Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.
|
|
- Norbert Fábián
- 8 évvel ezelőtt
- Látták:
Átírás
1 Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban metszi. 1. ábra A feladat Adott: O(0, 0, 0); ( X, 0, Z );. Keresett: az ( XY ) sík által a kúpból kimetszett alkotóknak az X tengellyel bezárt Ф szöge.. ábra
2 A megoldás Ehhez tekintsük a. ábrát is! Jelölések: O t; ( X, ) =. Kikötések: X > 0 ; Z 0 ; 0 < < 90. ( 1 ) A. ábra szerint: R t tg ; ( ) Z / cos sin ; ( 3 ) R most a ( ) és ( 3 ) képletekkel: Z / cos t tg sin ; ismét a. ábra szerint: Z sin, ( 5 ) t így ( 4 ) és ( 5 ) - tel: sin / cos tg sin, tehát: tg tg tg sin, ( 6 ) tg ahol a. ábra elölnézeti képe szerint: Z tg. ( 7 ) X Az ismert azonosság szerint [ 1 ] : 1 cos ; ( 8 ) 1 tg most a. ábra elöl - és felülnézeti képéről: R cos R tg cos cos tg cos cos, t / cos t tehát: tg tgcos cos. ( 9 ) Egy másik ismert trigonometriai azonossággal és ( 6 ) - tal: ( 4 )
3 3 tg cos 1sin 1, tg majd ( 10 ) - zel is: tg tgcos tg 1 tg tg, tg ezután pedig ( 9 ) és ( 11 ) - gyel is: ( 10 ) ( 11 ) tg tgcos cos cos tg tg. ( 1 ) Most ( 8 ) - hoz: 1 tg (sin cos ) cos tg tg cos cos majd ( 8 ) és ( 13 ) - mal: cos cos. cos cos 1 tg sin sin cos 1 tg, ( 13 ) ( 14 ) Végül ( 14 ) - ből: cos arccos. cos ( 15 ) A bemenő adatokhoz visszatérve, tekintettel a ( 7 ) - tel is adódó 1 1 cos 1 tg Z 1 X ( 16 ) összefüggésre is, ( 15 ) és ( 16 ) - tal: Z arccos 1 cos. X ( 17 ) Ezzel a X, Z, kapcsolat felállításának feladatát megoldottuk.
4 4 Megjegyzések: M1. A. ábra felső, jobb oldali ábrarésze egy a ξ tengely irányából nézett merőleges párhuzamos vetület. M. A. ábra a feladatbeli általános esetet szemlélteti. Most nézzünk néhány speciális esetet! Ezeket a ( 1 ) képlet egy változatával tanulmányozhatjuk kényelmesen: tg tg tg. 1 tg Az ( 1 ) és ( 7 ) képletekkel: ( 1 / 1 ) 0. ( 18 ) Lényeges kérdés, hogy van - e δ - ra felső határ. Először ezt vizsgáljuk meg. A ( 1 / 1 ) képletben négy eset lehetséges. 1. eset: 0. ( e / 1 ) Ekkor ( 1 / 1 ) - ből:. ( a ). eset: 0. ( e / ) Ekkor ( 1 / 1 ) - ből: 0. ( b ) ( e / 3 ) 3. eset:. Ekkor ( 1 / 1 ) - ből: 0. ( c ) 4. eset:. ( e / 4 ) Ekkor ( 1 / 1 ) - ből azt kapjuk, hogy a négyzetgyök alatt negatív szám áll, vagyis nincs megoldása ( d ) feladatunknak, hiszen nincsen kimetszett alkotó sem. Azt találtuk, hogy ~ δ - ra létezik felső határ is, vagyis ( 18 ) - at is felhasználva: 0, ( 19 ) vagy ( 7 ) és ( 19 ) - cel: Z 0 arctg ; ( 0 ) X ~ a kimetszett alkotók száma:, 1, 0. M3. Most alkalmazzuk képletünket a. ábra esetére! Adatok: δ = 19, γ = 30.
5 5 A ( 1 / 1 ) képlettel: tg tg arctg. 1 tg ( 1 ) Behelyettesítve a fenti adatokat, a számított eredmény ld. a 6. oldali táblázatot is! : számított 3, 7. ( ) Az eredményt a. ábráról szögmérővel lemérve: szerkesztett 4. ( 3 ) ( ) és ( 3 ) szerint a szerkesztéssel és a számítással kapott eredmények jól egyeznek. M4. A 3. ábrán, melyet az internetről ingyenesen letölthető Graph programmal készítettünk, a ( 15 ) képlet függvényének alakját tanulmányozhatjuk. 35 I ( fok ) A ( 15 ) képlet grafikonja, γ = 30 esetén: piros vonal A 30 e. sugarú negyedkör: kék vonal f(x)=acos((cos(30))/(cos(x))) f(x)=sqrt(sqr(30)-sqr(x)) 5 delta ( fok ) ábra
6 6 Az a meglepő eredmény adódott, hogy a kapott grafikon közel áll egy negyedkörhöz. Hogy valójában nem az, azt a pontos kék negyedkör rárajzolásával mutattuk meg. x f(x) 0 30, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , x f(x) 0 30, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Továbbá: a bal oldali táblázat a piros, a jobb oldali a kék grafikon értéktáblázata. Ezekből könnyen kivehető egy adott x δ értékhez tartozó függvényértékek eltérése. M5. Az a tény, hogy a piros és a kék függvénygörbék szinte teljesen egybeesnek, a következőképpen is elfogadhatóbbá tehető. A ( 1 / 1 ) formula szerint: tg tg tg. 1 tg Ha fennállnak a tg, tg, tg, tg 1 ( 1 / 1 ) ( 4 )
7 7 közelítő összefüggések, akkor ( 1 / 1 ) az alábbi alakba írható:, ( 5 ) ez pedig egy γ sugarú, pozitív ordinátájú körív egyenlete. A kék negyedkör egyenlete ugyanez, γ = 30 mellett. A ( 4 ) közelítésekhez felidézzük az [ 1 ] - ből vett idevágó ismereteket: ~ a tgx x formula hibahatára 1 %, ha 9,8 xfok 9,8 ; ~ a tgx x formula hibahatára 10 %, ha 9,6 x 9,6. fok M6. Az a tény pedig, hogy a ( Ф, γ, δ ) mennyiségek nem ívmértékben, hanem fokban szerepelnek a grafikonokon, azért nem okoz gondot, mert a radiánról fokra való átszámítás állandójával ( 5 ) - öt végigszorozva az egyenlet alakja változatlan marad: 180 rad rad rad ; rad fok, így rad rad rad fok rad rad rad rad fok fok azaz fok fok fok ; de., ( 6 ) ( 7 ) Önállóan megoldandó feladatok: Ö1.: Az érdeklődő Olvasó készítse el az ( e / 1), ( e / 3 ), ( e / 4 ) eseteknek a. ábra szerinti megfelelőit! ( A. ábra az ( e / ) esetet tartalmazza. ) Ö.: Az érdeklődő Olvasó írja fel az ( e / 1), ( e / 3 ), ( e / 4 ) esetekre vonatkozó specializált képleteket! Ö3.: Az érdeklődő Olvasó vizsgálja meg az adott feladatban a ( 4 ) közelítések, illetve a ( 6 ) és ( 7 ) feltételek teljesülésének meglétét, illetve hiányát!
8 8 Irodalom: [ 1 ] I. N. Bronstejn ~ K. A. Szemengyajev: Matematikai zsebkönyv Műszaki Könyvkiadó, Budapest, több kiadásban Sződliget, 010. július 14. Összeállította: Galgóczi Gyula mérnöktanár
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most
Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.
1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton
Fa rudak forgatása II.
Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve
Egy geometriai szélsőérték - feladat
1 Egy geometriai szélsőérték - feladat A feladat: Szerkesztendő egy olyan legnagyobb területű háromszög, melynek egyik csúcsa az a és b féltengelyeivel adott ellipszis tetszőlegesen felvett pontja. Keresendő
Az egyenes ellipszishenger ferde síkmetszeteiről
1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges
A csavarvonal axonometrikus képéről
A avarvonal axonometrikus képéről Miután egyre jobban megy a Graph ingyenes függvény - ábrázoló szoftver használata, kipróbáltuk, hogy tudunk - e vele avarvonalat ábrázolni, axonometrikusan. A válasz:
Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész
Az R forgató mátri [ ] - beli képleteinek levezetése: I rész Az [ ] forrás kötetében a ( 49 ), ( 50 ) képletek nyilván mint közismertek nem lettek levezetve Minthogy az ottani további számítások miatt
Egy sík és a koordinátasíkok metszésvonalainak meghatározása
1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -
Egy érdekes nyeregtetőről
Egy érdekes nyeregtetőről Adott egy nyeregtető, az 1 ábra szerinti adatokkal 1 ábra Végezzük el vetületi ábrázolását, az alábbi számszerű adatokkal: a = 10,00 m; b = 6,00 m; c = 3,00 m; α = 45 ; M 1:100!
Ellipszis átszelése. 1. ábra
1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva
Egy általánosabb súrlódásos alapfeladat
Egy általánosabb súrlódásos alapfeladat Az előző dolgozatunkban címe: Egy súrlódásos alapfeladat, jele: ( E D ) tárgyalt probléma általánosítása az alábbi, melynek forrása [ 1 ]. Tekintsük az 1. ábrát!
Henger és kúp metsződő tengelyekkel
Henger és kúp metsződő tengelyekkel Ebben a dolgozatban egy forgáshenger és egy forgáskúp áthatását tanulmányozzuk abban az egyszerűbb esetben, amikor a két test tengelye egyazon síkban fekszik, vagyis
Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!
1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot
Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához
1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent
Egy másik érdekes feladat. A feladat
Egy másik érdekes feladat Az előző dolgozatban melynek címe: Egy érdekes feladat az itteninek egy speciális esetét vizsgáltuk. Az általánosabb feladat az alábbi [ 1 ]. A feladat Adott: az ABCD zárt négyszög
t, u v. u v t A kúpra írt csavarvonalról I. rész
A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem
Egy kinematikai feladathoz
1 Egy kinematikai feladathoz Az [ 1 ] példatárból való az alábbi feladat. Egy bütyök v 0 állandó nagyságú sebességgel halad jobbról balra. Kontúrjának egyenlete a hozzá kötött, vele együtt haladó O 1 xy
Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra
1 Vonatablakon át Sokat utazom vonaton, és gyakran elnézem a vonatablakon át a légvezeték(ek) táncát. Már régóta gondolom, hogy le kellene írni ezt a látszólagos mozgást. Most erről lesz szó. Ehhez tekintsük
Szökőkút - feladat. 1. ábra. A fotók forrása:
Szökőkút - feladat Nemrégen Gyulán jártunk, ahol sok szép szökőkutat láttunk. Az egyik különösen megtetszett, ezért elhatároztam, hogy megpróbálom elemi módon leírni a ízsugarak, illete az általuk leírt
A gúla ~ projekthez 2. rész
1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú
Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással
Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással Előző dolgozatunkban jele: ( E ), címe: Szimmetrikusan szélezett körkeresztmetszet geometriai jellemzőinek meghatározása
A lengőfűrészelésről
A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású
A Cassini - görbékről
A Cassini - görbékről Giovanni Domenico Cassini, a 17-18 században élt olasz származású francia csillagász neve egyebek mellett a róla elnevezett görbékről is ismert lehet; ilyeneket mutat az 1 ábra is
A kötélsúrlódás képletének egy általánosításáról
1 A kötélsúrlódás képletének egy általánosításáról Sok korábbi dolgozatunkban foglalkoztunk kötélstatikai feladatokkal. Ez a mostani azon - ban még nem került szóba. A feladat: az egyenes körhengerre feltekert,
A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét
A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét A szabadforgácsolást [ 1 ] az alábbiak szerint definiálja, ill. jellemzi. Ha a forgácsolószerszám élének minden pontjában a forgácsolási
Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]
1 Ismét a fahengeres keresztmetszetű gerenda témájáról Az 1. ábrával már korábban is találkozhatott az Olvasó. 1. ábra forrása: [ 1 ] Ezen azt láthatjuk, hogy bizonyos esetekben a fűrészelt fagerenda a
Poncelet egy tételéről
1 Poncelet egy tételéről Már régebben találkoztunk az [ 1 ] műben egy problémával, mostanában pedig a [ 2 ] műben a megoldásával. A probléma lényege: határozzuk meg a egyenletben szereplő α, β együtthatókat,
A bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
Az elliptikus hengerre írt csavarvonalról
1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása
Fénypont a falon Feladat
Fénypont a falon 3. Dolgozat - sorozatunk. és. részében két speiális eset vizsgálatát részleteztük. Itt az általánosabb síkbeli esettel foglalkozunk, főbb vonalaiban. Ehhez tekintsük az. ábrát is! 3. Feladat.
Keresztezett pálcák II.
Keresztezett pálcák II Dolgozatunk I részéen a merőleges tengelyű pálcák esetét vizsgáltuk Most nézzük meg azt az esetet amikor a pálcák tengelyei nem merőlegesen keresztezik egymást Ehhez tekintsük az
A hordófelület síkmetszeteiről
1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük
Vontatás III. A feladat
Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat
Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.
1 Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1. ábra forrása: [ 1 ] Ezen egy út tengelyvonalának egy pontjában tüntették
A csúszóvágásról, ill. - forgácsolásról
A csúszóvágásról, ill. - forgácsolásról A vágás, ill. a forgácsolás célja: anyagi részek egymástól való elválasztása. A vágás, ill. a forgácsolás hagyományos eszköze: a kés. A kés a v haladási irányhoz
Egy újabb látószög - feladat
1 Egy újabb látószög - feladat A feladat Adott az O középpontú, R sugarú körön az α szöggel jellemzett P pont. Határozzuk meg, hogy mekkora ϑ szög alatt látszik a P pontból a vízszintes átmérő - egyenes
A fűrészmozgás kinetikai vizsgálata
A fűrészmozgás kinetikai vizsgálata Az alábbi dolgozat az 1988 - ban Sopronban, a kandidátusi fokozat elnyerése céljából írt értekezésem alapján készült, melynek címe: Balesetvédelmi és környezetkímélő
Egy sajátos ábrázolási feladatról
1 Egy sajátos ábrázolási feladatról Régen volt, ha volt egyáltalán. Én bizony nem emlékszem a ferde gerincvonalú túleme - lés ~ átmeneti megoldásra 1. ábra az ( erdészeti ) útépítésben. 1. ábra forrása:
Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal.
1 Egy érdekes statikai feladat Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. A feladat A szabályos n - szög alakú, A, B, C, csúcsú lap az A csúcsán egy sima függőleges fal - hoz támaszkodik,
A szabályos sokszögek közelítő szerkesztéséhez
1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon
Síkbeli csuklós rúdnégyszög egyensúlya
Síkbeli csuklós rúdnégyszög egyensúlya Két korábbi dolgozatunkban melyek címe és azonosítója: [KD ]: Egy érdekes feladat, [KD ]: Egy másik érdekes feladat azt vizsgáltuk, hogy egy csuklós rúdnégyszög milyen
A tűzfalakkal lezárt nyeregtető feladatához
1 A tűzfalakkal lezárt nyeregtető feladatához Bevezetés Ehhez először tekintsük az 1. ábrát! 1 Itt azt szemlélhetjük, hogy hogyan lehet el - kerülni egy épület tűzfalának eláztatását. A felső ábrarészen
Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon
Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk
Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.
osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét
Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.
1 Végein függesztett rúd egyensúlyi helyzete Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. A feladat Ehhez tekintsük a 2. ábrát is! 1. ábra forrása:
Az ablakos problémához
1 Az ablakos problémához A Hajdu Endre által felvetett, egy ablak akadályoztatott kinyitásával kapcsolatos probléma a következő. Helyezzünk el egy d oldalhosszúságú, álló, négyzet alapú egyenes hasábot
A Lenz - vektorról. Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra.
1 A Lenz - vektorról Ha jól emlékszem, először [ 1 ] - ben találkoztam a címbeli fogalommal 1. ábra. 1. ábra forrása: [ 1 ] Ez nem régen történt. Meglepett, hogy eddig ez kimaradt. Annál is inkább, mert
Befordulás sarkon bútorral
Befordulás sarkon bútorral Bizonyára volt már olyan élményed, hogy bútort kellett cipelned, és nem voltál biztos benne, hogy be tudjátok - e vinni a szobába. Erről jutott eszembe az alábbi feladat. Adott
Ellipszis perspektivikus képe 2. rész
1 Ellipszis perspektivikus képe 2. rész Dolgozatunk 1. részében nem mentünk tovább a matematikai kifejtésben. Ezzel mintegy felhagytunk a belső összefüggések feltárásával. A jelen 2. részben megkíséreljük
A Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó.
1 A Kepler - problémáról Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó. 1. ábra forrása: https://hu.wikipedia.org/wiki/kepler-probl%c3%a9ma
Egy gyakorlati szélsőérték - feladat. 1. ábra forrása: [ 1 ]
1 Egy gyakorlati szélsőérték - feladat Az [ 1 ] munkában találtuk az alábbi feladatot. 1. ábra forrása: [ 1 ] Magyarul: Három egyforma széles deszkából egy (eresz - )csatornát szegezünk össze. Az oldalfal
A magától becsukódó ajtó működéséről
1 A magától becsukódó ajtó működéséről Az [ 1 ] műben találtunk egy érdekes feladatot, amit most mi is feldolgozunk. Az 1. ábrán látható az eredeti feladat másolata. A feladat kitűzése 1. ábra forrása:
w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ;
A négysuklós mehanizmus alapfeladata másképpen Előző dolgozatunkban melynek íme: A négysuklós mehanizmus alapfeladatáról egy általunk legegyszerűbbnek gondolt megoldási módot ismertettünk. Ott megemlítet
Az éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.
1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi
Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra.
1 Egy újabb térmértani feladat Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. Úgy látjuk, érdekes és tanulságos lesz végigvenni. 2 A feladat Egy szabályos n - szög alapú
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I rész evezetés rugalmas láncgörbe magyar nyelvű szakirodalma nem túl gazdag Egy viszonylag rövid ismertetés található [ 1 ] - ben közönséges ( azaz
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
A ferde tartó megoszló terheléseiről
A ferde tartó megoszló terheléseiről Úgy vettem észre az idők során, hogy nem nagyon magyarázták agyon azt a kérdést, amivel itt fogunk foglalkozni. Biztos azt mondják majd megint, hogy De hisz ezt mindenki
Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 )
1 Néhány véges trigonometriai összegről A Fizika számos területén találkozhatunk véges számú tagból álló trigonometriai össze - gekkel, melyek a számítások során állnak elő. Ezek értékét kinézhetjük matematikai
A fatörzs és az ágak alakjának leírásához. Szétnéztünk az interneten. A lábon főleg a szabadon álló fák alakja meglehetősen bonyolult; pl.: 1. ábra.
A fatörzs és az ágak alakjának leírásához Szétnéztünk az interneten A lábon főleg a szabadon álló fák alakja meglehetősen bonyolult; pl.: 1. ábra. 1. ábra forrása: http://images.honlapepito.hu/?modul=oldal&tartalom=1130507
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
A kvadratrixról. Ez azt jelenti, hogy itt a görbe egy mozgástani származtatását vesszük elő 1. ábra. 1. ábra
1 A kvadratrixról A kvadratrix más néven triszektrix nevű síkgörbéről az [ 1 ] és [ 2 ] munkákban is olvashatunk. A keletkezéséről készített animáció itt tekinthető meg: http://hu.wikipedia.org/wiki/kvadratrix#mediaviewer/file:quadratrix_animation.gif
A kettősbelű fatörzs keresztmetszeti rajzolatáról
1 A kettősbelű fatörzs keresztmetszeti rajzolatáról Az idők során már többször eszünkbe jutott, hogy foglalkozni kellene a címbeli témával. Különösen akkor, amikor olyan függvényábrákat találtunk, melyek
Érdekes geometriai számítások 10.
1 Érdekes geometriai számítások 10. Találtunk az interneten egy könyvrészletet [ 1 ], ahol egy a triéder - geometriában fontos összefüggést egyszerű módon vezetnek le. Ennek eredményét összevetjük más
Egy érdekes statikai - geometriai feladat
1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani
A főtengelyproblémához
1 A főtengelyproblémához Korábbi, az ellipszis perspektivikus ábrázolásával foglalkozó dolgozatainkban előkerült a másodrendű görbék kanonikus alakra hozása, majd ebben a főtengelyrendszert előállító elforgatási
Aszimmetrikus nyeregtető ~ feladat 2.
1 Aszimmetrikus nyeregtető ~ feladat 2. Ehhez tekintsük az 1. ábrát is! Itt az A és B pontok egy nyeregtető oromfali ereszpontjai, a P pont pedig a taréj pontja. Az ereszek egymástól való távolságának
Egy kötélstatikai alapfeladat megoldása másként
1 Egy kötélstatikai alapfeladat megoldása másként Most megint egyik kedvenc témánkat vesszük elő. Bízunk benne, hogy az itt előforduló ismétlések szükségesek, ámde nem feleslegesek. A más módon való megoldás
A közönséges csavarvonal érintőjének képeiről
A közönséges csavarvonal érintőjének képeiről Már régóta rajzoljuk a táblára a közönséges csavarvonal vetületeinek és síkba teríté - sének ábráit, a Gépészeti alapismeretek tantárgy óráin. Úgy tűnik, itt
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
A tetők ferde összekötési feladatainak megoldása
1 A tetők ferde összekötési feladatainak megoldása Előző dolgozatunkban melynek címe: Két tető összekötése ferdén három önállóan megoldandó feladattal zártunk. Most részletezzük a megoldásokat, azok hasznossága
Az arkhimédészi csőfelületről
Az arkhimédészi csőfelületről Az előző dolgozatban melynek címe: Csaarokról és rokon témákról elkezdtük a csaaros témakör körüljárását. Most folytatjuk a címbeli témáal. A felület definíciója [ 1 ] szerint:
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki!
1 Lövés csúzlival Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. A feladat Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk
Csavarokról és rokon témákról
Csavarokról és rokon témákról A Gépészeti alapismeretek tantárgy tanítása / tanulása során megbeszéljük a csavarvonal és a csavarmenet származtatását, például mozgásgeometriai alapon. Azonban ez talán
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Csúcsívek rajzolása. Kezdjük egy általános csúcsív rajzolásával! Ehhez tekintsük az 1. ábrát!
1 Csúcsívek rajzolása Előző dolgozatunk kapcsán melynek címe: Íves nyeregtető főbb számítási képleteiről találkoztunk a csúcsívvel, mint az építészetben igen gyakran előforduló vonalidommal. Most egy másik
Egy felszínszámítási feladat a tompaélű fagerendák témaköréből
1 Egy felszínszámítási feladat a tompaélű fagerendák témaköréből Előző dolgozatunkban melynek címe: Ismét a fahengeres keresztmetszetű gerenda témájáról már sok min - dent előkészítettünk az itteni címbeli
Kúp és kúp metsződő tengelyekkel
Kúp és kúp metsződő tengelyekkel Előző dolgozatainkban [ ED ], [ ED ], [ ED 3 ], [ED 4 ] már láttuk, hogyan lehet meghatározni a két legegyszerűbb forgástest a henger és a kúp áthatási görbéinek egyenleteit.
A középponti és a kerületi szögek összefüggéséről szaktanároknak
A középponti és a kerületi szögek összefüggéséről szaktanároknak Középiskolai tanulmányaink fontos része volt az elemi síkgeometriai tananyag. Ennek egyik nevezetes tétele így szól [ 1 ] : Az ugyanazon
A visszacsapó kilincs működéséről
1 A visszacsapó kilincs működéséről A faipari forgácsoló gépek egy részén a munkadarab visszasodródása ellen visszacsapó kilincset / kilincssort alkalmaznak. Ilyen gépek például a felülről vágó körfűrészek
Forgatónyomaték mérése I.
Forgatónyomaték mérése I Bevezetés A forgatónyomaték az erőpár mint statikai alapalakzat jellemzője A nevéből is következően a testekre forgató hatást fejt ki Vektormennyiség, melyet az M = a x F képlettel
Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete
1 Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész Eltérő keresztmetszet - magasságú szarufák esete Az alábbi ábrát találtuk az interneten 1. ábra 1. ábra forrás( ok ): http://www.sema-soft.com/de/forum/files/firstpfettenverschiebung_432.jpg
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)
Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)
Egy kinematikai feladat
1 Egy kinematikai feladat Valami geometriai dologról ötlött eszembe az alábbi feladat 1. ábra. 1. ábra Adott az a és b egyenes, melyek α szöget zárnak be egymással. A b egyenesre ráfektetünk egy d hosszúságú
Profilmetsződésekről, avagy tórusz és körhenger áthatásáról
1 Profilmetsződésekről, avagy tórusz és körhenger áthatásáról Megesik, hogy nem értjük, amit olvasunk. Ez történt az [ 1 ] szakmai segédkönyv eseté - ben is. Ennek oka lehet ismereteink hiánya, a pontatlan
Egy látószög - feladat
Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük
A gúla ~ projekthez 1. rész
1 A gúla ~ projekthez 1. rész Megint találtunk az interneten valami érdekeset: az [ 1 ], [ 2 ], [ 3 ] anyagokat. Úgy véljük, hogy az alábbi téma / témakör kiválóan alkalmas lehet projekt - módszerrel történő
A fák növekedésének egy modelljéről
1 A fák növekedésének egy modelljéről Az interneten nézelődve találtunk rá az [ 1 ] munkára, ahol a fák növekedésének azt a modelljét ismertették, melyet először [ 2 ] - ben írtak le. Úgy tűnik, ez az
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
A konfokális és a nem - konfokális ellipszis - seregekről és ortogonális trajektóriáikról
1 A konfokális és a nem - konfokális ellipszis - seregekről és ortogonális trajektóriáikról Előző dolgozatunk melynek címe: Ha az évgyűrűk ellipszis alakúak lennének készítése során böngész - gettük az
Lépcső beemelése. Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával.
1 Lépcső beemelése Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával. 1. ábra forrása: [ 1 ] Itt példákat látunk előregyártott vasbeton szerkezeti elemek kötéllel / lánccal történő emelésére,
Abszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása
Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról
1 Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról Korábban már több egyszerűbb tető - alak geometriáját leírtuk. Most egy kicsit nehezebb feladat megoldását tűzzük ki
M M b tg c tg, Mókuslesen
Mókusesen A két egyforma magas fiú Ottó és András a sík terepen áó fenyőfa törzsén fefeé mászó mókust figyei oyan messzirő ahonnan nézve a mókus már csak egy pontnak átszik ára ára Amikor a mókus az M
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek