A magától becsukódó ajtó működéséről
|
|
- Károly Bodnár
- 6 évvel ezelőtt
- Látták:
Átírás
1 1 A magától becsukódó ajtó működéséről Az [ 1 ] műben találtunk egy érdekes feladatot, amit most mi is feldolgozunk. Az 1. ábrán látható az eredeti feladat másolata. A feladat kitűzése 1. ábra forrása: [ 1 ] Adott az 1. a) ábra szerinti kialakítású ajtó, az önműködő csukó - szerkezettel. Ennek lényege, hogy az ajtó C pontjához egy az ajtónyílás feletti P pontban rögzített csigán átvetett kötelet kötöttek, melynek másik végén egy m 0 tömegű nehezék lóg. Ha az ajtót a D pontbeli fogantyú meghúzásával nyitjuk, akkor a feszes kötél iránya megváltozik, és a benne ébredő F C = m 0 g nagyságú erő vízszintes összetevője az ajtót becsukni igyekszik. Amint elengedjük a D fogantyút, ez meg is történik. Az ajtó önsúlya F g = mg nagyságú. Az ajtópántok statikailag határozott kialakításúak, tehát függőleges reakció - összetevő csak az egyik itt az alsó pántban ébred, ahogyan az az 1. b) ábrarészletről leolvasható. A működés közben fellépő gyorsulásoktól eltekintünk, azaz a feladatot statikai problé - maként kezeljük. Eltekintünk a fellépő ellenállásoktól is, mint amilyen a csapsúrlódás, kötélsúrlódás, légellenállás, stb. Továbbá nem vesszük figyelembe a P pontban rögzített csiga r sugarát sem, vagyis az r 0 feltevéssel élünk.
2 2 Ezekkel a megszorításokkal keressük az ajtó lapjára merőleges F D nyitóerő nagysága, valamint a reakcióerő - komponensek kifejezését a φ ajtó - nyitási szög függvényében. A feladat megoldása Az 1. b) ábrán szemlélhető az alkalmazott Oxyz derékszögű koordináta - rendszer ( k. r. ), amelyet úgy vettünk fel, hogy annak xz síkja egyezzen az ajtó síkjával. A tengelyek menti egységvektorok: i, j, k. Az 1. b) ábrán feltüntették az ajtóra működő erőrendszert is, mely - nek egyensúlyát vizsgáljuk. Ehhez a térbeli statikai egyensúlyi feltételi egyenleteket kell alkalmaznunk. Először meghatározzuk az F C erő vektorát. Az 1. b) ábráról: Most az 1. b) és a 2. ábra szerint: ( 1 ) 2. ábra ( 2 ) ( 3 ) most ( 1 ), ( 2 ) és ( 3 ) szerint: ( 4 ) Majd kiszámítjuk a vektor abszolút értékét: ( 5 )
3 3 először a skalár szorzatot képezve: tehát: ( 6 ) Érvényesítve a kiírásban megadott ( 7 ) feltételt, ( 6 ) és ( 7 ) - tel: tehát: ( 8 ) Ezután ( 5 ) és ( 8 ) - cal: ( 9 ) Az F C vektorra fennáll, hogy ( 10 ) most ( 4 ), ( 7 ) és ( 9 ) szerint: ( 11 ) Majd ( 10 ) és ( 11 ) - gyel: ( 12 )
4 4 ahol az 1. ábra kiírása szerint: ( 13 ) A továbbiakban alkalmazzuk az alábbi egyszerűsítő jelölést:, ( 14 ) így ( 12 ) és ( 14 ) - gyel: ( 15 ) Másképpen ( 15 ) így fest: ( 16 ) ( 16 / 1 ) ( 16 / 2 ) ( 16 / 3 ) Az egyensúlyi egyenletek első csoportja: a nyomatéki egyenletek. Ezeket az A ponton átmenő, a k. r. tengelyeivel párhuzamos forgástengelyekre írjuk fel. Ennek során úgy vesszük, hogy minden keresett erő - komponens pozitív értelmű, a megfelelő nyomaték - komponens előjelét tehát a pozitív erőkomponens adott forgástengely körüli, jobbcsavar - szabály szerinti forgatásának forgásértelme szabja meg. Részletezve: ( 17 ) most ( 17 ) és ( 16 / 2 ) szerint: ( 18 ) Folytatva: majd ( 16 / 1 ), ( 16 / 3 ) és ( 18 ) szerint: innen rendezéssel:
5 5 ( 19 / 1 ) ( 19 ) ahol az 1. ábra kiírása szerint: Folytatva: ( 20 ) ( 21 ) ezután ( 16 / 2 ) és ( 21 ) szerint: innen: ( 22 ) majd ( 18 ) és ( 22 ) - vel: tehát: ( 23 / 1 ) Más alakban is felírjuk utóbbit; ( 18 ) és ( 22 ) - vel: tehát: ( 23 / 2 ) egyezésben az [ 1 ] - béli eredménnyel. Az egyensúlyi egyenletek második csoportja: a vetületi egyenletek. Részletezve: ( 24 ) most ( 16 / 1 ), ( 19 ) és ( 24 ) szerint:
6 6 ( 25 ) Folytatva: ( 26 ) Most ( 16 / 2 ), ( 23 / 1 ) és ( 26 ) szerint: ( 27 ) Folytatva: ( 28 ) Most ( 16 / 3 ), ( 23 / 1 ) és ( 26 ) szerint: innen: ( 29 ) Ezzel a közvetlen feladatot megoldottuk. Nem árt azonban még elvégezni az [ 1 ] - ben ajánlott szélsőérték - számítást is, vagyis megkeresni az F D húzóerő - nagyság szélső - értékét, a hozzá tartozó ajtónyitási szöggel együtt. Ez az alábbiak szerinti.
7 7 Először ( 13 ), ( 14 ) és ( 18 ) szerint: ( 30 ) E függvény grafikus megjelenítéséhez felhasználjuk a feladat számszerű adatait is ld.: 1. ábra : m 0 = 15 kg; g = 9,81 m / s 2 ; b = 90 cm = 0,90 m; d = 75 cm = 0,75 m. ( a ) Most ( 30 ) és ( a ) - val: ( b ) A ( b ) függvény ábráját a 3. ábrán mutatjuk meg. 3. ábra A Graph rajzoló szoftver szolgáltatása szerint a szélsőérték helye és nagysága: φ* = 52, , F D,max = 137, N. ( c ) Ezután elvégezzük a szélsőérték - számítást analitikusan is. Ehhez ( 30 ) - ból: Részletezve:
8 8 Ezt a másodfokú egyenletet a megoldó - képlettel megoldva: mivel a cos - függvény értéke nem lehet nagyobb 1 - nél, ezért a megoldást adó φ* szögre fennáll, hogy: innen: ( d ) Ez pontosan megegyezik a ( c1 ) eredménnyel.
9 9 A szélsőérték nagysága ( b ) és ( d ) - vel: ( e ) Ez gyakorlatilag pontosan megegyezik a ( c2 ) eredménnyel. Ezzel az [ 1 ] mű által kitűzött feladatokat elvégeztük. Az itteni eredmények egyeznek az [ 1 ] - ben közöltekkel. Megjegyzések: M1. Feltehető a kérdés, hogy kell - e valamire figyelni az ellensúly m 0 tömegének meg - választásakor. A válasz az, hogy az A ajtópántban ébredő F Az reakció - komponens nem lehet negatív, hiszen akkor annak az ajtót lefelé kellene visszahúznia, hogy le ne essen. Most ( 13 ), ( 14 ), ( 20 ) és ( 29 ) szerint teljesülnie kell az alábbi relációnak: innen: ( 31 ) ( 32 ) minthogy ennek már csukott ajtó φ = 0 esetén is teljesülnie kell, így ( 32 ) - ből: tehát ajánlott, hogy: ( 33 ) M2. A fenti eredményeket a súrlódás megléte befolyásolhatja, kisebb - nagyobb mérték - ben. M3. Találtunk egy sajtóhibát [ 1 ] - ben, a 180. oldalon: az vektorok 3. ko - ordinátájában az a szorzója nem 1, hanem 2.; ehhez ld. itt a ( 2 ) és ( 3 ) képleteket.
10 10 Ez az eredményeket nem módosítja, mert a mondott tagok a kivonás során kiejtik egymást. M4. Az önmagától becsukódó ajtó ilyetén megoldásával mostanság nemigen találkozni, sokkal inkább hidraulikus / pneumatikus csukószerkezeteket lehet az ajtók fölött látni. Ettől azonban még érdekes és tanulságos az itt közreadott feladat. Irodalom: [ 1 ] Hans Heinrich Gloistehn: Lehr - und Übungsbuch der Technischen Mechanik Band 1: Statik, 179 ~ 181. o. Springer Fachmedien Wiesbaden Sződliget, Összeállította: Galgóczi Gyula mérnöktanár
Egy érdekes statikai - geometriai feladat
1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani
Síkbeli csuklós rúdnégyszög egyensúlya
Síkbeli csuklós rúdnégyszög egyensúlya Két korábbi dolgozatunkban melyek címe és azonosítója: [KD ]: Egy érdekes feladat, [KD ]: Egy másik érdekes feladat azt vizsgáltuk, hogy egy csuklós rúdnégyszög milyen
Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.
1 Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1. Feladat Egy G gépkocsi állandó v 0 nagyságú sebességgel egyenes úton
Az egyenes ellipszishenger ferde síkmetszeteiről
1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges
Egymásra támaszkodó rudak
1 Egymásra támaszkodó rudak Úgy látszik, ez is egy visszatérő téma. Egy korábbi írásunkban melynek címe: A mandala - tetőről már találkoztunk az 1. ábrán vázolthoz hasonló felülnézetű szerkezettel, foglalkoztunk
Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással
Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással Előző dolgozatunkban jele: ( E ), címe: Szimmetrikusan szélezett körkeresztmetszet geometriai jellemzőinek meghatározása
Tető - feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladatot és végeredményeit ld. 1. ábra.
1 Tető - feladat Az interneten találtuk az [ 1 ] művet, benne az alábbi feladatot és végeredményeit ld. 1. ábra. 1. ábra forrása: [ 1 ] Most ezt oldjuk meg, részletesen. A feladat szövegének ( saját, hevenyészett
Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.
1 Végein függesztett rúd egyensúlyi helyzete Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó. A feladat Ehhez tekintsük a 2. ábrát is! 1. ábra forrása:
Felső végükön egymásra támaszkodó szarugerendák egyensúlya
1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra
Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!
1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot
Egy sík és a koordinátasíkok metszésvonalainak meghatározása
1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -
Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész
Az R forgató mátri [ ] - beli képleteinek levezetése: I rész Az [ ] forrás kötetében a ( 49 ), ( 50 ) képletek nyilván mint közismertek nem lettek levezetve Minthogy az ottani további számítások miatt
Fa rudak forgatása II.
Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve
Ellipszis átszelése. 1. ábra
1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva
Egy kötélstatikai alapfeladat megoldása másként
1 Egy kötélstatikai alapfeladat megoldása másként Most megint egyik kedvenc témánkat vesszük elő. Bízunk benne, hogy az itt előforduló ismétlések szükségesek, ámde nem feleslegesek. A más módon való megoldás
Egy háromlábú állvány feladata. 1. ábra forrása:
1 Egy háromlábú állvány feladata Az interneten találtuk az alábbi versenyfeladatot 1. ábra Az egyforma hosszúságú CA, CB és CD rudak a C pontban gömbcsuklóval kapcsolódnak, az A, B, D végükön sima vízszintes
Az elforgatott ellipszisbe írható legnagyobb területű téglalapról
1 Az elforgatott ellipszisbe írható legnagyobb területű téglalapról Előző dolgozatunkban melynek címe: Az ellipszisbe írható legnagyobb területű négyszögről már beharangoztuk, hogy találtunk valami érdekeset
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most
Érdekes geometriai számítások Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon
Érdekes geometriai számítások 7. Folytatjuk a sorozatot. 7. Téma: A kardáncsukló kinematikai alapegyenletének levezetése gömbháromszögtani alapon Korábbi dolgozatainkban már többféle módon is bemutattuk
Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához
1 Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához Az interneten való nézelődés során találkoztunk az [ 1 ] művel, melyben egy érdekes és fontos feladat pontos(abb) megoldásához
További adalékok a merőleges axonometriához
1 További adalékok a merőleges axonometriához Egy szép összefoglaló munkát [ 1 ] találtunk az interneten, melynek előző dolgoza - tunkhoz csatlakozó részeit itt dolgozzuk fel. Előző dolgozatunk címe: Kiegészítés
Forgatónyomaték mérése I.
Forgatónyomaték mérése I Bevezetés A forgatónyomaték az erőpár mint statikai alapalakzat jellemzője A nevéből is következően a testekre forgató hatást fejt ki Vektormennyiség, melyet az M = a x F képlettel
A síkbeli Statika egyensúlyi egyenleteiről
1 A síkbeli Statika egyensúlyi egyenleteiről Statikai tanulmányaink egyik mérföldköve az egyensúlyi egyenletek belátása és sikeres alkalmazása. Most egy erre vonatkozó lehetséges tanulási / tanítási útvonalat
Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal.
1 Egy érdekes statikai feladat Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. A feladat A szabályos n - szög alakú, A, B, C, csúcsú lap az A csúcsán egy sima függőleges fal - hoz támaszkodik,
A visszacsapó kilincs működéséről
1 A visszacsapó kilincs működéséről A faipari forgácsoló gépek egy részén a munkadarab visszasodródása ellen visszacsapó kilincset / kilincssort alkalmaznak. Ilyen gépek például a felülről vágó körfűrészek
A kötélsúrlódás képletének egy általánosításáról
1 A kötélsúrlódás képletének egy általánosításáról Sok korábbi dolgozatunkban foglalkoztunk kötélstatikai feladatokkal. Ez a mostani azon - ban még nem került szóba. A feladat: az egyenes körhengerre feltekert,
Egy nyíllövéses feladat
1 Egy nyíllövéses feladat Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. 1. ábra forrása: [ 1 / 1 ] Igencsak tanulságos, ezért részletesen bemutatjuk a megoldását. A feladat Egy sportíjjal nyilat
A Maxwell - kerékről. Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is!
1 A Maxwell - kerékről Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is! 1. ábra forrása: [ 1 ] Itt azt láthatjuk, hogy egy r sugarú kis hengerre felerősítettek
Egy általánosabb súrlódásos alapfeladat
Egy általánosabb súrlódásos alapfeladat Az előző dolgozatunkban címe: Egy súrlódásos alapfeladat, jele: ( E D ) tárgyalt probléma általánosítása az alábbi, melynek forrása [ 1 ]. Tekintsük az 1. ábrát!
Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 )
1 Néhány véges trigonometriai összegről A Fizika számos területén találkozhatunk véges számú tagból álló trigonometriai össze - gekkel, melyek a számítások során állnak elő. Ezek értékét kinézhetjük matematikai
A Cassini - görbékről
A Cassini - görbékről Giovanni Domenico Cassini, a 17-18 században élt olasz származású francia csillagász neve egyebek mellett a róla elnevezett görbékről is ismert lehet; ilyeneket mutat az 1 ábra is
Egy érdekes mechanikai feladat
1 Egy érdekes mechanikai feladat 1. ábra forrása: [ 1 ] A feladat Az 1. ábra szerinti rudazat A csomópontján átvezettek egy kötelet, melynek alsó végén egy m tömegű golyó lóg. A rudak egyező nyúlási merevsége
Poncelet egy tételéről
1 Poncelet egy tételéről Már régebben találkoztunk az [ 1 ] műben egy problémával, mostanában pedig a [ 2 ] műben a megoldásával. A probléma lényege: határozzuk meg a egyenletben szereplő α, β együtthatókat,
Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.
Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I rész evezetés rugalmas láncgörbe magyar nyelvű szakirodalma nem túl gazdag Egy viszonylag rövid ismertetés található [ 1 ] - ben közönséges ( azaz
Kiegészítés a három erő egyensúlyához
1 Kiegészítés a három erő egyensúlyához Egy régebbi dolgozatunkban melynek jele és címe : RD: Három erő egyensúlya ~ kéttámaszú tartó már sok mindent elmondtunk a címbeli témáról. Ez ugyanis egy megkerülhetetlen
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
Kerekes kút 2.: A zuhanó vödör mozgásáról
1 Kerekes kút 2.: A zuhanó vödör mozgásáról Előző dolgozatunkban melynek címe: A kerekes kútról a végén azt írtuk, hogy Az elengedett vödör a saját súlya hatására erősen felgyorsulhatott. Ezt személyes
A csavarvonal axonometrikus képéről
A avarvonal axonometrikus képéről Miután egyre jobban megy a Graph ingyenes függvény - ábrázoló szoftver használata, kipróbáltuk, hogy tudunk - e vele avarvonalat ábrázolni, axonometrikusan. A válasz:
Egy rugalmas megtámasztású tartóról
Egy rugalmas megtámasztású tartóról Ezzel a témával gyakran találkozunk, még ha nem is így nevezzük azt. Ne feledjük, hogy a statikailag határozatlan tartók megoldásához szinte mindig alakváltozási felté
Kerekes kút 4.: A zuhanó vödör fékezéséről. A feladat. A megoldás
1 Kerekes kút 4.: A zuhanó vödör fékezéséről Egy korábbi dolgozatunkban melynek címe: Kerekes kút 2.: A zuhanó vödör mozgásáról nem volt szó fékezésről. Itt most egy egyszerű fékezési modellt vizsgálunk
T s 2 képezve a. cos q s 0; 2. Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról
Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról Úgy találjuk, hogy a kötelek statikájának népszerűsítése egy soha véget nem érő feladat. Annyi szép dolog tárháza
A szabályos sokszögek közelítő szerkesztéséhez
1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon
Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra
1 Vonatablakon át Sokat utazom vonaton, és gyakran elnézem a vonatablakon át a légvezeték(ek) táncát. Már régóta gondolom, hogy le kellene írni ezt a látszólagos mozgást. Most erről lesz szó. Ehhez tekintsük
Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.
osárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt. A feladat Az 1. ábrán [ 1 ] egy tornaterem hosszmetszetét
Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.
1 Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát. 1. ábra forrása: [ 1 ] Ezen egy út tengelyvonalának egy pontjában tüntették
Egy másik érdekes feladat. A feladat
Egy másik érdekes feladat Az előző dolgozatban melynek címe: Egy érdekes feladat az itteninek egy speciális esetét vizsgáltuk. Az általánosabb feladat az alábbi [ 1 ]. A feladat Adott: az ABCD zárt négyszög
A hordófelület síkmetszeteiről
1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük
Aszimmetrikus nyeregtető ~ feladat 2.
1 Aszimmetrikus nyeregtető ~ feladat 2. Ehhez tekintsük az 1. ábrát is! Itt az A és B pontok egy nyeregtető oromfali ereszpontjai, a P pont pedig a taréj pontja. Az ereszek egymástól való távolságának
Egy kinematikai feladat
1 Egy kinematikai feladat Valami geometriai dologról ötlött eszembe az alábbi feladat 1. ábra. 1. ábra Adott az a és b egyenes, melyek α szöget zárnak be egymással. A b egyenesre ráfektetünk egy d hosszúságú
Az éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához
1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent
1. ábra forrása: [ 1 ]
Merev test emelése négy kötéllel Előző dolgozatunkban melynek címe: Lépcső beemelése már foglalkoztunk a témával. Akkor elmondtuk, hogy a négyköteles teheremelés feladata statikailag egyszeresen hatá -
Rönk kiemelése a vízből
1 Rönk kiemelése a vízből Az interneten találtuk az [ 1 ] művet, benne az alábbi feladatot 1. ábra. A feladat 1. ábra forrása: [ 1 ] Egy daru kötél segítségével lassan emeli ki a vízből a benne úszó gerendát
Egy érdekes nyeregtetőről
Egy érdekes nyeregtetőről Adott egy nyeregtető, az 1 ábra szerinti adatokkal 1 ábra Végezzük el vetületi ábrázolását, az alábbi számszerű adatokkal: a = 10,00 m; b = 6,00 m; c = 3,00 m; α = 45 ; M 1:100!
A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.
1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi
Kecskerágás már megint
1 Kecskerágás már megint Az interneten találtuk az újabb kecskerágós feladatot 1. ábra. 1. ábra forrása: [ 1 ] A feladat ( kicsit megváltoztatva az eredeti szöveget ) Egy matematikus kecskét tart a kertjében.
A főtengelyproblémához
1 A főtengelyproblémához Korábbi, az ellipszis perspektivikus ábrázolásával foglalkozó dolgozatainkban előkerült a másodrendű görbék kanonikus alakra hozása, majd ebben a főtengelyrendszert előállító elforgatási
Lépcső beemelése. Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával.
1 Lépcső beemelése Az interneten találkoztunk az [ 1 ] művel, benne az 1. ábrával. 1. ábra forrása: [ 1 ] Itt példákat látunk előregyártott vasbeton szerkezeti elemek kötéllel / lánccal történő emelésére,
A gúla ~ projekthez 1. rész
1 A gúla ~ projekthez 1. rész Megint találtunk az interneten valami érdekeset: az [ 1 ], [ 2 ], [ 3 ] anyagokat. Úgy véljük, hogy az alábbi téma / témakör kiválóan alkalmas lehet projekt - módszerrel történő
A ferde tartó megoszló terheléseiről
A ferde tartó megoszló terheléseiről Úgy vettem észre az idők során, hogy nem nagyon magyarázták agyon azt a kérdést, amivel itt fogunk foglalkozni. Biztos azt mondják majd megint, hogy De hisz ezt mindenki
Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]
1 Ismét a fahengeres keresztmetszetű gerenda témájáról Az 1. ábrával már korábban is találkozhatott az Olvasó. 1. ábra forrása: [ 1 ] Ezen azt láthatjuk, hogy bizonyos esetekben a fűrészelt fagerenda a
A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét
A ferde szabadforgácsolásról, ill. a csúszóforgácsolásról ismét A szabadforgácsolást [ 1 ] az alábbiak szerint definiálja, ill. jellemzi. Ha a forgácsolószerszám élének minden pontjában a forgácsolási
Két statikai feladat
1 Két statikai feladat Az interneten találtuk az [ 1 ] feladatgyűjteményt és benne két érdekes feladatot. Úgy tűnik, hasznos lehet megoldásuk, feldolgozásuk. Az 1. feladat nagyon ismerősnek tűnt. Ez nem
Henger és kúp metsződő tengelyekkel
Henger és kúp metsződő tengelyekkel Ebben a dolgozatban egy forgáshenger és egy forgáskúp áthatását tanulmányozzuk abban az egyszerűbb esetben, amikor a két test tengelye egyazon síkban fekszik, vagyis
Egy kinematikai feladathoz
1 Egy kinematikai feladathoz Az [ 1 ] példatárból való az alábbi feladat. Egy bütyök v 0 állandó nagyságú sebességgel halad jobbról balra. Kontúrjának egyenlete a hozzá kötött, vele együtt haladó O 1 xy
Egy gyakorlati szélsőérték - feladat. 1. ábra forrása: [ 1 ]
1 Egy gyakorlati szélsőérték - feladat Az [ 1 ] munkában találtuk az alábbi feladatot. 1. ábra forrása: [ 1 ] Magyarul: Három egyforma széles deszkából egy (eresz - )csatornát szegezünk össze. Az oldalfal
A bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
Egy geometriai szélsőérték - feladat
1 Egy geometriai szélsőérték - feladat A feladat: Szerkesztendő egy olyan legnagyobb területű háromszög, melynek egyik csúcsa az a és b féltengelyeivel adott ellipszis tetszőlegesen felvett pontja. Keresendő
Az axonometrikus ábrázolás analitikus geometriai egyenleteinek másfajta levezetése. Bevezetés
1 Az axonometrikus ábrázolás analitikus geometriai egyenleteinek másfajta levezetése Bevezetés Több korábbi dolgozatunkban is foglalkoztunk hasonló dolgokkal, vagyis az axonometri - kus ábrázolás alapfeladatának
A dőlő fa görbüléséről
1 A dőlő fa görbüléséről Az [ 1 / 1 ] mű már korábban is két házi dolgozat írására inspirált minket; írtunk egyet a körfűrészelés, egyet a tárcsás csiszolás kapcsán 1. ábra. 1. ábra forrása: [ 1 / 1 ]
A véges forgatás vektoráról
A véges forgatás vektoráról Az idők során sokszor olvastuk azt a mondatot a mechanika - könyvekben hogy a végtelen kis szögelfordulások az elemi forgások vektornak tekinthetők [ ] Természetesen adódik
A csúszóvágásról, ill. - forgácsolásról
A csúszóvágásról, ill. - forgácsolásról A vágás, ill. a forgácsolás célja: anyagi részek egymástól való elválasztása. A vágás, ill. a forgácsolás hagyományos eszköze: a kés. A kés a v haladási irányhoz
t, u v. u v t A kúpra írt csavarvonalról I. rész
A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18
Vontatás III. A feladat
Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat
Érdekes geometriai számítások 10.
1 Érdekes geometriai számítások 10. Találtunk az interneten egy könyvrészletet [ 1 ], ahol egy a triéder - geometriában fontos összefüggést egyszerű módon vezetnek le. Ennek eredményét összevetjük más
A lengőfűrészelésről
A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású
Ellipszis perspektivikus képe 2. rész
1 Ellipszis perspektivikus képe 2. rész Dolgozatunk 1. részében nem mentünk tovább a matematikai kifejtésben. Ezzel mintegy felhagytunk a belső összefüggések feltárásával. A jelen 2. részben megkíséreljük
Ehhez tekintsük a 2. ábrát is! A födém és a fal síkját tekintsük egy - egy koordinátasíknak, így a létra tömegközéppontjának koordinátái: ( 2 )
1 A lecsúszó létra mozgásáról Egy korábbi létrás dolgozatunkban melynek címe: Létra - feladat foglalkoztunk a csak önsúlyával terhelt, függőleges falnak támasztott, vízszintes födémen álló létra egyensúlyá
Befordulás sarkon bútorral
Befordulás sarkon bútorral Bizonyára volt már olyan élményed, hogy bútort kellett cipelned, és nem voltál biztos benne, hogy be tudjátok - e vinni a szobába. Erről jutott eszembe az alábbi feladat. Adott
Az M A vektor tehát a három vektori szorzat előjelhelyes összege:
1. feladat Határozza meg a T i támadáspontú F i erőrendszer nyomatékát az A pontra. T 1 ( 3, 0, 5 ) T 1 ( 0, 4, 5 ) T 1 ( 3, 4, 2 ) F 1 = 0 i + 300 j + 0 k F 2 = 0 i 100 j 400 k F 3 = 100 i 100 j + 500
Ellipszissel kapcsolatos képletekről
1 Ellipszissel kapcsolatos képletekről Előző dolgozatunkban melynek címe: A Lenz - vektorról viszonylag sokat kellett ellipszissel kapcsolatos képletekkel dolgozni. Ennek során is adódott pár észrevételünk,
Egy ismerős fizika - feladatról. Az interneten találtuk az [ 1 ] könyvet, benne egy ismerős fizika - feladattal 1. ábra.
1 Egy ismerős fizika - feladatról Az interneten találtuk az [ 1 ] könyvet, benne egy ismerős fizika - feladattal 1. ábra. 1. ábra forrása: [ 1 ] A feladat szerint beleejtünk egy kútba / aknába egy követ,
Egy sajátos ábrázolási feladatról
1 Egy sajátos ábrázolási feladatról Régen volt, ha volt egyáltalán. Én bizony nem emlékszem a ferde gerincvonalú túleme - lés ~ átmeneti megoldásra 1. ábra az ( erdészeti ) útépítésben. 1. ábra forrása:
Hely és elmozdulás - meghatározás távolságméréssel
Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja
A kör és ellipszis csavarmozgása során keletkező felületekről
1 A kör és ellipszis csavarmozgása során keletkező felületekről Előző dolgozatunkban melynek címe: Megint a két csavarfelületről levezettük a cím - beli körös felület - család paraméteres egyenletrendszerét,
Egy újabb térmértani feladat. Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra.
1 Egy újabb térmértani feladat Az [ 1 ] könyvben az interneten találtuk az alábbi érdekes feladatot is 1. ábra. Úgy látjuk, érdekes és tanulságos lesz végigvenni. 2 A feladat Egy szabályos n - szög alapú
w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ;
A négysuklós mehanizmus alapfeladata másképpen Előző dolgozatunkban melynek íme: A négysuklós mehanizmus alapfeladatáról egy általunk legegyszerűbbnek gondolt megoldási módot ismertettünk. Ott megemlítet
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
A gúla ~ projekthez 2. rész
1 A gúla ~ projekthez 2. rész Dolgozatunk 1. részében egy speciális esetre a négyzet alapú egyenes gúla esetére írtuk fel és alkalmaztuk képleteinket. Most a tetszőleges oldalszámú szabályos sokszög alakú
A térbeli mozgás leírásához
A térbeli mozgás leírásához Az idők során már többször foglalkoztunk a címbeli témával; az előzmények vagyis a korábbi dolgozatok: ~ KD : Az R forgató mátrix I Az R forgató mátrix II ~ KD : A véges forgatás
Mechanika - Versenyfeladatok
Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az
6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)
SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy
Az elliptikus hengerre írt csavarvonalról
1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása
Chasles tételéről. Előkészítés
1 Chasles tételéről A minap megint találtunk valami érdekeset az interneten. Az [ 1 ] tankönyvet, illetve an - nak fejezetenként felrakott egyetemi internetes változatát. Utóbbi 20. fejezetében volt az,
Szökőkút - feladat. 1. ábra. A fotók forrása:
Szökőkút - feladat Nemrégen Gyulán jártunk, ahol sok szép szökőkutat láttunk. Az egyik különösen megtetszett, ezért elhatároztam, hogy megpróbálom elemi módon leírni a ízsugarak, illete az általuk leírt
BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3
BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F
Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete
1 Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész Eltérő keresztmetszet - magasságú szarufák esete Az alábbi ábrát találtuk az interneten 1. ábra 1. ábra forrás( ok ): http://www.sema-soft.com/de/forum/files/firstpfettenverschiebung_432.jpg
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például