok energiafogyasztási szokásai

Bevásárlóközpontok energiafogyasztási szokásai Bevásárlóközpontok energiafogyasztási szokásai Bessenyei Tamás Power Consult Kft. tamas.bessenyei@powerconsult.hu Bevezetés Az elmúlt években a nagyobb városokban, valamint azok külső részein igen sok

Részletesebben

Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat

Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Szent István Egyetem Gazdaság- és Társadalomtudományi Kar Statisztika I. Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Boros Daniella OIPGB9 Kereskedelem és marketing I. évfolyam BA,

Részletesebben

Ideális gáz és reális gázok

Ideális gáz és reális gázok Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:

Részletesebben

A kedvezményes mennyiség éves elszámolása a naptári év végét követő első elszámoló számlában, azaz az éves leolvasást követően történik meg.

A kedvezményes mennyiség éves elszámolása a naptári év végét követő első elszámoló számlában, azaz az éves leolvasást követően történik meg. 1.) A részszámlázást választott fogyasztóinknál a tényleges fogyasztás elszámolási időszaka a két leolvasás közötti 12 hónap, ezzel szemben a kedvezményes árral elszámolható fogyasztás a jogszabály alapján

Részletesebben

Kuti István. A kétalkotós szilárdoldatok egyirányú kristályosodásánál kialakuló mikroszerkezet modellezése. Ph.D. Tézisfüzet

Kuti István. A kétalkotós szilárdoldatok egyirányú kristályosodásánál kialakuló mikroszerkezet modellezése. Ph.D. Tézisfüzet Kuti István A kétalkotós szilárdoldatok egyirányú kristályosodásánál kialakuló mikroszerkezet modellezése Ph.D. Tézisfüzet Miskolci Egyetem Anyagtudományi Intézet Fémtani Tanszék 2000 Tudományos vezető

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése 2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

A vulkáni kitöréseket megelőző mélybeli magmás folyamatok

A vulkáni kitöréseket megelőző mélybeli magmás folyamatok A vulkáni kitöréseket megelőző mélybeli magmás folyamatok Jankovics M. Éva MTA-ELTE Vulkanológiai Kutatócsoport SZTE ÁGK Vulcano Kutatócsoport Szeged, 2014.10.09. ábrák, adatok forrása: tudományos publikációk

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

Kovács Ernő 1, Füvesi Viktor 2

Kovács Ernő 1, Füvesi Viktor 2 Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,

Részletesebben

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL 01/2008:20236 javított 8.3 2.2.36. AZ IONKONCENRÁCIÓ POENCIOMERIÁ MEGHAÁROZÁA IONZELEKÍ ELEKRÓDOK ALKALMAZÁÁAL Az onszeletív eletród potencálja (E) és a megfelelő on atvtásána (a ) logartmusa özött deáls

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

SIKLÓCSAPÁGY KISFELADAT

SIKLÓCSAPÁGY KISFELADAT Dr. Lovas Lászl SIKLÓCSAPÁGY KISFELADAT Segédlet a Jármű- és hajtáselemek II. tantárgyhoz Kézirat 2012 SIKLÓCSAPÁGY KISFELADAT 1. Adatválaszték pk [MPa] d [mm] b/d [-] n [1/min] ház anyaga 1 4 50 1 1440

Részletesebben

GÖRGŐS LÁNCHAJTÁS tervezése

GÖRGŐS LÁNCHAJTÁS tervezése MISKOLCI EGYETEM GÉPELEMEK TANSZÉKE OKTATÁSI SEGÉDLET a GÉPELEMEK II. c. tantárgyhoz GÖRGŐS LÁNCHAJTÁS tervezése Összeállította: Dr. Szente József egyetemi docens Miskolc, 008. A lánchajtás tervezése során

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv (-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát

Részletesebben

Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk?

Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk? Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk? Nem szükséges informatikusnak lennünk, vagy mélységében átlátnunk az

Részletesebben

Dinamikus modellek felállítása mérnöki alapelvek segítségével

Dinamikus modellek felállítása mérnöki alapelvek segítségével IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Görbe- és felületmodellezés. Szplájnok Felületmodellezés

Görbe- és felületmodellezés. Szplájnok Felületmodellezés Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet

Részletesebben

Javítókulcs (Kémia emelt szintű feladatsor)

Javítókulcs (Kémia emelt szintű feladatsor) Javítókulcs (Kémia emelt szintű feladatsor) I. feladat 1. C 2. B. fenolos hidroxilcsoport, éter, tercier amin db. ; 2 db. 4. észter 5. E 6. A tercier amino-nitrogén. 7. Pl. a trimetil-amin reakciója HCl-dal.

Részletesebben

Részletes összefoglaló jelentés

Részletes összefoglaló jelentés Részletes összefoglaló jelentés 1. Hőátadási tényező vizsgálata egyidejű hő- és anyagátadási folyamatok esetén Az egyidejű hő- és anyagátadással járó szárítási folyamatoknál számos szerző utalt a hőátadási

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

. -. - Baris A. - Varga G. - Ratter K. - Radi Zs. K.

. -. - Baris A. - Varga G. - Ratter K. - Radi Zs. K. 2. TEREM KEDD Orbulov Imre 09:00 Bereczki P. -. - Varga R. - Veres A. 09:20 Mucsi A. 09:40 Karacs G. 10:00 Cseh D. Benke M. Mertinger V. 10:20 -. 10:40 14 1. TEREM KEDD Hargitai Hajnalka 11:00 I. 11:20

Részletesebben

A kettősbelű fatörzs keresztmetszeti rajzolatáról

A kettősbelű fatörzs keresztmetszeti rajzolatáról 1 A kettősbelű fatörzs keresztmetszeti rajzolatáról Az idők során már többször eszünkbe jutott, hogy foglalkozni kellene a címbeli témával. Különösen akkor, amikor olyan függvényábrákat találtunk, melyek

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL 5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét,

Részletesebben

Szilárdságnövelés. Az előkészítő témakörei

Szilárdságnövelés. Az előkészítő témakörei ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Alapképzés Anyagszerkezettan és anyagvizsgálat 2007/08 Szilárdságnövelés Dr. Palotás Béla palotasb@eik.bme.hu Dr. Németh Árpád arpinem@eik.bme.hu Szilárdság növelés

Részletesebben

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Cecei Általános Iskola 7013 Cece, Árpád u. 3. OM azonosító: 038726 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Cecei Általános Iskola 7013 Cece, Árpád u. 3. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon Tanulók száma

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely)

(III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) (III) Hangfrekvenciás mechanikai rezgések vizsgálata (Ablakhoz közeli mérőhely) Mérést végezte: Szalontai Gábor Mérőtárs neve: Nagy Dániel Mérés időpontja: 2012.11.22. Bevezető A hétköznapi és kézzelfogható

Részletesebben

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése

Részletesebben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben 1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

FIT-jelentés :: 2011. Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. OM azonosító: 035253 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. OM azonosító: 035253 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 10. évfolyam :: 4 évfolyamos gimnázium Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Bulgárföldi Általános és Magyar - Angol Két Tanítási Nyelvű Iskola 3534 Miskolc, Fazola H u. 2. Létszámadatok A telephely létszámadatai az általános

Részletesebben

HIBAJEGYZÉK az Alapvető fizikai kémiai mérések, és a kísérleti adatok feldolgozása

HIBAJEGYZÉK az Alapvető fizikai kémiai mérések, és a kísérleti adatok feldolgozása HIBAJEGYZÉK az Alapvető fzka kéma mérések, és a kísérlet adatk feldlgzása címü jegyzethez 2008-070 Általáns hba, hgy a ktevőben lévő negatív (-) előjelek mndenhnnan eltűntek a nymtatás srán!!! 2. Fejezet

Részletesebben

A dokumentum egy feladatgyűjtemény harmadik fejezetének előzetes változata.

A dokumentum egy feladatgyűjtemény harmadik fejezetének előzetes változata. A dokumentum egy feladatgyűjtemény harmadik fejezetének előzetes változata. Amennyiben a következő oldalakon bármilyen hibát talál, legyen az szakmai probléma, vagy helyesírási hiba, esetleg ötlete, vagy

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 2005. november 5. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól követhetően

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése

Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése Tóth László, Rózsahegyi Péter Bay Zoltán Alkalmazott Kutatási Közalapítvány Logisztikai és Gyártástechnikai Intézet Bevezetés A mérnöki

Részletesebben

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Fémek technológiája

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Fémek technológiája ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Fémek technológiája ACÉLOK ÁTEDZHETŐ ÁTMÉRŐJÉNEK MEGHATÁROZÁSA Dr. Palotás Béla / Dr. Németh Árpád palotasb@eik.bme.hu A gyakorlat előkészítő előadás fő témakörei Az

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

FIT-jelentés :: 2012. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 10. évfolyam :: 4 évfolyamos gimnázium Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban a 10. évfolyamon

Részletesebben

Teljesítményprognosztizáló program FELHASZNÁLÓI KÉZIKÖNYV

Teljesítményprognosztizáló program FELHASZNÁLÓI KÉZIKÖNYV Teljesítményprognosztizáló FELHASZNÁLÓI KÉZIKÖNYV Tartalomjegyzék 1. A szoftver feladata...3 2. Rendszerigény...3 3. A szoftver telepítése...3 4. A szoftver használata...3 4.1. Beállítások...3 4.1.1. Elszámolási

Részletesebben

Gyalogos elütések szimulációs vizsgálata

Gyalogos elütések szimulációs vizsgálata Gyalogos elütések szimulációs vizsgálata A Virtual Crash program validációja Dr. Melegh Gábor BME Gépjárművek tanszék Budapest, Magyarország Vida Gábor BME Gépjárművek tanszék Budapest, Magyarország Ing.

Részletesebben

FIT-jelentés :: 2011. Intézményi jelentés. Összefoglalás

FIT-jelentés :: 2011. Intézményi jelentés. Összefoglalás FIT-jelentés :: 2011 Összefoglalás Német Nemzetiségi Gimnázium és Kollégium, Deutsches Nationalitätengymnasium und Schülerwohnheim 1203 Budapest, Serény u. 1. Összefoglalás Az intézmény létszámadatai Tanulók

Részletesebben

e-gépész.hu >> Szellőztetés hatása a szén-dioxid-koncentrációra lakóépületekben Szerzo: Csáki Imre, tanársegéd, Debreceni Egyetem Műszaki Kar

e-gépész.hu >> Szellőztetés hatása a szén-dioxid-koncentrációra lakóépületekben Szerzo: Csáki Imre, tanársegéd, Debreceni Egyetem Műszaki Kar e-gépész.hu >> Szellőztetés hatása a szén-dioxid-koncentrációra lakóépületekben Szerzo: Csáki Imre, tanársegéd, Debreceni Egyetem Műszaki Kar Az ember zárt térben tölti életének 80-90%-át. Azokban a lakóépületekben,

Részletesebben

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola A versenyző kódja:... VIDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 48-54. XV. KÖRNYEZETVÉDELMI ÉS VÍZÜGYI

Részletesebben

I. A CFD alkalmazási területei Néhány érdekes korábbi CFD projekt

I. A CFD alkalmazási területei Néhány érdekes korábbi CFD projekt 2005. december 15. I. A CFD alkalmazási területei Néhány érdekes korábbi CFD projekt Kristóf Gergely egyetemi docens BME Áramlástan Tanszék Áramlás katalizátor blokkban /Mercedes-Benz/ Égés hengertérben

Részletesebben

Helyszínen épített vegyes-tüzelésű kályhák méretezése Tartalomjegyzék

Helyszínen épített vegyes-tüzelésű kályhák méretezése Tartalomjegyzék Helyszínen épített vegyes-tüzelésű kályhák méretezése Tartalomjegyzék 1. Bevezetés 2. Szakkifejezések és meghatározásuk 3. Mértékadó alapadatok 4. Számítások 4.1. A szükséges tüzelőanyag mennyiség 4.2.

Részletesebben

A szigetközi MODFLOW modellezés verifikálása, paraméter optimalizálás izotóp-adatokkal

A szigetközi MODFLOW modellezés verifikálása, paraméter optimalizálás izotóp-adatokkal A szigetközi MODFLOW modellezés verifikálása, paraméter optimalizálás izotóp-adatokkal Deák József Maginecz János Szalai József Dervaderits Borbála Földtani felépítés Áramlási viszonyok Vízföldtani kérdések

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ ÖSSZEÁLLÍTOTTA: DEÁK KRISZTIÁN 2013 Az SPM BearingChecker

Részletesebben

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3 5. gyakorlat. Tömegmérés, térfogatmérés, pipettázás gyakorlása tömegméréssel kombinálva. A mérési eredmények megadása. Sóoldat sőrőségének meghatározása, koncentrációjának megadása a mért sőrőség alapján.

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben