A Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó.
|
|
- András Illés
- 6 évvel ezelőtt
- Látták:
Átírás
1 1 A Kepler - problémáról Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó. 1. ábra forrása: Az 1. ábra forrása szerint a Kepler - probléma lényege: a Nap körül keringő bolygó moz - gását leíró egyenlet megadása. Ez tehát egy kéttest - probléma, amely azonban visszave - zethető egyetlen pont mozgásának feladatára [ 1 ]. A Kepler - probléma feladata dinami - kai értelemben: meghatározni a távolság négyzetével fordítottan arányos vonzóerő hatá - sára létrejövő mozgást. A vizsgálat eredménye: a bolygó / tömegpont a vonzó - centrum ( a Nap ) körül egy kúpszelet alakú pályán mozog, melynek egyenlete: ( 1 )
2 2 A kúpszelet fókusza a koordináta - rendszer O kezdőpontjában van, p a pálya paramétere, e a pálya numerikus excentricitása. A pálya e értékétől függően lehet [ 2 ] : ~ kör: e = 0; ~ ellipszis: 0 < e < 1; ~ parabola: e = 1; ~ hiperbola: e > 1. A további vizsgálatokat főleg [ 1 ] és [ 3 ] alapján végezzük. Mi itt az ellipszispálya esetével foglalkozunk. Ehhez tekintsük a 2. ábrát is! 2. ábra A feladat: meghatározni a tömegpont / bolygó helyzetét, az idő függvényében, vagyis az ( 2 ) típusú összefüggéseket. A szakirodalom szerint ez pontos / zárt explicit alakban nem megy, ezért is kíváncsiak vagyunk, hogy mit is tehetünk ekkor. A 2. ábrán [ 1 ] szerint bevezettünk egy ξ szögparamétert, mellyel a P pont koordinátái az Oxy k. r. - ben: ( 3 ) ( 4 )
3 3 Itt felhasználtuk, hogy az ellipszis jellemző adatai között fennállnak az alábbiak: ( 5 ) Most írjuk fel a t = t ( ξ ) kapcsolatot! Ehhez felhasználjuk, hogy centrális mozgásnál a területi sebesség C = konst. A területi sebesség ellipszispálya esetén: ( 6 ) Itt T a teljes pálya ( egyszeri ) befutásához szükséges idő: a periódusidő. Az S esz szektorterületet a 2. ábra segítségével az alábbi módon is meghatározhatjuk. Az ellipszis az a sugarú kör merőleges vetülete egy a kör síkjával β szöget bezáró síkra, így területe: ( 7 ) Most tekintsük a 3. ábrát! 3. ábra Innen: ( 8 )
4 4 így ( 7 ) és ( 8 ) szerint: ( 9 ) Hasonló, ( 7 ) szerinti kapcsolat áll fenn a körszektor és az ellipszis - szektor területe között: ( 10 ) Az OP 0 Q a körszektor területe a 2. ábra alapján: Részletezve: ( 11 ) ( 12 ) ( 13 ) ( 14 ) Most ( 11 ), ( 12 ), ( 13 ) és ( 14 ) - gyel: innen ( 5 / 2 ) - vel is: tehát: ( 15 ) majd ( 10 ) és ( 15 ) - tel az ellipszis - szektor területe: tehát: ( 16 ) Most ( 6 ) - ból: ( 17 ) így ( 16 ) és ( 17 ) - tel:
5 5 ( 18 ) Most egy másik szög - adatot is bevezetünk: ( 19 ) szerint; ekkor ( 18 ) és ( 19 ) - ből: majd ( 19 ) és ( 20 ) - szal: ( 20 ) ( 21 ) Az eddigi szögparaméterek elnevezése v.ö.: 1. ábra! : ~ φ: valódi anomália; ~ ξ: excentrikus anomália; ~ ζ: közepes anomália. Ha animációt készítenénk ( amint az 1. ábra forrásánál látható ), azt látnánk, hogy amíg a ζ közepes anomália ( 19 ) szerint a t idővel egyenesen arányosan növekszik, addig a ξ ex - centrikus anomália ( 21 ) szerint már nem: hol lemarad, hol előresiet ζ - hoz képest. Ha képezni tudnánk a ξ = ξ ( t ) kifejezést, akkor ( 2 ), ( 3 ), ( 4 ) már a megoldást is adná. Azonban ( 21 ) - ből a ξ = ξ ( t ) kapcsolat nem fejezhető ki zárt alakú függvénnyel, így más utat kell keresnünk a mozgás időfüggvényeinek előállításához. Úgy látszik, hogy a ξ paraméter közvetítésével oldható meg a feladat: az x( t ), y( t ) összefüggések előállítása; ( 3 ), ( 4 ) és ( 18 ) szerint: ~ ( 22 / 1 ) ~ ( 22 / 2 ) ~ ( 22 / 3 ) Egy viszonylag egyszerű grafikus megoldás lehet az alábbi 4. ábra. Itt azt látjuk, hogy ( 22 / 1 ) - ből egyenletes időközökre grafikusan meghatároztuk a t( ξ i ) adatokat, amivel rögtön előálltak a ξ( t i ) adatok is. Az alkalmazott bemenő paraméterek: a = 5( cm ); b = 3 ( cm ); c = 4 (cm ) ; e = 0,8 ; T = 10 ( s ). ( A ) Ezután alkalmaztuk a ( 22 / 2 ) és ( 22 / 3 ) képleteket, a pályagörbe megrajzolásához.
6 6 4. ábra 5. ábra Az 5. ábra adattáblázata az alábbi. Az adatokból jól látható, hogy a mozgás első felében a második felében pedig
7 7 i t i / T ζ i ( rad ) ξ i ( rad ) x i ( cm ) y i ( cm ) ,1 0, , , , ,2 1, , , , ,3 1, , , , ,4 2, , , , ,5 3, , ,6 3, , , , ,7 4, , , , ,8 5, , , , ,9 5, , , , , , Az 5. ábrán is jól érzékelhető, hogy a vonzó - centrum környezetében jóval nagyobb a tömegpont sebessége, mint attól távolabb. Ez a területi sebesség állandóságának a követ - kezménye. A sebességi viszonyokat a 6. ábra szemlélteti. 6. ábra A 6. ábra a
8 8 ( 23 / 1 ) képlettel készült [ 5 ], ahol ( 23 / 2 ) az a sugarú körpálya menti egyenletes haladás sebessége. Érdemes meghatározni a ξ és a φ szögek kapcsolatát. A 2. ábra szerint, ( 22 / 2 ) és ( 22 / 3 ) - mal: ( 24 / 1 ) innen a félszögek szögfüggvényeivel, azonos átalakítások után, v.ö.: [ 3 ]! :. ( 24 ) A φ = φ ( ξ ) függvény képét e = 0,8 - del a 7. ábrán szemlélhetjük. 7. ábra
9 9 Jól látszik, hogy a mozgás 1. felében: a mozgás 2. felében:. Úgy véljük, ezek után az animáció elkészítése egy programozónak már nem okozhat nehézséget. Más megközelítések is vannak. Már régi ismerős a [ 4 ] munkában látott megoldás. Itt a mozgás differenciálegyenlet - rendszerének közvetlen numerikus megoldását választot - ták. Ez a többtest - probléma esetén is működik, csak komolyabb erőforrásokat feltételez. Egy ilyen számítás végeredményét láthatjuk a 8. ábrán az orosz kiadásból. 8. ábra Megjegyzések: M1. Egy sima nem darabos mozgású animációhoz az itteninél több pontot kell felvenni; legalább a kétszeresét. Ez nem nehezebb, csak több munka, mint eddig. M2. Elsőre furcsa lehet a 6. ábra. Ne feledjük, hogy ott egy ellipszis pálya menti változó nagyságú, valamint egy körpálya menti állandó nagyságú sebességgel történő mozgást hasonlítunk össze, ahol a körpálya sugara az ellipszis fél nagytengelyével egyenlő! Bizonyára ezért van az, hogy az 1. ábra forrásának animációjában is a közép Föld így mozog: nem ellipszis, hanem kör mentén. M3. Meglepő lehet az a tény is, hogy miért volt szükség a ( 24 / 1 ) függvényről ( 24 ) - re áttérni. Ennek magyarázata a többértékű inverz trigonometriai függvények furcsaságaiban rejlik. Szerencse, hogy a Graph ingyenes szoftver implicit függvényt ábrázoló adottságai lehetővé teszik a számunkra legkedvezőbb alakú trigonometriai összefüggés kiválasztását. Nyilván nem véletlen, hogy a szakirodalomban is ( 24 ) terjedt el inkább.
10 10 M4. Most így utólag levezetjük a ( 23 ) összefüggést is. Kiindulunk a sebesség négyzetének kifejezéséből. Majd ( 22 / 2 ) és ( 22 / 3 ) idő szerinti differenciálásával: ( 25 ) ( 26 ) ( 27 ) Ezután ( 21 ) differenciálásából: ( 28 ) Most ( 25 ), ( 26 ), ( 27 ) - tel: ( 29 ) Majd ( 28 ) és ( 29 ) - cel: innen: ( 23 ) A ( 23 ) képlettel könnyen adódik a v P perihéliumbeli ( ξ = 0 ) és a v A aphéliumbeli ( ξ = π ) sebességek arányára e = 0,8 - del, hogy ( 23 * ) egyezésben a 6. ábrával. M5. Ezután így utólag levezetjük a ( 24 ) összefüggést is. Kiindulunk ( 24 / 1 ) - ből: ( 24 / 1* ) Most trigonometriai azonossággal [ 7 ] :
11 11 ( 30 ) majd hasonlóképpen: ( 31 ) ( 32 ) most ( 24 / 1* ), ( 31 ) és ( 32 ) - vel: tehát: ( 33 ) Majd ( 24 / 1* ), ( 30 ) és ( 33 ) - mal: innen pedig:. ( 24 )
12 12 M6. Érdemes az alkalmazott szögekre vonatkozó alábbi összefoglalást átgondolni: ~ a mozgás 1. felében: ~ a mozgás 2. felében:. Az 1. ábrán együtt ábrázolták a mozgás 1. felére jellemző helyzetet. M7. Nagyszerű ötlet, bárkié is! Mi is? Az, hogy vezessük be az ellipszis ξ paraméterét. Talán Kepleré az érdem. Annál is inkább vélhető ez, mert a nevét viselő ( 21 ) egyenlet közelítő megoldására is talált eljárást 9. ábra. 9. ábra forrása: [ 6 ] M8. Végül itt egy kép Róla 10. ábra. Megérdemli, hogy emlékezzünk Rá. 10. ábra forrása: 0.jpg/800px-Johannes_Kepler_1610.jpg
13 13 Irodalom: [ 1 ] L. D. Landau ~ E. M: Lifsic: Elméleti fizika I.: Mechanika Tankönyvkiadó, Budapest, 1974., 46 ~ 61. o. [ 2 ] Nagy Károly: Elméleti mechanika Tankönyvkiadó, Budapest, 1985., 60. o. [ 3 ] L. G. Lojcjanszkij ~ A. I. Lurje: Kursz tyeoretyicseszkoj mehanyiki Tom 2: Gyinamika 6. kiadás, Nauka, Moszkva, 1983., 56 ~ 57. o. [ 4 ] R. P. Feynman ~ R. B. Leighton ~ M. Sands: Mai fizika 1. A modern természettudomány alapjai. A mechanika törvényei 5. kiadás, Műszaki Könyvkiadó, Budapest, 1985., 121 ~ 125. o. [ 5 ] N. V. Butyenyin ~ Ja. L. Lunc ~ D. R. Merkin: Kursz tyeoretyicseszkoj mehanyiki Tom II.: Gyinamika 2. kiadás, Nauka, Moszkva, 1979., 115. o. [ 6 ] Sain Márton: Nincs királyi út! Matematikatörténet Gondolat, Budapest, 1986., 525 ~ 526. o. internet: [ 7 ] I. N. Bronstejn ~ K. A. Szemengyajev: Matematikai zsebkönyv 2. kiadás, Műszaki Könyvkiadó, Budapest, 1963., 228. o. Sződliget, augusztus 16. Összeállította: Galgóczi Gyula mérnöktanár
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
Ellipszis átszelése. 1. ábra
1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva
Poncelet egy tételéről
1 Poncelet egy tételéről Már régebben találkoztunk az [ 1 ] műben egy problémával, mostanában pedig a [ 2 ] műben a megoldásával. A probléma lényege: határozzuk meg a egyenletben szereplő α, β együtthatókat,
Az elliptikus hengerre írt csavarvonalról
1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása
Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához
1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent
A Lenz - vektorról. Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra.
1 A Lenz - vektorról Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra. 1. ábra forrása: [ 1 ] Ez nem régen történt. Meglepett, hogy eddig ez kimaradt. Annál is inkább, mert
Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 )
1 Néhány véges trigonometriai összegről A Fizika számos területén találkozhatunk véges számú tagból álló trigonometriai össze - gekkel, melyek a számítások során állnak elő. Ezek értékét kinézhetjük matematikai
Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.
1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton
A bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
Ellipszissel kapcsolatos képletekről
1 Ellipszissel kapcsolatos képletekről Előző dolgozatunkban melynek címe: A Lenz - vektorról viszonylag sokat kellett ellipszissel kapcsolatos képletekkel dolgozni. Ennek során is adódott pár észrevételünk,
Egy kinematikai feladathoz
1 Egy kinematikai feladathoz Az [ 1 ] példatárból való az alábbi feladat. Egy bütyök v 0 állandó nagyságú sebességgel halad jobbról balra. Kontúrjának egyenlete a hozzá kötött, vele együtt haladó O 1 xy
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most
Az egyenes ellipszishenger ferde síkmetszeteiről
1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges
Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.
Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban
Egy geometriai szélsőérték - feladat
1 Egy geometriai szélsőérték - feladat A feladat: Szerkesztendő egy olyan legnagyobb területű háromszög, melynek egyik csúcsa az a és b féltengelyeivel adott ellipszis tetszőlegesen felvett pontja. Keresendő
A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.
1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi
Fénypont a falon Feladat
Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.
Fa rudak forgatása II.
Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve
A hordófelület síkmetszeteiről
1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük
Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!
1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot
Egy keveset a bolygók perihélium - elfordulásáról
1 Egy keveset a bolygók perihélium - elfordulásáról Szép ábrákat / animációkat találtunk az interneten, melyek felkeltették érdeklődésünket. Ilyen az 1. ábra is. 1. ábra forrása: https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/drehung_der_apsidenlinie.
t, u v. u v t A kúpra írt csavarvonalról I. rész
A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem
A felcsapódó kavicsról. Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra.
1 A felcsapódó kavicsról Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra. 1. ábra forrása: [ 1 ] Ez azért is érdekes, mert autóvezetés közben már többször is eszünkbe
Két naszád legkisebb távolsága. Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra.
1 Két naszád legkisebb távolsága Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra. 1. ábra A feladat Az A és B, egymástól l távolságra lévő kikötőből egyidejűleg indul két
A konfokális és a nem - konfokális ellipszis - seregekről és ortogonális trajektóriáikról
1 A konfokális és a nem - konfokális ellipszis - seregekről és ortogonális trajektóriáikról Előző dolgozatunk melynek címe: Ha az évgyűrűk ellipszis alakúak lennének készítése során böngész - gettük az
Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész
Az R forgató mátri [ ] - beli képleteinek levezetése: I rész Az [ ] forrás kötetében a ( 49 ), ( 50 ) képletek nyilván mint közismertek nem lettek levezetve Minthogy az ottani további számítások miatt
Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere. Az egyenletek felírása
1 Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere Az egyenletek felírása Korábbi dolgozataink már mintegy előkészítették a mostanit; ezek: ~ KD - 1: Általános helyzetű
Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki!
1 Lövés csúzlival Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. A feladat Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk
A Cassini - görbékről
A Cassini - görbékről Giovanni Domenico Cassini, a 17-18 században élt olasz származású francia csillagász neve egyebek mellett a róla elnevezett görbékről is ismert lehet; ilyeneket mutat az 1 ábra is
Egy sík és a koordinátasíkok metszésvonalainak meghatározása
1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -
Egy másik érdekes feladat. A feladat
Egy másik érdekes feladat Az előző dolgozatban melynek címe: Egy érdekes feladat az itteninek egy speciális esetét vizsgáltuk. Az általánosabb feladat az alábbi [ 1 ]. A feladat Adott: az ABCD zárt négyszög
Egy kötélstatikai alapfeladat megoldása másként
1 Egy kötélstatikai alapfeladat megoldása másként Most megint egyik kedvenc témánkat vesszük elő. Bízunk benne, hogy az itt előforduló ismétlések szükségesek, ámde nem feleslegesek. A más módon való megoldás
A kötélsúrlódás képletének egy általánosításáról
1 A kötélsúrlódás képletének egy általánosításáról Sok korábbi dolgozatunkban foglalkoztunk kötélstatikai feladatokkal. Ez a mostani azon - ban még nem került szóba. A feladat: az egyenes körhengerre feltekert,
Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.
1 Végein függesztett rúd egyensúlyi helyzete Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. A feladat Ehhez tekintsük a 2. ábrát is! 1. ábra forrása:
Egy általánosabb súrlódásos alapfeladat
Egy általánosabb súrlódásos alapfeladat Az előző dolgozatunkban címe: Egy súrlódásos alapfeladat, jele: ( E D ) tárgyalt probléma általánosítása az alábbi, melynek forrása [ 1 ]. Tekintsük az 1. ábrát!
Henger és kúp metsződő tengelyekkel
Henger és kúp metsződő tengelyekkel Ebben a dolgozatban egy forgáshenger és egy forgáskúp áthatását tanulmányozzuk abban az egyszerűbb esetben, amikor a két test tengelye egyazon síkban fekszik, vagyis
Ellipszis perspektivikus képe 2. rész
1 Ellipszis perspektivikus képe 2. rész Dolgozatunk 1. részében nem mentünk tovább a matematikai kifejtésben. Ezzel mintegy felhagytunk a belső összefüggések feltárásával. A jelen 2. részben megkíséreljük
Az éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
Egy kinematikai feladat
1 Egy kinematikai feladat Valami geometriai dologról ötlött eszembe az alábbi feladat 1. ábra. 1. ábra Adott az a és b egyenes, melyek α szöget zárnak be egymással. A b egyenesre ráfektetünk egy d hosszúságú
Egy nyíllövéses feladat
1 Egy nyíllövéses feladat Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. 1. ábra forrása: [ 1 / 1 ] Igencsak tanulságos, ezért részletesen bemutatjuk a megoldását. A feladat Egy sportíjjal nyilat
A főtengelyproblémához
1 A főtengelyproblémához Korábbi, az ellipszis perspektivikus ábrázolásával foglalkozó dolgozatainkban előkerült a másodrendű görbék kanonikus alakra hozása, majd ebben a főtengelyrendszert előállító elforgatási
Kecskerágás már megint
1 Kecskerágás már megint Az interneten találtuk az újabb kecskerágós feladatot 1. ábra. 1. ábra forrása: [ 1 ] A feladat ( kicsit megváltoztatva az eredeti szöveget ) Egy matematikus kecskét tart a kertjében.
Érdekes geometriai számítások 10.
1 Érdekes geometriai számítások 10. Találtunk az interneten egy könyvrészletet [ 1 ], ahol egy a triéder - geometriában fontos összefüggést egyszerű módon vezetnek le. Ennek eredményét összevetjük más
Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra
1 Vonatablakon át Sokat utazom vonaton, és gyakran elnézem a vonatablakon át a légvezeték(ek) táncát. Már régóta gondolom, hogy le kellene írni ezt a látszólagos mozgást. Most erről lesz szó. Ehhez tekintsük
Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához
1 Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához Az interneten való nézelődés során találkoztunk az [ 1 ] művel, melyben egy érdekes és fontos feladat pontos(abb) megoldásához
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I rész evezetés rugalmas láncgörbe magyar nyelvű szakirodalma nem túl gazdag Egy viszonylag rövid ismertetés található [ 1 ] - ben közönséges ( azaz
A gúla ~ projekthez 2. rész
1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú
Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.
1 Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1. ábra forrása: [ 1 ] Ezen egy út tengelyvonalának egy pontjában tüntették
Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.
osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét
Egy ismerős fizika - feladatról. Az interneten találtuk az [ 1 ] könyvet, benne egy ismerős fizika - feladattal 1. ábra.
1 Egy ismerős fizika - feladatról Az interneten találtuk az [ 1 ] könyvet, benne egy ismerős fizika - feladattal 1. ábra. 1. ábra forrása: [ 1 ] A feladat szerint beleejtünk egy kútba / aknába egy követ,
Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon
Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk
A csavarvonal axonometrikus képéről
A avarvonal axonometrikus képéről Miután egyre jobban megy a Graph ingyenes függvény - ábrázoló szoftver használata, kipróbáltuk, hogy tudunk - e vele avarvonalat ábrázolni, axonometrikusan. A válasz:
A lengőfűrészelésről
A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású
Vontatás III. A feladat
Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat
Egy anomáliáról. Ehhez tekintsük az 1. ábrát! 1. ábra forrása: [ 1 ]
1 Egy anomáliáról A bolygómozgás témakörének részletes kifejtése nem könnyű tananyag, így a tankönyvek gyakorta átugorják a nehezebb részeket. Ez rendben is lenne, kezdőknél. Kicsit más a helyzet a haladóbbak,
Felső végükön egymásra támaszkodó szarugerendák egyensúlya
1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra
Egy felszínszámítási feladat a tompaélű fagerendák témaköréből
1 Egy felszínszámítási feladat a tompaélű fagerendák témaköréből Előző dolgozatunkban melynek címe: Ismét a fahengeres keresztmetszetű gerenda témájáról már sok min - dent előkészítettünk az itteni címbeli
A kör és ellipszis csavarmozgása során keletkező felületekről
1 A kör és ellipszis csavarmozgása során keletkező felületekről Előző dolgozatunkban melynek címe: Megint a két csavarfelületről levezettük a cím - beli körös felület - család paraméteres egyenletrendszerét,
Síkbeli csuklós rúdnégyszög egyensúlya
Síkbeli csuklós rúdnégyszög egyensúlya Két korábbi dolgozatunkban melyek címe és azonosítója: [KD ]: Egy érdekes feladat, [KD ]: Egy másik érdekes feladat azt vizsgáltuk, hogy egy csuklós rúdnégyszög milyen
A szabályos sokszögek közelítő szerkesztéséhez
1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon
Szökőkút - feladat. 1. ábra. A fotók forrása:
Szökőkút - feladat Nemrégen Gyulán jártunk, ahol sok szép szökőkutat láttunk. Az egyik különösen megtetszett, ezért elhatároztam, hogy megpróbálom elemi módon leírni a ízsugarak, illete az általuk leírt
Egy gyakorlati szélsőérték - feladat. 1. ábra forrása: [ 1 ]
1 Egy gyakorlati szélsőérték - feladat Az [ 1 ] munkában találtuk az alábbi feladatot. 1. ábra forrása: [ 1 ] Magyarul: Három egyforma széles deszkából egy (eresz - )csatornát szegezünk össze. Az oldalfal
Egy sajátos ábrázolási feladatról
1 Egy sajátos ábrázolási feladatról Régen volt, ha volt egyáltalán. Én bizony nem emlékszem a ferde gerincvonalú túleme - lés ~ átmeneti megoldásra 1. ábra az ( erdészeti ) útépítésben. 1. ábra forrása:
A véges forgatás vektoráról
A véges forgatás vektoráról Az idők során sokszor olvastuk azt a mondatot a mechanika - könyvekben hogy a végtelen kis szögelfordulások az elemi forgások vektornak tekinthetők [ ] Természetesen adódik
A merőleges axonometria néhány régi - új összefüggéséről
1 A merőleges axonometria néhány régi - új összefüggéséről Most néhány régebben már megbeszélt összefüggés újabb igazolását adjuk meg, illetve más, eddig még nem látott képlet - alakokat állítunk elő.
Chasles tételéről. Előkészítés
1 Chasles tételéről A minap megint találtunk valami érdekeset az interneten. Az [ 1 ] tankönyvet, illetve an - nak fejezetenként felrakott egyetemi internetes változatát. Utóbbi 20. fejezetében volt az,
Egy variátor - feladat. Az [ 1 ] feladatgyűjteményben találtuk az alábbi feladatot. Most ezt dolgozzuk fel. Ehhez tekintsük az 1. ábrát!
1 Egy variátor - feladat Az [ 1 ] feladatgyűjteményben találtuk az alábbi feladatot. Most ezt dolgozzuk fel. Ehhez tekintsük az 1. ábrát! A feladat 1. ábra forrás: [ 1 ] Egy súrlódó variátor ( fokozatmentes
A kvadratrixról. Ez azt jelenti, hogy itt a görbe egy mozgástani származtatását vesszük elő 1. ábra. 1. ábra
1 A kvadratrixról A kvadratrix más néven triszektrix nevű síkgörbéről az [ 1 ] és [ 2 ] munkákban is olvashatunk. A keletkezéséről készített animáció itt tekinthető meg: http://hu.wikipedia.org/wiki/kvadratrix#mediaviewer/file:quadratrix_animation.gif
További adalékok a merőleges axonometriához
1 További adalékok a merőleges axonometriához Egy szép összefoglaló munkát [ 1 ] találtunk az interneten, melynek előző dolgoza - tunkhoz csatlakozó részeit itt dolgozzuk fel. Előző dolgozatunk címe: Kiegészítés
A bolygók mozgására vonatkozó Kepler-törvények igazolása
A bolygók mozgására vonatkozó Kepler-törvények igazolása Geometriai alapok. A kúpszeletek polárkoordinátás egyenlete A síkbeli másodrend görbék közül az ellipszist, a hiperbolát és a parabolát mondjuk
A rektellipszis csavarmozgása során keletkező felületről
1 A rektellipszis csavarmozgása során keletkező felületről Előző dolgozatunkban melynek címe: A kör és ellipszis csavarmozgása során keletkező felületekről felírtuk az általánosabb helyzetű ellipszis mint
Befordulás sarkon bútorral
Befordulás sarkon bútorral Bizonyára volt már olyan élményed, hogy bútort kellett cipelned, és nem voltál biztos benne, hogy be tudjátok - e vinni a szobába. Erről jutott eszembe az alábbi feladat. Adott
Egy érdekes statikai - geometriai feladat
1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani
A fák növekedésének egy modelljéről
1 A fák növekedésének egy modelljéről Az interneten nézelődve találtunk rá az [ 1 ] munkára, ahol a fák növekedésének azt a modelljét ismertették, melyet először [ 2 ] - ben írtak le. Úgy tűnik, ez az
Kerekes kút 2.: A zuhanó vödör mozgásáról
1 Kerekes kút 2.: A zuhanó vödör mozgásáról Előző dolgozatunkban melynek címe: A kerekes kútról a végén azt írtuk, hogy Az elengedett vödör a saját súlya hatására erősen felgyorsulhatott. Ezt személyes
Aszimmetrikus nyeregtető ~ feladat 2.
1 Aszimmetrikus nyeregtető ~ feladat 2. Ehhez tekintsük az 1. ábrát is! Itt az A és B pontok egy nyeregtető oromfali ereszpontjai, a P pont pedig a taréj pontja. Az ereszek egymástól való távolságának
Kocka perspektivikus ábrázolása. Bevezetés
1 Kocka perspektivikus ábrázolása Bevezetés Előző három dolgozatunkban ~ melyek címe: 1. Sínpár perspektivikus ábrázolása, 2. Sínpár perspektivikus ábrázolása másként, 3. Sínpár perspektivikus ábrázolása
Keresztezett pálcák II.
Keresztezett pálcák II Dolgozatunk I részéen a merőleges tengelyű pálcák esetét vizsgáltuk Most nézzük meg azt az esetet amikor a pálcák tengelyei nem merőlegesen keresztezik egymást Ehhez tekintsük az
Egy újabb látószög - feladat
1 Egy újabb látószög - feladat A feladat Adott az O középpontú, R sugarú körön az α szöggel jellemzett P pont. Határozzuk meg, hogy mekkora ϑ szög alatt látszik a P pontból a vízszintes átmérő - egyenes
Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra.
1 Egy újabb térmértani feladat Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. Úgy látjuk, érdekes és tanulságos lesz végigvenni. 2 A feladat Egy szabályos n - szög alapú
A ferde tartó megoszló terheléseiről
A ferde tartó megoszló terheléseiről Úgy vettem észre az idők során, hogy nem nagyon magyarázták agyon azt a kérdést, amivel itt fogunk foglalkozni. Biztos azt mondják majd megint, hogy De hisz ezt mindenki
A kerekes kútról. A kerekes kút régi víznyerő szerkezet; egy gyakori változata látható az 1. ábrán.
1 A kerekes kútról A kerekes kút régi víznyerő szerkezet; egy gyakori változata látható az 1. ábrán. 1. ábra forrása: http://keptar.oszk.hu/015800/015877/1264608300_nagykep.jpg Az iskolában tanultunk alapeleméről
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal.
1 Egy érdekes statikai feladat Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. A feladat A szabályos n - szög alakú, A, B, C, csúcsú lap az A csúcsán egy sima függőleges fal - hoz támaszkodik,
Az elforgatott ellipszisbe írható legnagyobb területű téglalapról
1 Az elforgatott ellipszisbe írható legnagyobb területű téglalapról Előző dolgozatunkban melynek címe: Az ellipszisbe írható legnagyobb területű négyszögről már beharangoztuk, hogy találtunk valami érdekeset
Kerék gördüléséről. A feladat
1 Kerék gördüléséről Nemrégen egy órán szóba került a címbeli téma, középiskolások előtt. Úgy látszott, nem nagyon értik, miről van szó. Persze, lehet, hogy még nem tartottak ott, vagy csak aludtak a fizika
Rönk kiemelése a vízből
1 Rönk kiemelése a vízből Az interneten találtuk az [ 1 ] művet, benne az alábbi feladatot 1. ábra. A feladat 1. ábra forrása: [ 1 ] Egy daru kötél segítségével lassan emeli ki a vízből a benne úszó gerendát
A visszacsapó kilincs működéséről
1 A visszacsapó kilincs működéséről A faipari forgácsoló gépek egy részén a munkadarab visszasodródása ellen visszacsapó kilincset / kilincssort alkalmaznak. Ilyen gépek például a felülről vágó körfűrészek
A brachistochron probléma megoldása
A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e
Kerekes kút 4.: A zuhanó vödör fékezéséről. A feladat. A megoldás
1 Kerekes kút 4.: A zuhanó vödör fékezéséről Egy korábbi dolgozatunkban melynek címe: Kerekes kút 2.: A zuhanó vödör mozgásáról nem volt szó fékezésről. Itt most egy egyszerű fékezési modellt vizsgálunk
Észrevételek a forgásfelületek síkmetszeteivel kapcsolatban. Bevezetés
1 Észrevételek a forgásfelületek síkmetszeteivel kapcsolatban Bevezetés Előző dolgozatainkban melyek jelölése és címe: ~ ED - 1: Ismét egy érdekes mechanizmusról; ~ ED - 2: A hordófelület síkmetszeteiről
Az egyköpenyű forgáshiperboloid síkmetszeteiről
1 Az egyköpenyű forgáshiperboloid síkmetszeteiről Egyik előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról arról elmélkedtünk, hogy ha a forgáshenger ferde síkmetszete ( ellipszis ) mentén
1. ábra forrása:
1 A cérnaorsó, a kábeldob viselkedéséről A napokban láttam a tévében egy ismeretterjesztő műsort, ahol egy kábeldobot akartak nekigurítani egy roncsautónak. Különböző szögekben működtették a kábel szabad
T s 2 képezve a. cos q s 0; 2. Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról
Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról Úgy találjuk, hogy a kötelek statikájának népszerűsítése egy soha véget nem érő feladat. Annyi szép dolog tárháza
A fűrészmozgás kinetikai vizsgálata
A fűrészmozgás kinetikai vizsgálata Az alábbi dolgozat az 1988 - ban Sopronban, a kandidátusi fokozat elnyerése céljából írt értekezésem alapján készült, melynek címe: Balesetvédelmi és környezetkímélő
Már megint az esővíz lefolyásáról
1 Már megint az esővíz lefolyásáról Már korábban is elmélkedtünk e témáról; ennek honlapunkon bemutatott eredményei: ~ KD 1: Két kereszttetőről; ~ KD 2: Egy modellről; ~ KD 3: Egy kérdés: merre folyik
A csavart oszlop előállításáról
1 A csavart oszlop előállításáról Egy korábbi dolgozatunkban melynek címe: A kör és ellipszis csavarmozgása során keletkező felületekről felírtuk a szakirodalom - ban ld. pl.: [ 1 ]! csavart oszlop néven
w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ;
A négysuklós mehanizmus alapfeladata másképpen Előző dolgozatunkban melynek íme: A négysuklós mehanizmus alapfeladatáról egy általunk legegyszerűbbnek gondolt megoldási módot ismertettünk. Ott megemlítet
Kiegészítés a merőleges axonometriához
1 Kiegészítés a merőleges axonometriához Időnként találunk egy szép és könnyebben érthető levezetést, magyarázó ábrát, amit érdemesnek gondolunk a megosztásra. Most is ez történt, az [ 1 ] és [ 3 ] művek
A hiperbolikus Kepler-egyenlet geometriai szemléletű tárgyalása
DIMENZIÓK 31 Matematikai Közlemények IV. kötet, 2017 doi:10.20312/dim.2017.05 A hiperbolikus Kepler-egyenlet geometriai szemléletű tárgyalása Péntek Kálmán ELTE SEK TTMK Savaria Matematikai Tanszék pentek.kalman@sek.elte.hu