Az elliptikus hengerre írt csavarvonalról
|
|
- Edit Törökné
- 6 évvel ezelőtt
- Látták:
Átírás
1 1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása érdekes számunkra: ha a második paraméter pozitív állandó, akkor a vektor - függvény egyfajta elliptikus hengerre írt csavarvonalat ír le. Ennek egyenletrendszere a saját jelöléseinkkel, ahol a és b az ellipszis féltengelyei: ( 1 / 1) ( 1 / 2 ) ( 1 / 3 ) A mozgástani leírása ennek a térgörbének úgy adódik, hogy a mozgó pont xy síkra vett vetületi mozgása ellipszis menti, míg a z tengely menti mozgása egyenletes. Ugyanis egy állandó nagyságú és irányú ω = ω z szögsebesség - vektorral és v = v z sebességvektorral, valamint a ( 2 ) ( 3 ) összefüggésekkel, továbbá ( 1 ), ( 2 ) és ( 3 ) - mal: Most ( 3 ) és ( 4 / 3 ) - mal: ( 4 / 1) ( 4 / 2 ) ( 4 / 3 ) ( 5 ) Ezek szerint adott a, b, v, ω esetén a mozgás t idővel történő leírása így néz ki: ( 6 / 1) ( 6 / 2 )
2 2 ( 6 / 3 ) Továbbá a mozgás φ elfordulási szöggel történő leírása így fest: ( 7 / 1) ( 7 / 2 ) ( 7 / 3 ) Egy ilyen úton előállított térgörbe axonometrikus képét szemlélhetjük a 2. ábrán. Adatok: a = 4 ( m ), b = 2 ( m ), ω = 1 / 10 rad / s, v = 0,05 m / s. ( A ) Ekkor ( 6 ) és ( A ) szerint a térgörbe idő - paraméteres egyenletrendszere: ( 8 / 1) ( 8 / 2 ) ( 8 / 3 ) 2. ábra forrása: [ 2 ] A csavarmozgást végző pont sebességkomponensei ( 6 ) - ból: ( 9 / 1) ( 9 / 2 ) ( 9 / 3 )
3 3 Az eredő sebesség időben változó nagysága: azaz: ( 10 ) A csavarvonal α menetemelkedési szögére például: ( 11 ) innen( 10 ) - zel is: ( 12 ) vagyis a menetemelkedési szög sem állandó, hanem az idővel változó mennyiség. Ez azért van, mert ellipszis esetén a b. Ha a = b = R, akkor az ellipszis körré fajul, és ( 10 ) és ( 11 ) így alakul: ( 13 ) ( 14 ) Látjuk, hogy ugyanolyan mozgásparaméterek esetén a közönséges csavarvonal menti mozgás sebessége és menetemelkedési szöge is állandó marad, az egész mozgás során. Másfajta elliptikus hengerre írt csavarvonalról olvashatunk [ 3 ] - ban 3. ábra. 3. ábra forrása: [ 3 ]
4 4 Itt az elliptikus henger ellipszis keresztmetszetét, valamint a ráírt csavarvonal kifejtett képét / egyenesét láthatjuk. Az ellipszis féltengelyei: a, b; az ellipszis kerülete: K; a csavarvonal menetmagassága: h, menetemelkedési szöge: α. Az ellipszis ismert paraméteres egyenletrendszere: ( 15 ) Az ellipszis ív - differenciálja: ( 16 ) Az ellipszis ívhossza: ( 17 ) ahol a jelölésekkel megkülönböztettük a változót annak felső határától. Az ellipszis kerülete a szimmetria miatt: ( 18 ) Átalakításokkal: tehát: ( 19 ) ahol: ( 20 ) az excentricitás négyzete. Most ( 18 ) és ( 19 ) - cel: ( 21 ) A ( 21 ) integrál zárt alakban nem fejezhető ki képlettel, így vagy közelítő képlettel dolgozunk, vagy numerikus integrálást végzünk, illetve így előállított táblázatot hasz - nálunk. A 3. ábra ahol nincs minden jelölésünk feltüntetve egyenese alapján: ( 22 )
5 5 ahol z a csavarvonal egy pontjának magassági koordinátája. Az elliptikus hengerre írt csavarvonal paraméteres egyenletrendszere ezzel: ( 23 / 1 ) ( 23 / 2 ) ( 23 / 3 ) A közönséges csavarvonal egyenletrendszere ebből előáll, ha mert ( 23 ) és ( 24 ) - gyel: ( 24 ) ( 25 / 1 ) ( 25 / 2 ) ( 25 / 3 ) Fentiek magyarázzák, miért nem látunk pontos ábrázolást e másfajta elliptikus csavar - vonalról; ehhez ugyanis szükség van az ellipszis s( ψ ) ívhosszára és K = s( ψ = 2π ) kerületére is, melyben a ψ paraméter a ( 17 ) integrál felső határa. Minthogy a szokásos térgörbe - ábrázoló programok zárt alakú képleteket kérnek, így azok most nem használ - hatók. Nyilván lehet programot írni e feladat megoldására is. E másfajta csavarvonalon mozgó pont pálya menti sebességének nagyságára: ( 26 ) most ( 16 ) és ( 26 ) - tal: ( 27 ) Majd a menetemelkedési szögre:
6 6 egyszerűsítve: ( 28 ) vagy a ( 29 ) azonosság felhasználásával, ( 28 ) és ( 29 ) - cel: ( 30 ) egyezésben ( 22 ) - vel, ahogyan az a 3. ábráról is leolvasható. Látjuk, hogy e másfajta elliptikus hengerre írt csavarvonalon mozgó pont pálya menti sebességének nagysága változó, ámde a menetemelkedési szög nagysága már állandó. Megjegyzések: M1. Ezen feladat kapcsán is beleszaladtunk néhány furcsaságba. Az egyik az ellipszis kerületét leíró, ( 21 ) szerinti képlet: ( 21 / 1 ) az itteni E jelű integrál neve: másodfajú teljes elliptikus integrál [ 4 ]. Arra lettünk figyelmesek, hogy erőltetik a négyzetgyök jele alatt a szinusz - függvényt. Ennek érdekében eltérnek a szokásos a b felvételtől, illetve a szögváltozót nem az x, hanem az y tengelytől mérik. Ez az ellipszis kerületén nem változtat, viszont kényelmet - len kinyomozni a nem igazán természetes felvételek okait. Azért mi megtettük. E - re [ 4 ] - ben is találunk táblázatokat. Egy példa: a = 4 ( m ), b = 2 ( m ). Közelítő képlettel [ 4 ] : segédparaméterrel: ( a ) táblázatból: ( b ) ( c ) ( d ) ( e )
7 7 4. ábra A 4. ábra szerint az integrálandó függvény görbe alatti területének numerikus meghatáro - zásával: ( f ) A példabeli ellipszis pontosabb kerülete: ( g ) Látjuk, hogy nagyobb pontossági igény esetén érdemes a közelítő táblázati adatok helyett a pontos numerikus integrálási eredményeket alkalmazni. M2. Nagyobb pontosságra lehet szükség, ha az elkészítendő termék alapanyagai drágák, így beszerzésüknél fokozott alapossággal, a szokásosnál is gondosabban kell eljárni. Ha például aranyfonálból készül a második fajta csavarvonal, akkor ennek egy menetének hossza a 3. ábra derékszögű háromszöge alapján: ( 31 ) Az ellipszis K kerületénél elkövetett pontatlanság hatása kiterjed a csavarvonal L = nl hosszára, ezzel együtt pedig a hosszával arányos Á árára is, hiszen: ( 32 )
8 8 ahol á az aranyfonál magas egységára, n a menetek száma. M3. Az állandó menetemelkedésű csavarvonalak úgy is előállhatnak, hogy az adott keresztmetszetű egyenes hengerre felcsévélnek pl. papírból készült háromszöget, csíkot. Papírhengerek magjaként gyakran alkalmaznak keményebb papírhengert, melynek oldalán jól láthatóan kirajzolódik a közönséges csavarvonal 4. ábra. 4. ábra forrása: [ 5 ] M4. A [ 3 ] műben többet is olvashatunk a szalagozott szerkezetek gyártása során előforduló, különféle vezérgörbéjű egyenes hengerekre írt csavarvonalakról. Források: [ 1 ] [ 2 ] [ 3 ] Szerk. MKM - kollektíva: Kábel - zsebkönyv, 1972, II. kötet [ 4 ] I. N. Bronstejn ~ K. A. Szemengyajev: Matematikai zsebkönyv 2. kiadás, Műszaki Könyvkiadó, Budapest, [ 5 ] Sződliget, október 21. Összeállította: Galgóczi Gyula mérnöktanár
t, u v. u v t A kúpra írt csavarvonalról I. rész
A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem
Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához
1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent
Az egyenes ellipszishenger ferde síkmetszeteiről
1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges
Egy kinematikai feladathoz
1 Egy kinematikai feladathoz Az [ 1 ] példatárból való az alábbi feladat. Egy bütyök v 0 állandó nagyságú sebességgel halad jobbról balra. Kontúrjának egyenlete a hozzá kötött, vele együtt haladó O 1 xy
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
Ellipszis átszelése. 1. ábra
1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva
A kör és ellipszis csavarmozgása során keletkező felületekről
1 A kör és ellipszis csavarmozgása során keletkező felületekről Előző dolgozatunkban melynek címe: Megint a két csavarfelületről levezettük a cím - beli körös felület - család paraméteres egyenletrendszerét,
A kötélsúrlódás képletének egy általánosításáról
1 A kötélsúrlódás képletének egy általánosításáról Sok korábbi dolgozatunkban foglalkoztunk kötélstatikai feladatokkal. Ez a mostani azon - ban még nem került szóba. A feladat: az egyenes körhengerre feltekert,
Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.
1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton
A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.
1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi
A csavarvonal axonometrikus képéről
A avarvonal axonometrikus képéről Miután egyre jobban megy a Graph ingyenes függvény - ábrázoló szoftver használata, kipróbáltuk, hogy tudunk - e vele avarvonalat ábrázolni, axonometrikusan. A válasz:
A közönséges csavarvonal érintőjének képeiről
A közönséges csavarvonal érintőjének képeiről Már régóta rajzoljuk a táblára a közönséges csavarvonal vetületeinek és síkba teríté - sének ábráit, a Gépészeti alapismeretek tantárgy óráin. Úgy tűnik, itt
A Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó.
1 A Kepler - problémáról Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó. 1. ábra forrása: https://hu.wikipedia.org/wiki/kepler-probl%c3%a9ma
A bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most
Henger és kúp metsződő tengelyekkel
Henger és kúp metsződő tengelyekkel Ebben a dolgozatban egy forgáshenger és egy forgáskúp áthatását tanulmányozzuk abban az egyszerűbb esetben, amikor a két test tengelye egyazon síkban fekszik, vagyis
Fa rudak forgatása II.
Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I rész evezetés rugalmas láncgörbe magyar nyelvű szakirodalma nem túl gazdag Egy viszonylag rövid ismertetés található [ 1 ] - ben közönséges ( azaz
Egy geometriai szélsőérték - feladat
1 Egy geometriai szélsőérték - feladat A feladat: Szerkesztendő egy olyan legnagyobb területű háromszög, melynek egyik csúcsa az a és b féltengelyeivel adott ellipszis tetszőlegesen felvett pontja. Keresendő
Két naszád legkisebb távolsága. Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra.
1 Két naszád legkisebb távolsága Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra. 1. ábra A feladat Az A és B, egymástól l távolságra lévő kikötőből egyidejűleg indul két
Az éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
Poncelet egy tételéről
1 Poncelet egy tételéről Már régebben találkoztunk az [ 1 ] műben egy problémával, mostanában pedig a [ 2 ] műben a megoldásával. A probléma lényege: határozzuk meg a egyenletben szereplő α, β együtthatókat,
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes
A hordófelület síkmetszeteiről
1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük
Ellipszis perspektivikus képe 2. rész
1 Ellipszis perspektivikus képe 2. rész Dolgozatunk 1. részében nem mentünk tovább a matematikai kifejtésben. Ezzel mintegy felhagytunk a belső összefüggések feltárásával. A jelen 2. részben megkíséreljük
Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.
1 Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1. ábra forrása: [ 1 ] Ezen egy út tengelyvonalának egy pontjában tüntették
Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész
Az R forgató mátri [ ] - beli képleteinek levezetése: I rész Az [ ] forrás kötetében a ( 49 ), ( 50 ) képletek nyilván mint közismertek nem lettek levezetve Minthogy az ottani további számítások miatt
Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.
Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban
Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere. Az egyenletek felírása
1 Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere Az egyenletek felírása Korábbi dolgozataink már mintegy előkészítették a mostanit; ezek: ~ KD - 1: Általános helyzetű
A kerekes kútról. A kerekes kút régi víznyerő szerkezet; egy gyakori változata látható az 1. ábrán.
1 A kerekes kútról A kerekes kút régi víznyerő szerkezet; egy gyakori változata látható az 1. ábrán. 1. ábra forrása: http://keptar.oszk.hu/015800/015877/1264608300_nagykep.jpg Az iskolában tanultunk alapeleméről
Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.
1 Végein függesztett rúd egyensúlyi helyzete Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. A feladat Ehhez tekintsük a 2. ábrát is! 1. ábra forrása:
A Lenz - vektorról. Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra.
1 A Lenz - vektorról Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra. 1. ábra forrása: [ 1 ] Ez nem régen történt. Meglepett, hogy eddig ez kimaradt. Annál is inkább, mert
Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 )
1 Néhány véges trigonometriai összegről A Fizika számos területén találkozhatunk véges számú tagból álló trigonometriai össze - gekkel, melyek a számítások során állnak elő. Ezek értékét kinézhetjük matematikai
Felső végükön egymásra támaszkodó szarugerendák egyensúlya
1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra
A lengőfűrészelésről
A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású
A csavart oszlop előállításáról
1 A csavart oszlop előállításáról Egy korábbi dolgozatunkban melynek címe: A kör és ellipszis csavarmozgása során keletkező felületekről felírtuk a szakirodalom - ban ld. pl.: [ 1 ]! csavart oszlop néven
Érdekes geometriai számítások 10.
1 Érdekes geometriai számítások 10. Találtunk az interneten egy könyvrészletet [ 1 ], ahol egy a triéder - geometriában fontos összefüggést egyszerű módon vezetnek le. Ennek eredményét összevetjük más
A fatörzs és az ágak alakjának leírásához. Szétnéztünk az interneten. A lábon főleg a szabadon álló fák alakja meglehetősen bonyolult; pl.: 1. ábra.
A fatörzs és az ágak alakjának leírásához Szétnéztünk az interneten A lábon főleg a szabadon álló fák alakja meglehetősen bonyolult; pl.: 1. ábra. 1. ábra forrása: http://images.honlapepito.hu/?modul=oldal&tartalom=1130507
Ellipszissel kapcsolatos képletekről
1 Ellipszissel kapcsolatos képletekről Előző dolgozatunkban melynek címe: A Lenz - vektorról viszonylag sokat kellett ellipszissel kapcsolatos képletekkel dolgozni. Ennek során is adódott pár észrevételünk,
Egy sík és a koordinátasíkok metszésvonalainak meghatározása
1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -
A gúla ~ projekthez 2. rész
1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú
További adalékok a merőleges axonometriához
1 További adalékok a merőleges axonometriához Egy szép összefoglaló munkát [ 1 ] találtunk az interneten, melynek előző dolgoza - tunkhoz csatlakozó részeit itt dolgozzuk fel. Előző dolgozatunk címe: Kiegészítés
A tűzfalakkal lezárt nyeregtető feladatához
1 A tűzfalakkal lezárt nyeregtető feladatához Bevezetés Ehhez először tekintsük az 1. ábrát! 1 Itt azt szemlélhetjük, hogy hogyan lehet el - kerülni egy épület tűzfalának eláztatását. A felső ábrarészen
Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki!
1 Lövés csúzlival Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. A feladat Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk
Egy érdekes nyeregtetőről
Egy érdekes nyeregtetőről Adott egy nyeregtető, az 1 ábra szerinti adatokkal 1 ábra Végezzük el vetületi ábrázolását, az alábbi számszerű adatokkal: a = 10,00 m; b = 6,00 m; c = 3,00 m; α = 45 ; M 1:100!
Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon
Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk
Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra.
1 Egy újabb térmértani feladat Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. Úgy látjuk, érdekes és tanulságos lesz végigvenni. 2 A feladat Egy szabályos n - szög alapú
Egy felszínszámítási feladat a tompaélű fagerendák témaköréből
1 Egy felszínszámítási feladat a tompaélű fagerendák témaköréből Előző dolgozatunkban melynek címe: Ismét a fahengeres keresztmetszetű gerenda témájáról már sok min - dent előkészítettünk az itteni címbeli
Egy érdekes statikai - geometriai feladat
1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani
Egy kötélstatikai alapfeladat megoldása másként
1 Egy kötélstatikai alapfeladat megoldása másként Most megint egyik kedvenc témánkat vesszük elő. Bízunk benne, hogy az itt előforduló ismétlések szükségesek, ámde nem feleslegesek. A más módon való megoldás
A konfokális és a nem - konfokális ellipszis - seregekről és ortogonális trajektóriáikról
1 A konfokális és a nem - konfokális ellipszis - seregekről és ortogonális trajektóriáikról Előző dolgozatunk melynek címe: Ha az évgyűrűk ellipszis alakúak lennének készítése során böngész - gettük az
Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal.
1 Egy érdekes statikai feladat Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. A feladat A szabályos n - szög alakú, A, B, C, csúcsú lap az A csúcsán egy sima függőleges fal - hoz támaszkodik,
Keresztezett pálcák II.
Keresztezett pálcák II Dolgozatunk I részéen a merőleges tengelyű pálcák esetét vizsgáltuk Most nézzük meg azt az esetet amikor a pálcák tengelyei nem merőlegesen keresztezik egymást Ehhez tekintsük az
Egy kinematikai feladat
1 Egy kinematikai feladat Valami geometriai dologról ötlött eszembe az alábbi feladat 1. ábra. 1. ábra Adott az a és b egyenes, melyek α szöget zárnak be egymással. A b egyenesre ráfektetünk egy d hosszúságú
Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.
Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek
A főtengelyproblémához
1 A főtengelyproblémához Korábbi, az ellipszis perspektivikus ábrázolásával foglalkozó dolgozatainkban előkerült a másodrendű görbék kanonikus alakra hozása, majd ebben a főtengelyrendszert előállító elforgatási
A fák növekedésének egy modelljéről
1 A fák növekedésének egy modelljéről Az interneten nézelődve találtunk rá az [ 1 ] munkára, ahol a fák növekedésének azt a modelljét ismertették, melyet először [ 2 ] - ben írtak le. Úgy tűnik, ez az
Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]
1 Ismét a fahengeres keresztmetszetű gerenda témájáról Az 1. ábrával már korábban is találkozhatott az Olvasó. 1. ábra forrása: [ 1 ] Ezen azt láthatjuk, hogy bizonyos esetekben a fűrészelt fagerenda a
Vontatás III. A feladat
Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat
Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!
1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot
Befordulás sarkon bútorral
Befordulás sarkon bútorral Bizonyára volt már olyan élményed, hogy bútort kellett cipelned, és nem voltál biztos benne, hogy be tudjátok - e vinni a szobába. Erről jutott eszembe az alábbi feladat. Adott
Egy nyíllövéses feladat
1 Egy nyíllövéses feladat Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. 1. ábra forrása: [ 1 / 1 ] Igencsak tanulságos, ezért részletesen bemutatjuk a megoldását. A feladat Egy sportíjjal nyilat
A Cassini - görbékről
A Cassini - görbékről Giovanni Domenico Cassini, a 17-18 században élt olasz származású francia csillagász neve egyebek mellett a róla elnevezett görbékről is ismert lehet; ilyeneket mutat az 1 ábra is
A szabályos sokszögek közelítő szerkesztéséhez
1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon
Egy másik érdekes feladat. A feladat
Egy másik érdekes feladat Az előző dolgozatban melynek címe: Egy érdekes feladat az itteninek egy speciális esetét vizsgáltuk. Az általánosabb feladat az alábbi [ 1 ]. A feladat Adott: az ABCD zárt négyszög
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra
1 Vonatablakon át Sokat utazom vonaton, és gyakran elnézem a vonatablakon át a légvezeték(ek) táncát. Már régóta gondolom, hogy le kellene írni ezt a látszólagos mozgást. Most erről lesz szó. Ehhez tekintsük
Aszimmetrikus nyeregtető ~ feladat 2.
1 Aszimmetrikus nyeregtető ~ feladat 2. Ehhez tekintsük az 1. ábrát is! Itt az A és B pontok egy nyeregtető oromfali ereszpontjai, a P pont pedig a taréj pontja. Az ereszek egymástól való távolságának
Az elforgatott ellipszisbe írható legnagyobb területű téglalapról
1 Az elforgatott ellipszisbe írható legnagyobb területű téglalapról Előző dolgozatunkban melynek címe: Az ellipszisbe írható legnagyobb területű négyszögről már beharangoztuk, hogy találtunk valami érdekeset
Chasles tételéről. Előkészítés
1 Chasles tételéről A minap megint találtunk valami érdekeset az interneten. Az [ 1 ] tankönyvet, illetve an - nak fejezetenként felrakott egyetemi internetes változatát. Utóbbi 20. fejezetében volt az,
Csavarokról és rokon témákról
Csavarokról és rokon témákról A Gépészeti alapismeretek tantárgy tanítása / tanulása során megbeszéljük a csavarvonal és a csavarmenet származtatását, például mozgásgeometriai alapon. Azonban ez talán
A ferde tartó megoszló terheléseiről
A ferde tartó megoszló terheléseiről Úgy vettem észre az idők során, hogy nem nagyon magyarázták agyon azt a kérdést, amivel itt fogunk foglalkozni. Biztos azt mondják majd megint, hogy De hisz ezt mindenki
A rektellipszis csavarmozgása során keletkező felületről
1 A rektellipszis csavarmozgása során keletkező felületről Előző dolgozatunkban melynek címe: A kör és ellipszis csavarmozgása során keletkező felületekről felírtuk az általánosabb helyzetű ellipszis mint
Egy variátor - feladat. Az [ 1 ] feladatgyűjteményben találtuk az alábbi feladatot. Most ezt dolgozzuk fel. Ehhez tekintsük az 1. ábrát!
1 Egy variátor - feladat Az [ 1 ] feladatgyűjteményben találtuk az alábbi feladatot. Most ezt dolgozzuk fel. Ehhez tekintsük az 1. ábrát! A feladat 1. ábra forrás: [ 1 ] Egy súrlódó variátor ( fokozatmentes
Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.
osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét
Kerekes kút 2.: A zuhanó vödör mozgásáról
1 Kerekes kút 2.: A zuhanó vödör mozgásáról Előző dolgozatunkban melynek címe: A kerekes kútról a végén azt írtuk, hogy Az elengedett vödör a saját súlya hatására erősen felgyorsulhatott. Ezt személyes
A kardáncsukló kinematikája I. A szögelfordulások közti kapcsolat skaláris levezetése
A kardáncsukló kinematikája I. A szögelfordulások közti kapcsolat skaláris levezetése Bevezetés A Hooke -, vagy Kardán - csukló a gyakorlatban széles körben elterjedt gépelem. Feladata a forgó mozgás átszármaztatása
Profilmetsződésekről, avagy tórusz és körhenger áthatásáról
1 Profilmetsződésekről, avagy tórusz és körhenger áthatásáról Megesik, hogy nem értjük, amit olvasunk. Ez történt az [ 1 ] szakmai segédkönyv eseté - ben is. Ennek oka lehet ismereteink hiánya, a pontatlan
Az axonometrikus ábrázolás analitikus geometriai egyenleteinek másfajta levezetése. Bevezetés
1 Az axonometrikus ábrázolás analitikus geometriai egyenleteinek másfajta levezetése Bevezetés Több korábbi dolgozatunkban is foglalkoztunk hasonló dolgokkal, vagyis az axonometri - kus ábrázolás alapfeladatának
A magától becsukódó ajtó működéséről
1 A magától becsukódó ajtó működéséről Az [ 1 ] műben találtunk egy érdekes feladatot, amit most mi is feldolgozunk. Az 1. ábrán látható az eredeti feladat másolata. A feladat kitűzése 1. ábra forrása:
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Tető - feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladatot és végeredményeit ld. 1. ábra.
1 Tető - feladat Az interneten találtuk az [ 1 ] művet, benne az alábbi feladatot és végeredményeit ld. 1. ábra. 1. ábra forrása: [ 1 ] Most ezt oldjuk meg, részletesen. A feladat szövegének ( saját, hevenyészett
A kvadratrixról. Ez azt jelenti, hogy itt a görbe egy mozgástani származtatását vesszük elő 1. ábra. 1. ábra
1 A kvadratrixról A kvadratrix más néven triszektrix nevű síkgörbéről az [ 1 ] és [ 2 ] munkákban is olvashatunk. A keletkezéséről készített animáció itt tekinthető meg: http://hu.wikipedia.org/wiki/kvadratrix#mediaviewer/file:quadratrix_animation.gif
Fénypont a falon Feladat
Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
A merőleges axonometria néhány régi - új összefüggéséről
1 A merőleges axonometria néhány régi - új összefüggéséről Most néhány régebben már megbeszélt összefüggés újabb igazolását adjuk meg, illetve más, eddig még nem látott képlet - alakokat állítunk elő.
Kocka perspektivikus ábrázolása. Bevezetés
1 Kocka perspektivikus ábrázolása Bevezetés Előző három dolgozatunkban ~ melyek címe: 1. Sínpár perspektivikus ábrázolása, 2. Sínpár perspektivikus ábrázolása másként, 3. Sínpár perspektivikus ábrázolása
A felcsapódó kavicsról. Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra.
1 A felcsapódó kavicsról Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra. 1. ábra forrása: [ 1 ] Ez azért is érdekes, mert autóvezetés közben már többször is eszünkbe
Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ;
A négysuklós mehanizmus alapfeladata másképpen Előző dolgozatunkban melynek íme: A négysuklós mehanizmus alapfeladatáról egy általunk legegyszerűbbnek gondolt megoldási módot ismertettünk. Ott megemlítet
Az egyköpenyű forgáshiperboloid síkmetszeteiről
1 Az egyköpenyű forgáshiperboloid síkmetszeteiről Egyik előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról arról elmélkedtünk, hogy ha a forgáshenger ferde síkmetszete ( ellipszis ) mentén
Egy újabb látószög - feladat
1 Egy újabb látószög - feladat A feladat Adott az O középpontú, R sugarú körön az α szöggel jellemzett P pont. Határozzuk meg, hogy mekkora ϑ szög alatt látszik a P pontból a vízszintes átmérő - egyenes
Egy általánosabb súrlódásos alapfeladat
Egy általánosabb súrlódásos alapfeladat Az előző dolgozatunkban címe: Egy súrlódásos alapfeladat, jele: ( E D ) tárgyalt probléma általánosítása az alábbi, melynek forrása [ 1 ]. Tekintsük az 1. ábrát!
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
Kiegészítés a merőleges axonometriához
1 Kiegészítés a merőleges axonometriához Időnként találunk egy szép és könnyebben érthető levezetést, magyarázó ábrát, amit érdemesnek gondolunk a megosztásra. Most is ez történt, az [ 1 ] és [ 3 ] művek
Egy gyakorlati szélsőérték - feladat. 1. ábra forrása: [ 1 ]
1 Egy gyakorlati szélsőérték - feladat Az [ 1 ] munkában találtuk az alábbi feladatot. 1. ábra forrása: [ 1 ] Magyarul: Három egyforma széles deszkából egy (eresz - )csatornát szegezünk össze. Az oldalfal
Kerék gördüléséről. A feladat
1 Kerék gördüléséről Nemrégen egy órán szóba került a címbeli téma, középiskolások előtt. Úgy látszott, nem nagyon értik, miről van szó. Persze, lehet, hogy még nem tartottak ott, vagy csak aludtak a fizika
Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással
Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással Előző dolgozatunkban jele: ( E ), címe: Szimmetrikusan szélezett körkeresztmetszet geometriai jellemzőinek meghatározása
Rönk kiemelése a vízből
1 Rönk kiemelése a vízből Az interneten találtuk az [ 1 ] művet, benne az alábbi feladatot 1. ábra. A feladat 1. ábra forrása: [ 1 ] Egy daru kötél segítségével lassan emeli ki a vízből a benne úszó gerendát
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű