Az M A vektor tehát a három vektori szorzat előjelhelyes összege:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az M A vektor tehát a három vektori szorzat előjelhelyes összege:"

Átírás

1 1. feladat Határozza meg a T i támadáspontú F i erőrendszer nyomatékát az A pontra. T 1 ( 3, 0, 5 ) T 1 ( 0, 4, 5 ) T 1 ( 3, 4, 2 ) F 1 = 0 i j + 0 k F 2 = 0 i 100 j 400 k F 3 = 100 i 100 j k A ( 2, 2, 4 ) Definíció szerint: M A = M i + r i xf i ahol az r vektor az A pontból a T i támadáspontba mutató vektor. r 1 = +1 i 2 j + 1 k r 2 = 2 i + 2 j + 1 k r 3 = +1 i + 2 j 2 k M i = 0 mivel a rendszer nem tartalmaz koncentrált nyomatékot. r 1 xf 1 = = 300 i + 0 j k r 2 xf 2 = = 700 i 800 j k r 3 xf 3 = = 800 i 700 j 300 k Az M A vektor tehát a három vektori szorzat előjelhelyes összege: M A = 200 i 1500 j k dr. Galambosi Frigyes Oldal 1

2 2. feladat Határozzuk meg az alábbiakban megadott erőrendszer nyomatékát az A és B pontokra! F 1 = F 1 = 500 [N] F 2 = F 2 = 400 [N] F 1 = F 3 = 300 [N] M 1 = M 1 = 200 [Nm] a = 3 m b = 4 m c = 5 m Az erők vektoros alakja: F 1 = F 1 e 1 = i + 3 j + 0 k = 400 i j + 0 k F 2 = F 2 e 2 = 400 ( k ) = 0i + 0 j 400 k F 3 = F 3 e 3 = 300 (i ) = 300i + 0 j + 0 k A nyomaték vektoros alakja: M 1 = 0 i 200 j + 0 k Az A pontra számított nyomatékvektor meghatározása: Definíció szerint az A ponthoz tartozó nyomatékvektor: M A = M i + r i xf i ahol az r vektor az A pontból a T i támadáspontba mutató vektor. r 1 = +0 i 3 j + 5 k r 2 = +0 i + 0 j + 0 k r 3 = +0 i 3 j 0 k M i = M 1 = 0 i 200 j + 0 k r 1 xf 1 = = 1500 i 2000 j 1200 k r 2 xf 2 = = 0 i + 0 j + 0 k dr. Galambosi Frigyes Oldal 2

3 r 3 xf 3 = = 0 i + 0 j k Az M A vektor tehát a négy résznyomaték előjelhelyes összege: M A = 1500 i 2200 j 300 k Az B pontra számított nyomatékvektor meghatározása: Definíció szerint az A ponthoz tartozó nyomatékvektor: M B = M i + r i xf i ahol az r vektor az B pontból a T i támadáspontba mutató vektor. r 1 = +4 i + 0 j + 0 k r 2 = +4 i + 3 j + 0 k r 3 = +0 i + 0 j 5 k M i = M 1 = 0 i 200 j + 0 k r 1 xf 1 = = 0 i + 0 j k r 2 xf 2 = = 1200 i j + 0 k r 3 xf 3 = = 0 i 1500 j + 0 k Az M B vektor tehát a négy résznyomaték előjelhelyes összege: M B = 1200 i 100 j k Az B pontra számított nyomatékvektor meghatározása más módszerrel: Határozzuk meg az eredeti vektorrendszer eredő vektorkettősét az A pontra. Ebből az M A nyomatékvektort már előállítottuk. dr. Galambosi Frigyes Oldal 3

4 Az erő vektorkettős másik tagja: F A = F = F i =-100 i j 400 k Definíció szerint: M B = M i + r i xf i ahol M i = M A r i = r BA = 4 i + 3 j 5 k r BA xf A = = 300 i j k Ezekkel az értékekkel: M B = 1200 i 100 j k Ami természetesen megegyezik az előző számítás alapján kapott értékkel. dr. Galambosi Frigyes Oldal 4

5 3. feladat Határozzuk meg a megadott erőrendszer nyomatékét az A és B pontokat összekötő egyenesre! F 1 = F 2 = 400 M 1 = 800 [N] [N] [Nm] a = 4 m b = 5 m c = 3 m Az erők vektoros alakja: 5 i + 0 j 3 k F 1 = F 1 e 1 = = 1000 i + 0 j 600 k i 4 j 3 k F 2 = F 2 e 2 = 400 = 0 i 320 j k A nyomaték vektoros alakja: M 1 = 0 i + 0 j k Az A pontra számított nyomatékvektor meghatározása: Definíció szerint az A ponthoz tartozó nyomatékvektor: M A = M i + r i xf i ahol az r vektor az A pontból a T i támadáspontba mutató vektor. r 1 = +0 i + 4 j + 0 k r 2 = +5 i + 0 j + 0 k r 1 xf 1 = = 2400 i + 0 j 4000 k r 2 xf 2 = = 2400 i 1200 j 4800 k dr. Galambosi Frigyes Oldal 5

6 Ugyanezt az eredmény kapjuk akkor is, ha összevonjuk a két erőt és a helyvektort a közös támadáspontba irányítjuk. F 1 + F 2 = 1000 i 320 j 360 k r = 5 i + 4 j 3 k M A = M i + r i xf i M 1 = 0 i + 0 j k r 1 x(f 1 + F 2 ) = = 2400 i 1200 j 5600 k M A = 2400 i 1200 j 4800 k A t tengelyre számított nyomaték meghatározása: M t = M A e t e t = AB +5 i + 4 j + 0 k = AB = = 5 41 i + 4 j + 0k 41 M t = [ ] [ 0 ] = dr. Galambosi Frigyes Oldal 6

7 Ugyanezt az eredményt kapjuk, ha a tengelyre számított nyomatékot a B pontra számított nyomatékvektorból képezzük. Ekkor megváltoznak az erőkhöz tartozó helyvektorok, hiszen most a B pontból indítjuk azokat. dr. Galambosi Frigyes Oldal 7

8 4. feladat Adott a P_1, P 2, P 3 pontokban ható F 1, F 2, F 3 erő. Határozzuk meg az erőrendszer origóba redukált vektorkettősét! Határozzuk meg a centrális egyenes egy pontját kijelölő helyvektort, valamint a főerőpárt! Az erő [N] -ban, a távolság [m] -ben adott. P 1 (4, 0, 5) P 1 (0, 3, 5) P 1 (4, 3, 0) F 1 = 4 i 3 j + 5 k F 2 = 6 i + 0 j + 0 k F 3 = 4 i + 3 j + 0 k Az eredő vektorkettős számítása: F 0 = F i = 2 i + 0 j + 5 k M 0 = M i + r i xf i r 1 = 4 i + 0 j + 5 k r 2 = +0 i + 3 j + 5 k r 3 = 4 i + 3 j + 0 k r 1 xf 1 = = 15 i + 0 j 12 k r 2 xf 2 = = 0 i 30 j + 18 k r 3 xf 3 = = 0 i + 0 j + 0 k M 0 = 15 i 30 j + 6 k [Nm] dr. Galambosi Frigyes Oldal 8

9 A centrális egyenes egy pontját kijelölő helyvektor meghatározása: a = F 0xM 0 F 0 2 F 0 2 = = F 0 xm 0 = = 150 i + 63 j 60 k a = 150 i + 63 j 60 k = 150 i + 63 j 60 k Főerőpár: M 1 = (F 0M 0 )F 0 F F 0 M 0 = [2 0 5] [ 30] = 60 6 M 1 = 60(2 i + 0 j + 5 k) = 120 i + 0 j k dr. Galambosi Frigyes Oldal 9

10 5. feladat Adott a P_1, P 2, P 3 pontokban ható F 1, F 2, F 3 erő. Határozzuk meg az A ponton átmenő a irányú tengelyre számított nyomatékot! P 1 (3, 3, 5) P 1 (0, 3, 3) P 1 (3, 0, 3) A(3, 3, 3) a = 1 3 i j k Az erő [N] -ban, a távolság [m] -ben adott. F 1 = 0 i + 3 j + 0 k F 2 = 0 i + 0 j + 4 k F 3 = 3 i + 0 j 4 k Számítsuk ki az erőrendszer nyomatékát az A pontra: M 0 = M i + r i xf i r 1 = 0 i + 0 j 3 k r 2 = 3 i + 0 j + 0 k r 3 = 0 i 3 j + 0 k r 1 xf 1 = = 9 i + 0 j + 0 k r 2 xf 2 = = 0 i + 12 j + 0 k r 3 xf 3 = = 12 i + 0 j + 9 k M A = 21 i + 12 j + 9 k [Nm] A tengely egységvektora e t = a 1 a = 3 i j k = 1 3 i j k 9 dr. Galambosi Frigyes Oldal 10

11 A tengelyre számított nyomaték: M t = M A e t = [ ] [ = 21[Nm] ] dr. Galambosi Frigyes Oldal 11

12 6. feladat Adott az F 1, F 2, F 3 erőrendszer az ábrán rajzoltak szerint. F 1 = 6 [N] F 2 = 5 2 [N] Az erő [N] -ban, a távolság [m] -ben adott. Határozzuk meg az erővektorokat: F 1 = F 1 e 1 = 6 ( j ) = 0i 6j + 0 k F 2 = F 2 e 2 = 5 2 F 3 = F 3 e 3 = 5 F 3 = 5 [N] 5 i + 4 j 3 k = 5 i + 4 j 3 k i + 4 j + 3 k = 0 i + 4 j + 3 k Az origóra redukált vektorkettős erő tagja: F 0 = F i = 5 i + 2 j + 0 k Az origóra redukált vektorkettős nyomatéki tagja: M 0 = M i + r i xf i Határozzuk meg az erőrendszer origóba redukált vektorkettősét! Határozzuk meg a centrális egyenes egy pontját kijelölő helyvektort, valamint a főerőpárt! r 1 = 5 i + 0 j + 3 k r 2 = +5 i + 4 j + 0 k r 3 = 0 i + 4 j + 3 k r 1 xf 1 = = 18 i + 0 j 30 k r 2 xf 2 = = 12 i + 15 j + 0 k dr. Galambosi Frigyes Oldal 12

13 r 3 xf 3 = = 0 i + 0 j + 0k M 0 = 6 i + 15 j 30 k [Nm] A centrális egyenes egy pontját kijelölő helyvektor a = F 0xM 0 F 0 2 F 0 2 = = F 0 xm 0 = = 60 i j + 63 k a = 60 i j + 63 k Főerőpár: M 1 = (F 0M 0 )F 0 F 0 2 = 60 i j + 63 k 6 F 0 M 0 = [5 2 0] [ 15 ] = M 1 = 60(5 i + 2 j + 0 k) = 300 i j + 0 k dr. Galambosi Frigyes Oldal 13

14 7. feladat Határozzuk meg az erőrendszer legegyszerűbb eredőjét! F 1 = 200 [kn] F 2 = 40 [kn] F 3 = 100 [kn] Határozzuk meg az eredő vektorkettős az origóra! Az erők vektoros alakja: F 1 = 0i + 0 j 200 k F 2 = 40i + 0 j + 0 k F 3 = 100 Az eredő vektorkettős erő komponense: F 0 = F i = 40 i + 60 j 280 k 0 i + 3 j 4 k = 0 i + 60 j 80 k Az eredő vektorkettős nyomatéki komponensének számítása: M 0 = M i + r i xf i r 1 = 0 i + 0 j + 0 k r 2 = 0 i + 3 j + 4 k r 3 = 2 i + 3 j + 0 k r 1 xf 1 = 0 i + 0 j + 0 k r 2 xf 2 = = 0 i j 120 k r 3 xf 3 = = 240 i j k M 0 = 240 i j + 0 k [knm] Az F 0 és M 0 vektorok merőlegességének ellenőrzése: 240 F 0 M 0 = [ ] [ 320 ] = A két vektor nem merőleges egymásra, tehát az eredő erőcsavar. dr. Galambosi Frigyes Oldal 14

15 A centrális egyenes egy pontját kijelölő vektor meghatározása: a = F 0xM 0 F 0 2 F 0 2 = = F 0 xm 0 = = i j k a = i j k ,072 i + 0,804 j + 0,325 k Főerőpár számítása: M 1 = (F 0M 0 )F 0 F 0 2 F 0 M 0 = 9600 M 1 = 9600(40 i + 60 j 280 k) ,593 i + 6,890 j 32,153 k dr. Galambosi Frigyes Oldal 15

16 8. feladat Határozzuk meg a megadott erőrendszer eredő vektorkettősét az origóra valamint a centrális egyenes egy pontját és az egyenes egységvektorát! F 1 = 400 [N] M 1 = 200 [Nm] F 2 = 300 [N] M 2 = 600 [Nm] Eredő erő meghatározása: F 1 = 0 i j + 0 k F 2 = 0 i + 0 j 300 k F 0 = F i = 0 i j 300 k Origóra számított nyomaték: M 0 = M i + r i xf i M 1 = 0 i 200 j + 0 k M 2 = 600 i + 0 j + 0 k M i = 600 i 200 j + 0 k r 1 = 0 i + 0 j + 5 k r 2 = 4 i + 0 j + 0 k r 1 xf 1 = = 2000 i + 0 j + 0 k r 2 xf 2 = = 0 i j + 0 k M 0 = 1400 i j + 0 k [knm] A centrális egyenes egy pontját kijelölő vektor meghatározása: a = F 0xM 0 F 0 2 dr. Galambosi Frigyes Oldal 16

17 F 0 2 = = F 0 xm 0 = = i j k a = i j k 1,2 i + 1,68 j + 2,24 k A centrális egyenes egységvektorának meghatározása: A centrális egyenes párhozamos az F 0 vektorral. e c = F 0 0 i j 300 k = == 0i + 4 F j 3 5 k dr. Galambosi Frigyes Oldal 17

18 9. feladat Határozzuk meg a megadott erőrendszerhez tartozó centrális egyenes és a koordinátatengelyek metszéspontjait! F 1 = 200 i j + 0 k F 2 = 100 i 400 j + 0 k [N] [N] M 1 = 400 [Nm] M 2 = 800 [Nm] Megoldás vektoros tárgyalásmóddal. Az eredő vektorkettős erő komponense: F 0 = F i = 100 i 100 j + 0 k Az eredő vektorkettős nyomatéki komponensének számítása: M 0 = M i + r i xf i M 1 = 0 i + 0 j k r 1 = 5 i + 6 j + 0 k M 2 = 0 i + 0 j 800 k r 2 = 8 i 3 j + 0 k r 1 xf 1 = = 0 i + 0 j k r 2 xf 2 = = 0 i + 0 j 3500 k M 0 = 0 i + 0 j 3600 k [knm] A centrális egyenes egy pontját kijelölő vektor meghatározása: a = F 0xM 0 F 0 2 F 0 2 = = dr. Galambosi Frigyes Oldal 18

19 F 0 xm 0 = = = i j + 0 k a = 18 i + 18 j + 0 k A centrális egyenes paraméteres egyenlete: r = a + tf 0 x i + y j = a x i + a y j + t 100 i t 100 j A vektoregyenletet átalakítjuk skalár egyenletrendszerré Ha x = 0, akkor y = 36 és ha y = 0, akkor x = 36. Megoldás skalár tárgyalásmóddal. x = a x + t 100 y = a y t 100 A tengelymetszeteket az alábbiak szerint kapjuk: Adjuk össze a fenti két skalár egyenletet: x + y = a x + a y illetve y = x+a x + a y A síkbeli feladatoknál, ahol az erők a síkban fekszenek, a kijelölt ponthoz tartozó nyomatékvektor biztosan merőleges a síkra. A koncentrált nyomatékok nyomatékvektorai is merőlegesek a síkra. A számításoknál az erővektorokat felbontjuk a két koordináta tengely irányával párhuzamos összetevőkre. Ekkor a nyomatékok abszolút értékének számítása lényegesen egyszerűsödik. A lapra tekintve (szembe nézve a z tengely pozitív irányával) az óramutató járásával ellentétes nyomatékot tekintjük pozitívnak. Az ellenkező irányú forgatás a negatív. A két koncentrált nyomaték egyike pozitívan 400 Nm, a másik negatívan -800 Nm forgat a z tengely körül. dr. Galambosi Frigyes Oldal 19

20 Az erőkomponensek közül a 300 N erő pozitívan forgat 5 m-es karon (+1500), a többi erő pedig negatívan ( = 4700). Az eredő nyomaték = 3600 [Nm]. Az eredeti erőrendszer helyettesíthető (vele egyenértékű) az origóhoz kötött eredő vektorkettőssel. Síkbeli feladatoknál az eredő egy eltolt hatásvonalú erő lesz, melynek nyomatéka megegyezik az origóra számított nyomatékkal. Technikailag a feladatot legegyszerűbb úgy megoldani, hogy az eredő erőt eltoljuk az y (x) tengelyhez és itt felbontjuk a koordináta tengelyekkel párhuzamos komponensekre. Ekkor a z tengely körül csak az egyik komponens forgat, hiszen a másik átmegy rajta. Tehát 100 y = 3600, amelyből y = 36 következik. Ugyan így járhatunk el a másik metszék számításánál is. dr. Galambosi Frigyes Oldal 20

21 10. feladat Határozzuk meg az origóhoz tartozó eredő vektorkettőst! F 1 = F 1 = 100 [N] F 2 = F 2 = [N] F 3 = F 3 = [N] M 1 = M 1 = 200 [Nm] Az erők vektoros alakja: F 1 = 0i + 0 j k F 2 = F 3 = i + 0 j 1 k = 300 i + 0 j 100 k 3 i + 2 j + 0 k = 600 i j + 0 k Az eredő vektorkettős erő komponense: F 0 = F i = 300 i j + 0 k Az eredő vektorkettős nyomatéki komponensének számítása: M 0 = M i + r i xf i M i = M 1 = 200 i + 0 j + 0 k r 1 = 3 i + 0 j + 0 k r 2 = 0 i + 2 j + 1 k r 1 xf 1 = = 0 i 300 j + 0 k r 2 x(f 1 + F 2 ) = = 600 i 300 j k M 0 = 400 i 600 j k dr. Galambosi Frigyes Oldal 21

O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 )

O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 ) 1. feladat Írjuk föl a következő vektorokat! AC, BF, BG, DF, BD, AG, GB Írjuk föl ezen vektorok egységvektorát is! a=3 m b= 4 m c= m Írjuk föl az egyes pontok koordinátáit: O ( 0, 0, 0 ) A ( 4, 0, 0 )

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

az eredő átmegy a közös ponton.

az eredő átmegy a közös ponton. M Műszaki Mechanikai Tanszék STTIK dr. Uj József c. egetemi tanár g közös ponton támadó koncentrált erők (centrális erőrendszer) Két erő eredője: = +, Több erő eredője: = + ++...+ n, az eredő átmeg a közös

Részletesebben

Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén.

Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. Alkalmazott előjelszabályok Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. A kényszererők számításánál a következő a szabály: Az erők iránya a pozitív

Részletesebben

Mechanika. I. előadás február 25. Mechanika I. előadás február / 31

Mechanika. I. előadás február 25. Mechanika I. előadás február / 31 Mechanika I. előadás 2019. február 25. Mechanika I. előadás 2019. február 25. 1 / 31 Elérhetőségek, információk Tantárgy: Mechanika (GEMET266-ZD-B) Előadó: Dr. Lengyel Ákos József Elérhetőségek: Iroda:

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1

= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1 Egyenes és sík a térben Elméleti áttekintés Az egyenes paraméteres egyenlete: X = u 1 λ + x 0 Y = u λ + y 0, Z = u λ + z 0 ahol a λ egy valós paraméter Az u = (u 1, u, u ) az egyenes irányvektora és P

Részletesebben

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)] Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =

Részletesebben

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N IPULZUS OENTU Impulzusnyomaték, perdület, jele: N Definíció: Az (I) impulzussal rendelkező test impulzusmomentuma egy tetszőleges O pontra vonatkoztatva: O I r m Az impulzus momentum vektormennyiség: két

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf87 2017-09-05

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Statika gyakorló teszt I.

Statika gyakorló teszt I. Statika gakorló teszt I. Készítette: Gönczi Dávid Témakörök: (I) közös ponton támadó erőrendszerek síkbeli és térbeli feladatai (1.1-1.6) (II) merev testre ható síkbeli és térbeli erőrendszerek (1.7-1.13)

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

X = 0 B x = 0. M B = A y 6 = 0. B x = 0 A y = 1000 B y = 400

X = 0 B x = 0. M B = A y 6 = 0. B x = 0 A y = 1000 B y = 400 1. feladat Számítsuk ki a bejelölt rúderőket! Az erők N-ban, a hosszak m-ben, a nyomatékok Nm-ben értendők Első lépésként határozzuk meg a kényszererőket. Az S 1 rúderő számítása: Egyensúlyi egyenletek:

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár

DEME FERENC okl. építőmérnök, mérnöktanár DEME FERENC okl. építőmérnök, mérnöktanár web-lap : www.sze.hu/~deme e-mail : deme.ferenc1@gmail.com HÁROMCSUKLÓS TARTÓ KÜLSŐ ÉS BELSŐ REAKCIÓ ERŐINEK SZÁMÍTÁSA, A TARTÓ IGÉNYBEVÉTELI ÁBRÁINAK RAJZOLÁSA

Részletesebben

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15 Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták

Vektorok összeadása, kivonása, szorzás számmal, koordináták Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),

Részletesebben

Az egyenes és a sík analitikus geometriája

Az egyenes és a sík analitikus geometriája Az egyenes és a sík analitikus geometriája Az egyenes a kétdimenziós koordinátarendszerben A kétdimenziós koordinátarendszerben az egyenest egy n(a, B) normálvektorával és egy r 0 helyvektorú P(x 0,y 0

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög. 1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való

Részletesebben

Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János

Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János Budapesti Műszaki Főiskola, Neumann János Informatikai Kar Lineáris algebra 1. témakör Vektorok Fodor János Copyright c Fodor@bmf.hu Last Revision Date: 2006. szeptember 11. Version 1.1 Table of Contents

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor: I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:

Részletesebben

5. előadás. Skaláris szorzás

5. előadás. Skaláris szorzás 5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m

A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m Stata ZH-1. 215. 1. 14. A csoport 1. feladat Határozza meg az erőrendszer nyomatéát a F pontra! a = 3 m b = 4 m c = 4 m F 1 = 5 N F 2 = 1 N M = 5 Nm M = + 4 + 3 4 F 1 = 2 = + 12 16 + 9 + 16 3 + 4 F 2 =

Részletesebben

TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA

TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA GEMET001-B Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet MM/37/2018. Miskolc, 2018. február 5. HIRDETMÉNY Statika(GEMET201NB és GEMET001-B)

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához Ismétlés Erőhatás a testek mechanikai kölcsönhatásának mértékét és irányát megadó vektormennyiség. jele: mértékegysége: 1 newton: erőhatás következménye: 1N 1kg

Részletesebben

Alapmőveletek koncentrált erıkkel

Alapmőveletek koncentrált erıkkel Alapmőveletek koncentrált erıkkel /a. példa Az.7. ábrán feltüntetett, a,5 [m], b, [m] és c,7 [m] oldalú hasábot a bejelölt erık terhelk. A berajzolt koordnátarendszer fgyelembevételével írjuk fel komponens-alakban

Részletesebben

Koordinátageometriai gyakorló feladatok I ( vektorok )

Koordinátageometriai gyakorló feladatok I ( vektorok ) Koordinátageometriai gyakorló feladatok I ( vektorok./ Határozd meg az AB szakasznak azt a pontját, amely a szakaszt : ha A ( ; és a B ( ; 8!./ Adott az A ( 3 ; 5 és a ( ; 6 B pont. Számítsd ki az AB vektor

Részletesebben

Helyvektorok, műveletek, vektorok a koordináta-rendszerben

Helyvektorok, műveletek, vektorok a koordináta-rendszerben Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )

Részletesebben

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort!

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1 / 20 2. példa: Rajzoljuk fel az adott feszültségtenzorhoz tartozó kockát! 2 / 20 3. példa: Feszültségvektor számítása. Egy alkatrész egy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával

Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Segédlet: Főfeszültségek meghatározása Mohr-féle feszültségi körök alkalmazásával Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 212. október 16. Frissítve: 215. január

Részletesebben

A síkbeli Statika egyensúlyi egyenleteiről

A síkbeli Statika egyensúlyi egyenleteiről 1 A síkbeli Statika egyensúlyi egyenleteiről Statikai tanulmányaink egyik mérföldköve az egyensúlyi egyenletek belátása és sikeres alkalmazása. Most egy erre vonatkozó lehetséges tanulási / tanítási útvonalat

Részletesebben

Klár Gergely 2010/2011. tavaszi félév

Klár Gergely 2010/2011. tavaszi félév Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,

Részletesebben

Mechanika - Versenyfeladatok

Mechanika - Versenyfeladatok Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az

Részletesebben

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a

Részletesebben

Példa keresztmetszet másodrendű nyomatékainak számítására

Példa keresztmetszet másodrendű nyomatékainak számítására Példa keresztmetszet másodrendű nyomatékainak számítására Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. február 22. Tekintsük az alábbi keresztmetszetet. 1. ábra. A vizsgált

Részletesebben

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0 Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.

Részletesebben

Koordináta geometria III.

Koordináta geometria III. Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

KERESZTMETSZETI JELLEMZŐK

KERESZTMETSZETI JELLEMZŐK web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,

Részletesebben

A magától becsukódó ajtó működéséről

A magától becsukódó ajtó működéséről 1 A magától becsukódó ajtó működéséről Az [ 1 ] műben találtunk egy érdekes feladatot, amit most mi is feldolgozunk. Az 1. ábrán látható az eredeti feladat másolata. A feladat kitűzése 1. ábra forrása:

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf81 2018-09-04

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

X i = 0 F x + B x = 0. Y i = 0 A y F y + B y = 0. M A = 0 F y 3 + B y 7 = 0. B x = 200 N. B y =

X i = 0 F x + B x = 0. Y i = 0 A y F y + B y = 0. M A = 0 F y 3 + B y 7 = 0. B x = 200 N. B y = 1. feladat a = 3 m b = 4 m F = 400 N φ = 60 fok Első lépésként alkossuk meg a számítási modellt. A kényszereket helyettesítsük a bennük ébredő lehetséges erőkkel (második ábra). Az F erő felbontásával

Részletesebben

Koordináta-geometria II.

Koordináta-geometria II. Koordináta-geometria II. DEFINÍCIÓ: (Alakzat egyenlete) A síkon adott egy derékszögű koordináta rendszer. A síkban levő alakzat egyenlete olyan f (x, y) = 0 egyenlet, amelyet azoknak és csak azoknak a

Részletesebben

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA ALAPOGALMAK ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA Egy testre általában nem egy erő hat, hanem több. Legalább két erőnek kell hatni a testre, ha az erő- ellenerő alaptétel alapján járunk el. A testek vizsgálatához

Részletesebben

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3 BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F

Részletesebben

Koordináta-geometria feladatgyűjtemény

Koordináta-geometria feladatgyűjtemény Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

ELÕADÁSVÁZLATOK. Az elõadásvázlatok Word for Windows 2.0 vagy HTML formátumban vannak. Tantárgyismertetô bevezetô:

ELÕADÁSVÁZLATOK. Az elõadásvázlatok Word for Windows 2.0 vagy HTML formátumban vannak. Tantárgyismertetô bevezetô: Eloadasvazlatok ELÕADÁSVÁZLATOK Az elõadásvázlatok Word for Windows 2.0 vagy HTML formátumban vannak. Tantárgyismertetô bevezetô: A mechanika tárgya, felosztása, vizsgálati módszere Alapfogalmak, mértékegységek

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév)

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) Dinamika Pontszám 1. A mechanikai mozgás fogalma (1) 2. Az anyagi pont pályája (1) 3. A mozgástörvény

Részletesebben

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. EGYSZERŰ GÉPEK Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. Az egyszerű gépekkel munkát nem takaríthatunk meg, de ugyanazt a munkát kisebb

Részletesebben

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0. Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,

Részletesebben

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel; Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Analitikus térgeometria

Analitikus térgeometria Analitikus térgeometria Wettl Ferenc el adása alapján 2015.09.21. Wettl Ferenc el adása alapján Analitikus térgeometria 2015.09.21. 1 / 23 Tartalom 1 Egyenes és sík egyenlete Egyenes Sík 2 Alakzatok közös

Részletesebben

Az igénybevételi függvényekről és ábrákról

Az igénybevételi függvényekről és ábrákról 1 Az igénybevételi függvényekről és ábrákról Úgy tűnik, hogy a technikusi minősítő vizsgára való felkészítő tanulási / tanítási feladatok egyik legnehezebb része a tartók igénybevételeivel kapcsolatos.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2 3... Egyenes szíjhatás esetén milyen hosszú szíj szükséges 50 cmes és 6 cm-es sugarú tárcsák összekapcsolásához, ha a tárcsák tengelyeinek távolsága 335 cm? 3... Csónakkal akarunk a folyó túlsó partjára

Részletesebben

Az axonometrikus ábrázolás analitikus geometriai egyenleteinek másfajta levezetése. Bevezetés

Az axonometrikus ábrázolás analitikus geometriai egyenleteinek másfajta levezetése. Bevezetés 1 Az axonometrikus ábrázolás analitikus geometriai egyenleteinek másfajta levezetése Bevezetés Több korábbi dolgozatunkban is foglalkoztunk hasonló dolgokkal, vagyis az axonometri - kus ábrázolás alapfeladatának

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

MUNKAANYAG. Csepcsényi Lajos Lászlóné Balogh Melinda. Statikai alapfogalmak, és az építményeket érő erőhatások. A követelménymodul megnevezése:

MUNKAANYAG. Csepcsényi Lajos Lászlóné Balogh Melinda. Statikai alapfogalmak, és az építményeket érő erőhatások. A követelménymodul megnevezése: Csepcsényi Lajos Lászlóné Balogh Melinda Statikai alapfogalmak, és az építményeket érő erőhatások A követelménymodul megnevezése: Építőipari kivitelezés tervezése A követelménymodul száma: 0688-06 A tartalomelem

Részletesebben

A vektor fogalma (egyszer

A vektor fogalma (egyszer Vektorműveletek a koordináta-rendszerben Vektorműveletek a koordináta-rendszerben Elméleti anyag: A vektor fogalma (egyszerű meghatározás): az irányított szakaszokat nevezzük vektoroknak. Egy vektornak

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

Fizika 1i, 2018 őszi félév, 1. gyakorlat

Fizika 1i, 2018 őszi félév, 1. gyakorlat Fizika i, 08 őszi félév,. gyakorlat Szükséges előismeretek: vektorok, műveletek vektorokkal (összeadás, kivonás, skalárral való szorzás, skaláris szorzat és vektoriális szorzat, abszolút érték), vektorok

Részletesebben

Merev testek kinematikája

Merev testek kinematikája Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk

Részletesebben

Analitikus térgeometria

Analitikus térgeometria 5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T

Részletesebben

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Egy sík és a koordinátasíkok metszésvonalainak meghatározása 1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 25. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket

Részletesebben

Egész számok értelmezése, összehasonlítása

Egész számok értelmezése, összehasonlítása Egész számok értelmezése, összehasonlítása Mindennapi életünkben jelenlevő ellentétes mennyiségek kifejezésére a természetes számok halmazát (0; 1; 2; 3; 4; 5 ) ki kellett egészítenünk. 0 +1, +2, +3 +

Részletesebben

1. A komplex számok ábrázolása

1. A komplex számok ábrázolása 1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az

Részletesebben

Koordináta-geometria alapozó feladatok

Koordináta-geometria alapozó feladatok Koordináta-geometria alapozó feladatok 1. Határozd meg az AB szakasz felezőpontját! (1,5 ; 3,5) (0,5 ; ) (6,5 ; 8,5) (4,5 ; ) (0,5 ; 1,5) (0 ; 0) (0 ; 8,5) (1 ; 1) ( 1,5 ; ) (3,5 ; 3) (0 ; 3) ( 1 ; 1,5).

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 7 VII VEkTORANALÍZIS 1 ELmÉLETI ALAPOk Az u függvényt skalár-vektor függvénynek nevezzük, ha értelmezési tartománya a háromdimenziós tér vektorainak halmaza, a függvényértékek

Részletesebben