Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek"

Átírás

1 1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják. A felületi érdesség megadása jellemzően úgy történik, hogy a műhelyrajzon fel van tüntetve egy általános érték, majd az ettől eltérő felületeket külön jelzik. Érdekes az a tény, hogy az érvényes szabvány is még azt írja, ha külön fel van tüntetve valamilyen felületen más érdesség, akkor az általános jelölés után egy üres pipát kell rajzolni zárójelben; holott a CAD rendszerek erre alkalmatlanok. A felületi érdesség használatával az MSZ EN ISO 1302:2002 Termékek geometriai követelményei (GPS). A felületi érdesség jelölése a műszaki dokumentumokban szabvány foglalkozik. A szabványok által alkalmazott jelölések folyamatosan változnak (1. generáció 1974, 2. generáció 1978, 3. generáció 1992, 4. generáció 2001). Jelenleg három alapjelölés van, az első bármilyen megmunkálási eljárás megenged (1. a, ábra), a második az anyagleválasztással (forgácsolás) járó technológiára utal (1. b, ábra), illetve a harmadik, mely az anyagleválasztást megtiltja (1. c, ábra). 1. ábra. Felületi érdességi jelek Hasonlóan, mint az alak- és helyzettűrések, a felületi érdesség szabványai is dinamikusan bővülnek, így egyre több jelölés kapcsolódik hozzá, mind egyenes (2D-s) mind térbeli (3D-s) jellemzők esetén. Ennek áttekintése igen komplex lenne, ezért itt csak a legáltalánosabb jelölést ismertetem től érdességi jelzőszámot csak a típusának feltüntetésével lehet megadni es változás, hogy ennek a hely már csak a pipa szára alatt lehet (2. ábra). 2. ábra. Felületi érdesség helyes megadása 2002 után 2. Felületi érdesség-mérés 2D-s jelzőszámai Az egyik legáltalánosabban használt felületi érdességi mérőszám az R a, vagyis az átlagos érdesség. Az átlagos érdesség a tényleges profil és a középvonal közti y i távolságok abszolút értékeinek számtani átlaga (1. ábra). Ez azt jelenti, hogy a függőlegesen sraffozott területek összege pontosan ugyanakkora, mint a piros téglalap területe. Megengedett jelzőszámok értéke a következők lehetnek: 0,006, 0,012, 0,025, 0,05, 0,1, 0,2, 0,4, 0,8, 1,6, 3,2, 6,3, 12,5, 25, 50, 100 és 200 mikrométer. R q a simasági mérőszám, melyet a profileltérések négyzetes középértéke. Számítása a következő: R q 1 l l 0 2 y ( x) dx Ez a mérőszám az eltéréseket fokozottan, nagyságukat súlyozva veszi figyelembe. Andó Mérnöki Iroda 1 matyi.misi.eu

2 1. ábra. Átlagos érdesség származtatása R z egyenetlenségmagasság származtatása több féle lehet. Közös bennük, hogy egyaránt az legmagasabb profilhegyeket és legalacsonyabb profilvölgyeket veszik figyelembe. ISO szabvány szerint a mérés teljes hosszán lévő öt legmagasabb és öt legalcsonyabb érték különbségének átlaga (2. ábra). DIN szabvány szerint a mérési hossz öt egyenlő részében lévő legmagasabb és legalacsonyabb pont különbségének átlaga (3. ábra). Megengedett jelzőszámok értéke a következők lehetnek: 0,16, 0,25, 0,4, 0,63, 1, 1,6, 2,5, 4, 6,3, 10, 16, 25, 40, 63, 100, 160, 250, 400, 630 és 1000 mikrométer. 2. ábra. R z ISO szabvány szerinti származtatása 3. ábra. R z DIN szabvány szerinti származtatása R y (R t ) érdességmélység származtatása hasonló a R z egyenetlenségmagasságéhoz. A különbség annyi, hogy R y esetén csak a legnagyobb és csak a legalacsonyabb érték különbségét vesszük, vagyis nem kerül sor átlagolásra. Az értelmezésekből adódóan mindig igaz, hogy Ry. Andó Mérnöki Iroda 2 matyi.misi.eu

3 2. Gyártási technológiák és a felületi érdesség kapcsolata Az adott gyártási technológiával csak egy tartományon belül tudunk felületi érdességet előállítani. Ezeket a tartományokat általában táblázatok tartalmazzák, bár ezek elavulási igen gyors a gyártástechnológiák fejlődésével. Ez főként azt jelenti, hogy adott technológiával egyre finomabb felületi érdességeket is el tudunk érni. Általában ezek a táblázatok az Ra jelzőszámot tartalmazzák, ritkább esetekben az -t. Tervező mérnököknek érdemes lehet az értékeket is tanulmányozni, hiszen a tűrések nagysága nem elvonatkoztatható a felületi érdességtől. Hiszen ha van egy olyan technológiánk ami 10-es felületi érdességet eredményez, annak ne érdemes 0,01 mm-es tűrést adni, hiszen ez a felületi érdesség nagyságával azonos. A 4. és 5. ábra tartalmazza a felületi érdesség és a gyártási technológiák kapcsolatát. 4. ábra. Elérhető Ra érték különböző gyártási technológia esetén [1] Andó Mérnöki Iroda 3 matyi.misi.eu

4 5. ábra. Elérhető Ra érték különböző gyártási technológia esetén [1] 3. Felületi érdesség jelzőszámainak átszámítása A felületi érdesség jelzőszámai egymásba nem átszámíthatóak. Ez főként abból adódik, hogy a jelzőszámok definíciója eltér egymástól, vagyis műszaki tartalmuk más. A 3D-s felületi érdesség jelzőszámainak egymásra történő átváltásával nem is foglalkoznak, azonban a 2D-s jelzőszámok átváltásával igen. Ennek oka, hogy hagyományosan az Ra értékeket érzik a forgácsolással foglalkozó emberek, így az, Ry értékek nem adnak támpontot nekik. Az utólagos méréssel csak a munkadarab jósága ítélhető meg, de a selejt nem kerülhető el. A jelzőszámok matematikai átszámításával mindig hibát követünk el, ezért csak korlátozottan támaszkodhatunk az eredményekre. Megszokásból két hibás, de egyszerű összefüggést használnak általában a gyakorlatban: 4 Ra és 1, 4 Ra. Ennél jobb megoldás a diagramok alapján átszámítani az értékeket (6. ábra). Andó Mérnöki Iroda 4 matyi.misi.eu

5 6. ábra. R a és R y, illetve R a és R z átszámítása hibasávokat figyelembe véve [1] A 6. ábrán piros színű terület a szórásokkal arányos. A termelés szempontjából kívánatos, hogy átváltás során inkább kisebb, de megbízható értéket kapjunk, ezért az átváltás irányától függően az alsó vagy felső határegyenest használjuk. Ha a műhelyrajzon R a =1,6 van előírva, és szükségünk van az R z értékre, akkor számításból ez 6,4-re, míg diagramból 6,3-ra adódik. Látható, hogy a diagram értéke kisebb, vagyis ha a gyártás során a kisebb értéket vesszük figyelembe, nagyobb esélyünk van arra, hogy az előírt R a követelményeket is teljesíti. Nagyobb különbség van, ha R z van megadva, pl. 6,3 és ebből számolunk R a -t, ekkor a diagramból kapott érték 0,35. Vagyis ez azt jelenti, ha 0,35-ös R a értékre gyártjuk le a darabot, akkor valószínűleg a 6,3-as R z értéket is teljesítjük. Gyártási kísérletek alapján olyan egyenleteket határoztam meg korábbi kísérletek alapján, melyek alkalmasak esztergált, mart és köszörült felületek felületi érdesség jelzőszámának átszámítására [2]. Ezek az egyenletek is csak közelítő számítások, de már figyelembe veszi az átváltási irányt és egyszerűbb a használata, mint a diagramoknak. Nem szabad azonban elfelejteni azt sem, hogy a pontosabb modellek több paraméteresek (szerszám típusa, él szögei, anyaga, kopási állapota ), melyhez egyre nagyobb adatbázis szükséges, vagyis használatuk bonyolulttá válik. Az 1. táblázat tartalmazza az egyszerűsített átszámítási képleteket. Andó Mérnöki Iroda 5 matyi.misi.eu

6 1. táblázat. Felületi érdesség jelzőszámok átváltása Ismeretlen Ismert jelzőszám jelzőszám Átváltás R a R z Ra Ra 0, 13 7,5 R a R q Ra Ra 0, 71 1,4 R z R q 3, 33 0,3 R z R a 4 Ra R q R a 1 Ra R q R z 0, 15 Források: [1] Fischherz A., Dax W., Gundelfinger K. Häffner W., Itschner H., Kotsch G., Staniczek M.: Fémtechnológiai Táblázatok. B +V Lap és Könyvkiadó Kft [2] Andó Mátyás: Felületi érdesség, jelzőszámok közötti kapcsolatok, 2010 Gépész Tuning Kft. Utolsó módosítás: Budapest, Készítette: Andó Mátyás Andó Mérnöki Iroda 6 matyi.misi.eu

Felületi érdesség, jelzıszámok közötti kapcsolatok

Felületi érdesség, jelzıszámok közötti kapcsolatok Felületi érdesség, jelzıszámok közötti kapcsolatok Eredmények összefoglalva: 1. táblázat. Felületi érdesség jelzıszámok átváltása Ismeretlen Ismert jelzıszám jelzıszám Átváltás a z z a = a = 0, 13 z 7,5

Részletesebben

Géprajz - gépelemek. Előadó: Németh Szabolcs mérnöktanár. Belső használatú jegyzet 2

Géprajz - gépelemek. Előadó: Németh Szabolcs mérnöktanár. Belső használatú jegyzet  2 Géprajz - gépelemek FELÜLETI ÉRDESSÉG Előadó: Németh Szabolcs mérnöktanár Belső használatú jegyzet http://gepesz-learning.shp.hu 1 Felületi érdesség Az alkatrészek elkészítéséhez a rajznak tartalmaznia

Részletesebben

Méretlánc átrendezés elmélete

Méretlánc átrendezés elmélete 1. Méretlánc átrendezés elmélete Méretlánc átrendezés elmélete Egyes esetekben szükség lehet, hogy arra, hogy a méretláncot átrendezzük. Ezeknek legtöbbször az az oka, hogy a rajzon feltüntetett méretet

Részletesebben

Felületminőség. 11. előadás

Felületminőség. 11. előadás Felületminőség 11. előadás A felületminőség alapfogalmai Mértani felületnek nevezzük a munkadarab rajzán az ábrával és méretekkel, vagy az elkészítési technológiával meghatározott felületet, ha ez utóbbinál

Részletesebben

Legnagyobb anyagterjedelem feltétele

Legnagyobb anyagterjedelem feltétele Legnagyobb anyagterjedelem feltétele 1. Legnagyobb anyagterjedelem feltétele A legnagyobb anyagterjedelem feltétele (szabványban ilyen néven szerepel) vagy más néven a legnagyobb anyagterjedelem elve illesztett

Részletesebben

RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ

RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ Referencia útmutató laboratórium és műhely részére Magyar KIADÁS lr i = kiértékelési hossz Profilok és szűrők (EN ISO 4287 és EN ISO 16610-21) 01 A tényleges

Részletesebben

A felület összes jellemzői együtt határozzák meg a felületminőséget. Jelentősége a kapcsolódó felületeknél játszik nagy szerepet.

A felület összes jellemzői együtt határozzák meg a felületminőséget. Jelentősége a kapcsolódó felületeknél játszik nagy szerepet. FELÜLETMINŐSÉG Alapfogalmak és betűjelölések MSZ 4721/1-74 Érdességi jellemzők és betűjelölések MSZ 4721/2-74 Hullámossági jellemzők betűjelölések és számértékek MSZ 4721/3-75 Vizsgálati módszerek MSZ

Részletesebben

Tűrés és illesztés. Készítette: Szűcs Tamás

Tűrés és illesztés. Készítette: Szűcs Tamás Tűrés és illesztés Készítette: Szűcs Tamás 2016 1. A tűrés fogalma, jelölésrendszere Alapfogalmak Tűrés: egy munkadarab mérete vagy alakja bizonyos határok között eltérhet a pontos mérettől. A rajzon a

Részletesebben

Méretlánc (méretháló) átrendezés elmélete

Méretlánc (méretháló) átrendezés elmélete Méretlánc (méretháló) átrendezés elmélete Tőrés, bázis fogalma és velük kapcsolatos szabályok: Tőrés: A beszerelendı, vagy megmunkálandó alkatrésznek a névleges és a valós mérete közötti megengedhetı legnagyobb

Részletesebben

Szakmai nap Nagypontosságú megmunkálások Nagypontosságú keményesztergálással előállított alkatrészek felület integritása

Szakmai nap Nagypontosságú megmunkálások Nagypontosságú keményesztergálással előállított alkatrészek felület integritása Szakmai nap Nagypontosságú megmunkálások Nagypontosságú keményesztergálással előállított alkatrészek felület integritása Keszenheimer Attila Direct line Kft vendégkutató BME PhD hallgató Felület integritás

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 2005. november 5. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól követhetően

Részletesebben

Segédlet a Hengeres nyomó csavarrugó feladat kidolgozásához

Segédlet a Hengeres nyomó csavarrugó feladat kidolgozásához Segédlet a Hengeres nyomó csavarrugó feladat kidolgozásához A rugók olyan gépelemek, amelyek mechanikai energia felvételére, tárolására alkalmasak. A tárolt energiát, erő vagy nyomaték formájában képesek

Részletesebben

Méretlánc átrendezés a gyakorlatban

Méretlánc átrendezés a gyakorlatban Méretlánc átrendezés a gyakorlatban 1. Méretlánc átrendezésének okai Méretlánc átrendezésével csak akkor foglalkozunk, ha szükséges, ezek az esetek általában a következők: Koordináta rendszerhez igazodó

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

TÖBBFOGMÉRET MÉRÉS KISFELADAT

TÖBBFOGMÉRET MÉRÉS KISFELADAT Dr. Lovas László TÖBBFOGMÉRET MÉRÉS KISFELADAT Segédlet a Jármű- és hajtáselemek II. tantárgyhoz BME Közlekedésmérnöki és Járműmérnöki Kar Járműelemek és Jármű-szerkezetanalízis Tanszék Kézirat 2013 TÖBBFOGMÉRET

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

Toronymerevítık mechanikai szempontból

Toronymerevítık mechanikai szempontból Andó Mátyás: Toronymerevítık méretezése, 9 Gépész Tuning Kft. Toronymerevítık mechanikai szempontból Mint a neve is mutatja a toronymerevítık használatának célja az, hogy merevebbé tegye az autó karosszériáját

Részletesebben

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás. Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett

Részletesebben

54 520 01 0000 00 00 Gépipari minőségellenőr Gépipari minőségellenőr

54 520 01 0000 00 00 Gépipari minőségellenőr Gépipari minőségellenőr A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Alak- és helyzettűrések

Alak- és helyzettűrések 1. Rajzi jelek Alak- és helyzettűrések Az alak- és helyzettűrésekkel kapcsolatos előírásokat az MSZ EN ISO 1101:2006 Termékek geometriai követelményei (GPS). Geometriai tűrések. Alak-, irány-, helyzet-

Részletesebben

L 321/74 Az Európai Unió Hivatalos Lapja HU 4. MELLÉKLET A FELÉPÍTMÉNY SZERKEZETI LEÍRÁSÁNAK SZEMPONTJAI 1. ÁLTALÁNOS ALAPELVEK 1.1. A gyártónak egyértelműen meg kell határoznia a karosszéria felépítményét

Részletesebben

Műszaki rajz alapjai

Műszaki rajz alapjai Műszaki rajz alapjai Definíció A műszaki rajz valamilyen információhordozón rögzített, egyezményes szabályoknak megfelelően, grafikusan ábrázolt műszaki információ, amely rendszerint méretarányos Műszaki

Részletesebben

Tűrések. 12. előadás

Tűrések. 12. előadás Tűrések 12. előadás A kész munkadarabok többé-kevésbé eltérnek a rajzon ábrázolt munkadaraboktól Az eltérés háromféle lehet: méreteltérés alakeltérés helyzeteltérés Tűrésmező Széchenyi Tűrésmező A körülmények

Részletesebben

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés 3. SÍK FELÜLETEK MEGMUNKÁLÁSA Sík felületek (SF) legtöbbször körrel vagy egyenes alakzatokkal határolt felületként fordulnak elő. A SF-ek legáltalánosabb megmunkálási lehetőségeit a 3.. ábra szemlélteti.

Részletesebben

1 A táblázatban megatalálja az átmérőtartományok és furatmélységek adatait fúróinkhoz

1 A táblázatban megatalálja az átmérőtartományok és furatmélységek adatait fúróinkhoz pdrilling Content Szerszámkiválasztás Szerszámkiválasztás Marás Határozza meg a furat átmérojét és mélységet 1 A táblázatban megatalálja az átmérőtartományok és furatmélységek adatait fúróinkhoz 2 Válassza

Részletesebben

Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk be.

Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk be. 2. számú mérnöki kézikönyv Frissítve: 2016. Február Szögtámfal tervezése Program: Szögtámfal File: Demo_manual_02.guz Feladat: Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép, ceruza, körző, vonalzó.

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép, ceruza, körző, vonalzó. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 521 10 Szerszámkészítő Tájékoztató

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Követelmény a 7. évfolyamon félévkor matematikából

Követelmény a 7. évfolyamon félévkor matematikából Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.

Részletesebben

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója 1.) Általános tudnivalók: A segédtábla két méretben készül, 10, és 50 sort lehet kitölteni. A tábla megnevezéséből amit

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687) STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

11. évfolyam gépészeti alapozó feladatok javítóvizsgára felkészítő kérdések forgácsolás

11. évfolyam gépészeti alapozó feladatok javítóvizsgára felkészítő kérdések forgácsolás 11. évfolyam gépészeti alapozó feladatok javítóvizsgára felkészítő kérdések forgácsolás 2017-2018. 1. Mi a fizikai tulajdonság? Mi a kémiai tulajdonság? 2. Mi a mechanikai tulajdonság? Mi a technológiai

Részletesebben

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv

Méréstechnika II. Mérési jegyzőkönyvek FSZ képzésben részt vevők részére. Hosszméréstechnikai és Minőségügyi Labor Mérési jegyzőkönyv Méréstechnika II. ek FSZ képzésben részt vevők részére Összeállította: Horváthné Drégelyi-Kiss Ágota Kis Ferenc Lektorálta: Galla Jánosné 009 Tartalomjegyzék. gyakorlat Mérőhasábok, mérési eredmény megadása.

Részletesebben

A ferde tartó megoszló terheléseiről

A ferde tartó megoszló terheléseiről A ferde tartó megoszló terheléseiről Úgy vettem észre az idők során, hogy nem nagyon magyarázták agyon azt a kérdést, amivel itt fogunk foglalkozni. Biztos azt mondják majd megint, hogy De hisz ezt mindenki

Részletesebben

A kivitelezés geodéziai munkái II. Magasépítés

A kivitelezés geodéziai munkái II. Magasépítés A kivitelezés geodéziai munkái II. Magasépítés Építésirányítási feladatok Kitűzési terv: a tervezési térkép másolatán Az elkészítése a tervező felelőssége Nehézségek: Gyakorlatban a geodéta bogarássza

Részletesebben

PISA2000. Nyilvánosságra hozott feladatok matematikából

PISA2000. Nyilvánosságra hozott feladatok matematikából PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács

Részletesebben

Robotika. Relatív helymeghatározás Odometria

Robotika. Relatív helymeghatározás Odometria Robotika Relatív helymeghatározás Odometria Differenciális hajtás c m =πd n /nc e c m D n C e n = hány mm-t tesz meg a robot egy jeladó impulzusra = névleges kerék átmérő = jeladó fölbontása (impulzus/ford.)

Részletesebben

3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára

3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára 3. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TENGELYVÉG CSAPÁGYAZÁSA, útmutató segítségével d. A táblázatban szereplő adatok alapján

Részletesebben

Házi feladat Dr Mikó Balázs - Gyártástechnológia II. 5

Házi feladat Dr Mikó Balázs - Gyártástechnológia II. 5 Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi és Gyártástechnológiai Intézet Gyártástechnológia II. BAGGT23NND/NLD 01A - Bevezetés, Alapfogalmak Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 1413 ÉRETTSÉGI VIZSGA 014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 1221 ÉRETTSÉGI VIZSGA 2013. május 23. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos

Részletesebben

SIKLÓCSAPÁGY KISFELADAT

SIKLÓCSAPÁGY KISFELADAT Dr. Lovas Lászl SIKLÓCSAPÁGY KISFELADAT Segédlet a Jármű- és hajtáselemek II. tantárgyhoz Kézirat 2012 SIKLÓCSAPÁGY KISFELADAT 1. Adatválaszték pk [MPa] d [mm] b/d [-] n [1/min] ház anyaga 1 4 50 1 1440

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

A 12/2013 (III. 28.) NGM rendelet szakmai és vizsgakövetelménye alapján Gépgyártás-technológiai technikus

A 12/2013 (III. 28.) NGM rendelet szakmai és vizsgakövetelménye alapján Gépgyártás-technológiai technikus A 12/2013 (III. 28.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 521 03 Gépgyártás-technológiai technikus Tájékoztató A vizsgázó az első lapra írja

Részletesebben

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2 1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és 4/2015. (II. 19.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és 4/2015. (II. 19.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és 4/2015. (II. 19.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 521 04 Ipari

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 14. Határozzuk meg a nyírásból adódó csúsztatófeszültség

Részletesebben

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény

Részletesebben

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét

Részletesebben

I. TŰRÉS. A munkadarabok előírt méreteit, szögeit, alakját, és méreteik egymáshoz viszonyított helyzetét a gyakorlatban nem tudjuk kivitelezni.

I. TŰRÉS. A munkadarabok előírt méreteit, szögeit, alakját, és méreteik egymáshoz viszonyított helyzetét a gyakorlatban nem tudjuk kivitelezni. Tűrés és Illesztés I. TŰRÉS A munkadarabok előírt méreteit, szögeit, alakját, és méreteik egymáshoz viszonyított helyzetét a gyakorlatban nem tudjuk kivitelezni. Ha nem tudjuk ezt elérni, akkor nem is

Részletesebben

INFORMATIKA CAD ismeretek (Inventor) A versenyrész időtartama: 120 perc. Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése:

INFORMATIKA CAD ismeretek (Inventor) A versenyrész időtartama: 120 perc. Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: INFORMATIKA 0557-06 CAD ismeretek (Inventor) INTERAKTÍV FELADAT A versenyrész időtartama: 120 perc O S Z T V 2 0 1 3. Pótlapok száma Tisztázati Piszkozati Jóváhagyta: Vizsgarészhez rendelt követelménymodul

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Energetikai Szakgimnázium és Kollégium 7030 Paks, Dózsa György út 95.

Energetikai Szakgimnázium és Kollégium 7030 Paks, Dózsa György út 95. GÉPÉSZET ISMERETEK TANTÁRGY ÉRETTSÉGI VIZSGA TÉMAKÖRÖK KÖZÉPSZINTEN 2018/2019. tanév 12. A Bevezető A Gépészeti ismeretek, mint szakmai tantárgy az érettségi vizsgán, a kötelező vizsgatárgyak körét bővíti.

Részletesebben

Matematika 5. osztály Osztályozó vizsga

Matematika 5. osztály Osztályozó vizsga Matematika 5. osztály Osztályozó vizsga A TERMÉSZETES SZÁMOK A tízes számrendszer A természetes számok írása, olvasása 1 000 000-ig. Helyi-értékes írásmód a tízes számrendszerben, a helyiérték-táblázat

Részletesebben

Microsoft Excel 2010

Microsoft Excel 2010 Microsoft Excel 2010 Milyen feladatok végrehajtására használatosak a táblázatkezelők? Táblázatok létrehozására, és azok formai kialakítására A táblázat adatainak kiértékelésére Diagramok készítésére Adatbázisok,

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

TÖBBFOGMÉRET SZÁMÍTÁS KISFELADAT

TÖBBFOGMÉRET SZÁMÍTÁS KISFELADAT Dr. Lovas László TÖBBFOGMÉRET SZÁMÍTÁS KISFELADAT Segédlet a Jármű- és hajtáselemek II. tantárgyhoz Kézirat 2011 TÖBBFOGMÉRET SZÁMÍTÁS KISFELADAT 1. Adatválaszték A feladat a megadott egyenes fogú, valamint

Részletesebben

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.

Részletesebben

Gyakorlati segédlet a tervezési feladathoz

Gyakorlati segédlet a tervezési feladathoz Nyugat-magyarországi Egyetem Faipari Mérnöki Kar Terméktervezési és Gyártástechnológiai Intézet Gyakorlati segédlet a tervezési feladathoz Mechanikai megmunkálás (OFM, FM BSC) és Ipari Technológiák II.

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Követelmény az 5. évfolyamon félévkor matematikából

Követelmény az 5. évfolyamon félévkor matematikából Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek emelt szint 1511 ÉRETTSÉGI VIZSGA 2016. május 18. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos

Részletesebben

Házi feladat (c) Dr Mikó Balázs - Gyártástechnológia II.

Házi feladat (c) Dr Mikó Balázs - Gyártástechnológia II. Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi és Gyártástechnológiai Intézet Gyártástechnológia II. BAGGT23NND/NLD 01B - Előgyártmányok Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu

Részletesebben

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1 Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1. ábra forrása: [ 1 ] Ezen egy út tengelyvonalának egy pontjában tüntették

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Mechatronikai technikus szakma gyakorlati oktatásához OKJ száma: 54 523 04 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma: Tanulók

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

1.2. A 4. ábrán lévő támtuskó (kalapácsfejű) csavart a váltókban a támtuskók felerősítésére kell használni.

1.2. A 4. ábrán lévő támtuskó (kalapácsfejű) csavart a váltókban a támtuskók felerősítésére kell használni. MÁV Rt. VÁLLALATI SZABVÁNY A hatálybalépés időpontja: 1989. április 1. MÁVSZ 2675-10 48 rendszerű kitérők közös alkatrészei Csavarok, csavaranyák A MÁVSZ 2675-10:1978 helyett A szabvány alkalmazása előtt

Részletesebben

1. ábra Modell tér I.

1. ábra Modell tér I. 1 Veres György Átbocsátó képesség vizsgálata számítógépes modell segítségével A kiürítés szimuláló számítógépes modellek egyes apró, de igen fontos részletek vizsgálatára is felhasználhatóak. Az átbocsátóképesség

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Az elliptikus hengerre írt csavarvonalról

Az elliptikus hengerre írt csavarvonalról 1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása

Részletesebben

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv (-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk

Részletesebben

GÖRGŐS LÁNCHAJTÁS tervezése

GÖRGŐS LÁNCHAJTÁS tervezése MISKOLCI EGYETEM GÉPELEMEK TANSZÉKE OKTATÁSI SEGÉDLET a GÉPELEMEK II. c. tantárgyhoz GÖRGŐS LÁNCHAJTÁS tervezése Összeállította: Dr. Szente József egyetemi docens Miskolc, 008. A lánchajtás tervezése során

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

A műszaki ábrázolás rajzi változásai

A műszaki ábrázolás rajzi változásai A műszaki ábrázolás rajzi változásai SZABVÁNYOK ISO 128-20:1996 A műszaki rajzokon alkalmazott vonalak típusai, a használatukkal kapcsolatos alapvető szabályok. ISO 128-24:1996 A géprajz vonalai -A műszaki

Részletesebben

CNC-forgácsoló tanfolyam

CNC-forgácsoló tanfolyam CNC-forgácsoló tanfolyam I. Óra felosztási terv Azonosító Megnevezése Elmélet 0110-06 0225-06 0227-06 Általános gépészeti munka-, baleset-, tűz- és környezetvédelmi feladatok Általános anyagvizsgálatok

Részletesebben

Gépi forgácsoló 4 Gépi forgácsoló 4

Gépi forgácsoló 4 Gépi forgácsoló 4 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek emelt szint 11 ÉRETTSÉGI VIZSGA 01. május 5. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Gépgyártástechnológiai technikus szakma gyakorlati oktatásához OKJ száma: 54 521 03 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma:

Részletesebben

MAGYAR SZABVÁNY MSZ 329

MAGYAR SZABVÁNY MSZ 329 1990. november A hatálybalépés idõpontja: 1991. március 1. MAGYAR SZABVÁNY MSZ 329 Melegen hengerelt, egyenlõtlen szárú L-acél méretei Az MSZ 329:1984 helyett C 22/a Hot-rolled unequal angles. Dimensions

Részletesebben

DR. ANDÓ MÁTYÁS GÉPIPARI TŰRÉSEK, ILLESZTÉSEK

DR. ANDÓ MÁTYÁS GÉPIPARI TŰRÉSEK, ILLESZTÉSEK DR. ANDÓ MÁTYÁS GÉPIPARI TŰRÉSEK, ILLESZTÉSEK DR. ANDÓ MÁTYÁS GÉPIPARI TŰRÉSEK, ILLESZTÉSEK 2016 Gépipari tűrések 5 Tartalomjegyzék ISBN 978-963-12-4030-6 Andó Mátyás 2016. 1. Tűréshasználati elvek...

Részletesebben

SZÁMÍTÁSOK A TÁBLÁZATBAN

SZÁMÍTÁSOK A TÁBLÁZATBAN SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

GYÁRTÁSTECHNOLÓGIA NGB_AJ008_1 A FORGÁCSLEVÁLASZTÁS ALAPJAI

GYÁRTÁSTECHNOLÓGIA NGB_AJ008_1 A FORGÁCSLEVÁLASZTÁS ALAPJAI GYÁRTÁSTECHNOLÓGIA NGB_AJ008_1 Műszaki menedzser (BSc) szak, Mechatronikai mérnöki (BSc) szak A FORGÁCSLEVÁLASZTÁS ALAPJAI 6. előadás Összeállította: Vázlat 1. A forgácsolás igénybevételei modellje 2.

Részletesebben

4. A kézfogások száma pont Összesen: 2 pont

4. A kézfogások száma pont Összesen: 2 pont I. 1. A páros számokat tartalmazó részhalmazok: 6 ; 8 ; 6 ; 8. { } { } { }. 5 ( a ) 17 Összesen: t = = a a Összesen: ot kaphat a vizsgázó, ha csak két helyes részhalmazt ír fel. Szintén jár, ha a helyes

Részletesebben

Tengelykapcsoló. 2018/2019 tavasz

Tengelykapcsoló. 2018/2019 tavasz Jármű és s hajtáselemek I. Tengelykapcsoló Török k István 2018/2019 tavasz TENGELYKAPCSOL KAPCSOLÓK 2 1. Besorolás Nyomatékátvivő elemek tengelyek; tengelykapcsolók; vonóelemes hajtások; gördülőelemes

Részletesebben

Egy nyíllövéses feladat

Egy nyíllövéses feladat 1 Egy nyíllövéses feladat Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. 1. ábra forrása: [ 1 / 1 ] Igencsak tanulságos, ezért részletesen bemutatjuk a megoldását. A feladat Egy sportíjjal nyilat

Részletesebben

Mit emelj ki a négyjegyűben?

Mit emelj ki a négyjegyűben? Mit emelj ki a négyjegyűben? Már többször észrevettem, hogy az érettségi előtt állók, nem tudják használni a négyjegyű függvénytáblázatot. Ez nem az ő hibájuk... sajnos az oktatás nem tér ki erre... ezt

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.

Részletesebben