DEME FERENC okl. építőmérnök, mérnöktanár

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "DEME FERENC okl. építőmérnök, mérnöktanár"

Átírás

1 DEME FERENC okl. építőmérnök, mérnöktanár web-lap : HÁROMCSUKLÓS TARTÓ KÜLSŐ ÉS BELSŐ REAKCIÓ ERŐINEK SZÁMÍTÁSA, A TARTÓ IGÉNYBEVÉTELI ÁBRÁINAK RAJZOLÁSA SZÁMÍTOTT ÉRTÉKEK ALAPJÁN F = 300 kn F 3 = 100 kn F 1 = 00 kn F 1Z C F 1 F 1X I. II. F 1Z B F 1X sin = cos = A F 1X = F 1Z = 0, = 141,4 kn AZ EGÉSZ TARTÓ NYUGALOMBAN VAN, TEHÁT AZ ÖSSZES ERŐ EGYENSÚLYBAN VAN. TERMÉSZETESEN A TARTÓ RÉSZEI IS NYUGALOMBAN VANNAK, ÍGY A RÁJUK HATÓ ERŐK IS EGYENSÚLYBAN VANNAK. EZT AZ ÁLLAPOTOT ÍRJÁK LE AZ EGYENSÚLYI KIJELENTÉSEK. 1.) AZ ÖSSZES KÜLSŐ ERŐRE VONATKOZÓ EGYENSÚLYI KIJELENTÉS: ( A, F 1, F, F 3, B ) = 0 Tehát az összes külső erőből álló erőrendszer egyenértékű nullával..) AZ I. JELŰ (BAL OLDALI) TARTÓRÉSZRE HATÓ ERŐKRE VONATKOZÓ EGYENSÚLYI KIJELENTÉS: ( A, F 1, C I. ) = 0 Tehát az I. jelű bal oldali tartórészre ható erőrendszer egyenértékű nullával. A C I. a C csuklóból az I. jelű (bal oldali) részre ható erő. 3.) A II. JELŰ (JOBB OLDALI) TARTÓRÉSZRE HATÓ ERŐKRE VONATKOZÓ EGYENSÚLYI KIJELENTÉS: ( C II., F 3, B ) = 0 Tehát a II. jelű jobb oldali tartórészre ható erőrendszer egyenértékű nullával. A C II. a C csuklóból a II. jelű (jobb oldali) részre ható erő. 4.) A C JELŰ CSUKLÓRA HATÓ ERŐKRE VONATKOZÓ EGYENSÚLYI KIJELENTÉS: ( C I., F, C II. ) = 0 Tehát a C jelű csuklóra ható erőrendszer egyenértékű nullával. A C I. a C I. ellentettje, tehát az I. jelű tartóból a C csuklóra ható erő. A C II. a C II. ellentettje, tehát a II. jelű tartóból a C csuklóra ható erő.

2 A KÜLSŐ TÁMASZERŐK ( A ÉS B ) MEGHATÁROZÁSA AZ ÖSSZES KÜLSŐ ERŐRE VONATKOZÓ EGYENSÚLYI KIJELENTÉS ALAPJÁN [1.)-BŐL], FELÍRJUK AZ ERŐK NYOMATÉKÖSSZEGÉT A B TÁMASZPONTRA. EBBEN AZ EGYENLETBEN LESZ KÉT ISMERETLEN, AZ ÉS AZ. A KÉT ISMERETLEN MEGHATÁROZÁSÁHOZ SZÜKSÉGES MÁSODIK EGYENLET A BAL OLDALI (I. JELŰ) TARTÓRÉSZRE VONATKOZÓ EGYENSÚLYI KIJELENTÉS ALAPJÁN [.)-BŐL] FELÍRT NYOMATÉKÖSSZEG LESZ A C CSUKLÓRA. AZ ISMERETLENEK ( és ) IRÁNYÁT A KOORDINÁTARENDSZER TENGELYEINEK POZITÍV IRÁNYAIBA MUTATÓKNAK KELL FELTÉTELEZNI! TEHÁT AZ -ET JOBBRA, AZ -T FELFELÉ MUTATÓNAK TÉTELEZZÜK FEL. (NYOMATÉKAIK ELŐJELEI EZEKNEK A NYILAKNAK A FORGATÓ ÉRTELME SZERINT ALAKUL.) 1.)-ből: M i B = ,4 141, = 0.)-ből: M i C = / = 0 A KÉT EGYENLET EGYSZERŰBB ALAKBAN: ,6 = ,68 = 0 AZ ELSŐ EGYENLETBŐL KIFEJEZZÜK AZ T: = + 0, + 196,56 A KIFEJEZETT -T BEHELYETTESÍTJÜK (0, + 196,56) 6 565,68 = 0 A MÁSODIK EGYENLETBE ÉS MEGOLDJUK: -4, ,68 = 0 = + 17,85 kn (A POZITÍV ELŐJEL AZT JELENTI, HOGY A FELTÉTELEZETTEL EGYEZŐ IRÁNYÚ, TEHÁT JOBBRA MUTAT.) AZ -ET BEÍRVA AZ T KIFEJEZŐ EGYENLETBE: = + 0, (17,85) + 196,56 = +,13 kn (A POZITÍV ELŐJEL AZT JELENTI, HOGY A FELTÉTELEZETTEL EGYEZŐ IRÁNYÚ, TEHÁT FELFELÉ MUTAT.) +Z +X AZ A KOMPONENSEINEK ISMERETÉBEN AZ ÖSSZES KÜLSŐ ERŐRE VONATKOZÓ EGYENSÚLYI KIJELENTÉS ALAPJÁN [1-BŐL], KÉT VETÜLETI EGYENLET SZOLGÁLTATJA A B KOMPONENSEIT. 1.)-ből: F ix = 0. +Z + 17, ,4 + B X = 0 B X = - 69,5 kn +X 1.)-ből: F iz = 0. +,13 141, B Z = 0 B Z = + 319,7 kn

3 A BELSŐ KAPCSOLATI ERŐK ( C I. ÉS C II. ) MEGHATÁROZÁSA AZ I. JELŰ (BAL OLDALI) TARTÓRÉSZRE HATÓ ERŐKRE VONATKOZÓ EGYENSÚLYI KIJELENTÉS ALAPJÁN [.)-BŐL] VETÜLETI EGYENLETEKBŐL KAPJUK A C I.X -ET ÉS C I.Z -T..)-ből: F ix = , ,4 + C I.X = 0 C I.X = - 69,5 kn.)-ből: F iz = 0. +,13 141,4 + C I.Z = 0 C I.Z = - 80,73 kn A II. JELŰ (JOBB OLDALI) TARTÓRÉSZRE HATÓ ERŐKRE VONATKOZÓ EGYENSÚLYI KIJELENTÉS ALAPJÁN [3.-BÓL] VETÜLETI EGYENLETEKBŐL KAPJUK A -ET ÉS -T. 3.)-ból: F ix = 0. 69,5 = 0 = + 69,5 kn 3.)-ból: F iz = ,7 = 0 = - 19,7 kn A C JELŰ CSUKLÓRA HATÓ ERŐKRE VONATKOZÓ EGYENSÚLYI KIJELENTÉS ALAPJÁN [4.-BŐL] ELLENŐRZÉSRE VAN LEHETŐSÉG, MIVEL AZ ÖSSZES ITT HATÓ ERŐ MÁR ISMERTTÉ VÁLT. 4.)-ből: F ix = 0 + C I.X C II.X = ,5 69,5 = 0 0 = 0 4.-ből: F iz = 0 - F + C I.Z + C II.Z = , ,7 = 0 0 = 0

4 C I.Z = 80,73 kn EREDMÉNYVÁZLAT F = 300 kn = 19,7 kn F 3 = 100 kn F 1 = 00 kn C I.X = 69,5 kn C II.X = 69,5 kn C I.X = 69,5 kn C I.Z = 80,73 kn C II.Z = 19,7 kn = 69,5 kn B X = 69,5 kn = 17,85 kn =,13 kn B Z = 319,7 kn AZ IGÉNYBEVÉTELI ÁBRÁK RAJZOLÁSÁHOZ KI KELL SZÁMOLNI AZ IGÉNYBEVÉTELEKET AZ ÖSSZES OLYAN KERESZTMETSZETBEN, AHOL A TARTÓ TENGELYE TÖRIK, ILLETVE A TERHELÉS VÁLTOZIK. EZEKEN A HELYEKEN VIZSGÁLNI KELL A KERESZTMETSZETTŐL VÉGTELEN KÖZEL BALRA (ELŐTTE) ÉS VÉGTELEN KÖZEL JOBBRA (UTÁNA) ÉRTELMEZETT KERESZTMETSZETET A VIZSGÁLAT SORÁN BALRÓL JOBBRA HALADUNK, AHOGY A RAJZBAN JELÖLT KERESZTMETSZETEK SORSZÁMOZÁSA IS MUTATJA. ELŐJELSZABÁLY: NORMÁLERŐ (N): HA HÚZZA A KERESZTMETSZETET POZITÍV, HA NYOMJA NEGATÍV. NYÍRÓERŐ (V): A KERESZTMETSZETBEN ÉRTELMEZETT HÚZÓERŐT AZ ÓRAMUTATÓ FORGÁSÁNAK IRÁNYÁBA KAL ELFORGATVA KAPJUK A POZITÍV NYÍRÓERŐT. NYOMATÉK (M): AZ ÓRAMUTATÓ FORGÁSÁVAL EGYEZŐ FORGATÁS A POZITÍV.

5 AZ IGÉNYBEVÉTELEK MEGHATÁROZÁSA A KIJELÖLT ( ) KERESZTMETSZETEKBEN A TARTÓN BALRÓL JOBBRA HALADVA, GONDOLATBAN ELFŰRÉSZELJÜK AZT A KERESZTMETSZETET, AMELYET ÉPPEN VIZSGÁLUNK. A LEESŐ BAL OLDALI RÉSZRŐL AZ ÖSSZES ERŐT HATÁSVONALAIKKAL PÁRHUZAMOSAN ÁTHELYEZZÜK A MEGMARADÓ JOBB OLDALI RÉSZ FŰRÉSZELT KERESZTMETSZETÉNEK A SÚLYPONTJÁBA. EZEKNEK AZ ERŐKNEK A TARTÓ TENGELYÉRE ESŐ VETÜLETE LESZ A NORMÁLERŐ, A KERESZTMETSZET SÍKJÁBA ESŐ VETÜLETE A NYÍRÓERŐ, AZ EREDETI HELYÜKRŐL KIFEJTETT NYOMATÉKAIK ÖSSZEGE A HAJLÍTÓNYOMATÉK. 1. JELŰ KERESZTMETSZET. JELŰ KERESZTMETSZET N 1 = - = -,13 kn V 1 = - = -17,85 kn M 1 = 0 knm N = N 1 = -,13 kn V = V 1 = - 17,85 kn M = - 17,85 = - 55,7 knm 3. JELŰ KERESZTMETSZET 4. JELŰ KERESZTMETSZET N3 = - = - 17,85 kn V 3 = + = +,13 kn M 3 = M = - 55,7 knm 5. JELŰ KERESZTMETSZET 6. JELŰ KERESZTMETSZET N 4 = N 3 = -17,85 kn V 4 = V 3 = +,13 kn M 4 = - 17,85 +,13 = = + 188,56 knm V N N V N N = V = 0,707 17,85 = 90,39 kn N N = = 0,707,13 = 157 kn N 5 = - N N = - 90, = - 47,39 kn V 5 = + V = ,39 = +66,61 kn M 5 = M 4 = + 188,56 knm V N N N 6 = N 5 = - 47,39 kn V 6 = V 5 = + 66,61 kn M 6 = - 17,85 4 +,13 4 = + 377,1 knm 7. JELŰ KERESZTMETSZET 8. JELŰ KERESZTMETSZET V N F 1 F 1 N N 7 = N 6 = - 47,39 kn V 7 = V 6 F 1 = = + 66,61 00 = = - 133,39 kn M 7 = M 6 = + 377,1 knm V N N N 8 = N 7 = - 47,39 kn V 8 = V 7 = - 133,39 kn M 8 = 0 knm ( A csukló nem tud felvenni nyomatékot! )

6 A II. JELŰ TARTÓRÉSZT (JOBB OLDALI TARTÓRÉSZT) ÖNÁLLÓ TESTNEK TEKINTJÜK, EZÉRT ENNEK A BAL OLDALI VÉGE A C CSUKLÓ. TEHÁT A 9. KERESZTMETSZETBEN CSAK A C II. ILLETVE ENNEK KOMPONENSEI HATNAK. 9. JELŰ KERESZTMETSZET 10. JELŰ KERESZTMETSZET N 9 = - = -69,5 kn V 9 = - = -19,7 kn M 9 = 0 knm N 10 = N 9 = -69,5 kn V 10 = V 9 = - 19,7 kn M 10 = - 19,7 = -438,54 knm 11. JELŰ KERESZTMETSZET 1. JELŰ KERESZTMETSZET F 3 F 3 N 11 = N 10 = - 69,5 kn V 11 = V 10 F 3 = - 19,7 100 = - 319,7 kn M 11 = M 10 = - 438,54 knm N 1 = N 11 = - 69,5 kn V 1 = V 11 = - 319,7 kn M 1 = - 19, = ,08 knm 13. JELŰ KERESZTMETSZET 14. JELŰ KERESZTMETSZET F 3 F 3 N 13 = - F 3 = - 19,7 100 = - 319,7 kn V 13 = + = + 69,5 kn M 13 = M 1 = ,08 knm N 14 = N 13 = - 319,7 kn V 14 = V 13 = + 69,5 kn M 14 = 0 knm

7 A TARTÓ IGÉNYBEVÉTELI ÁBRÁI N ÁBRA -47,39-17,85-69,5-319,7 -, V ÁBRA -133,39-19,7-319,7-17,85 +66,61 +,13 +69,5 + - M ÁBRA -438, , ,08-55,7-55, , , ,1 + -

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK

DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK we-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STTIK 47. RÁCSOS TRTÓK rácsos tartók két végükön csuklókkal összekötött merev testekől állnak. z így

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

Navier-formula. Frissítve: Egyenes hajlítás

Navier-formula. Frissítve: Egyenes hajlítás Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a

Részletesebben

KERESZTMETSZETI JELLEMZŐK

KERESZTMETSZETI JELLEMZŐK web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 0821 ÉRETTSÉGI VIZSGA 2008. október 20. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

Vasbeton tartók méretezése hajlításra

Vasbeton tartók méretezése hajlításra Vasbeton tartók méretezése hajlításra Képlékenység-tani méretezés: A vasbeton keresztmetszet teherbírásának számításánál a III. feszültségi állapotot vesszük alapul, amelyre az jellemző, hogy a hajlításból

Részletesebben

Gyakorlat 04 Keresztmetszetek III.

Gyakorlat 04 Keresztmetszetek III. Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár TARTÓK

DEME FERENC okl. építőmérnök, mérnöktanár TARTÓK web-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 19. TARTÓK FOGALMA: TARTÓK A tartók terhek biztonságos hordására és azoknak a támaszokra történő

Részletesebben

MUNKAANYAG. Csepcsényi Lajos Lászlóné Balogh Melinda. Egyensúlyi feltételek, reakcióerők számítása. A követelménymodul megnevezése:

MUNKAANYAG. Csepcsényi Lajos Lászlóné Balogh Melinda. Egyensúlyi feltételek, reakcióerők számítása. A követelménymodul megnevezése: Csepcsényi Lajos Lászlóné Balogh Melinda Egyensúlyi feltételek, reakcióerők számítása A követelménymodul megnevezése: Építőipari kivitelezés tervezése A követelménymodul száma: 0688-06 A tartalomelem azonosító

Részletesebben

Csuklós szerkezetek reakciói és igénybevételi ábrái. Frissítve: példa: A 12. gyakorlat 1. feladata.

Csuklós szerkezetek reakciói és igénybevételi ábrái. Frissítve: példa: A 12. gyakorlat 1. feladata. 1. példa: A 12. gyakorlat 1. feladata. Számítsuk ki a reakcióerőket! Rajzoljuk meg a nyomatéki ábrát! Megjegyzés: A támaszok vízszintesen egy vonalban vannak. 1 / 20 2. példa: Számítsuk ki a reakcióerőket!

Részletesebben

Kizárólag oktatási célra használható fel!

Kizárólag oktatási célra használható fel! DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:

Részletesebben

FIZIKA MECHANIKA MŰSZAKI MECHANIKA STATIKA DINAMIKA BEVEZETÉS A STATIKA HELYE A TUDOMÁNYBAN

FIZIKA MECHANIKA MŰSZAKI MECHANIKA STATIKA DINAMIKA BEVEZETÉS A STATIKA HELYE A TUDOMÁNYBAN BEVEZETÉS A STATIKA HELYE A TUDOMÁNYBAN A statika a fizikának, mint a legszélesebb körű természettudománynak a része. A klasszikus értelemben vett fizika azokkal a természeti törvényekkel, illetve az anyagoknak

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT 2013 Feladat: Adott az ábrán látható kéttámaszú tartó, amely melegen hengerelt I idomacélokból és melegen hengerelt

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Rácsos szerkezetek. Frissítve: Egy kis elmélet: vakrudak

Rácsos szerkezetek. Frissítve: Egy kis elmélet: vakrudak Egy kis elmélet: vakrudak Az egyik lehetőség, ha két rúd szög alatt találkozik (nem egyvonalban vannak), és nem működik a csomópontra terhelés. Ilyen az 1.ábra C csomópontja. Ekkor az ide befutó mindkét

Részletesebben

Gyakorlat 03 Keresztmetszetek II.

Gyakorlat 03 Keresztmetszetek II. Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 0911 ÉRETTSÉGI VIZSGA 2009. október 19. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 0812 ÉRETTSÉGI VIZSGA 2011. október 17. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS

Részletesebben

A ferde tartó megoszló terheléseiről

A ferde tartó megoszló terheléseiről A ferde tartó megoszló terheléseiről Úgy vettem észre az idők során, hogy nem nagyon magyarázták agyon azt a kérdést, amivel itt fogunk foglalkozni. Biztos azt mondják majd megint, hogy De hisz ezt mindenki

Részletesebben

Az egyszeres rálapolásról

Az egyszeres rálapolásról Az egyszeres rálapolásról A téma felvezetése Az idő múlásával egyre inkább kikristályosodik az ember véleménye, mintegy magától. Így van ez az egyszeres rálapolásnak nevezett kötés esetén is, mely a műszaki

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben

Komplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét!

Komplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét! Komplex számok 014. szeptember 4. 1. Feladat: Legyen z 1 i és z 4i 1. (z 1 z ) (z 1 z ) (( i) (4i 1)) (6 9i 8i + ) 8 17i 8 + 17i. Feladat: Legyen z 1 i és z 4i 1. Határozza meg az alábbi kifejezés értékét!

Részletesebben

Külpontosan nyomott keresztmetszet számítása

Külpontosan nyomott keresztmetszet számítása Külpontosan nyomott keresztmetszet számítása A TELJES TEHERBÍRÁSI VONAL SZÁMÍTÁSA Az alábbi példa egy asszimmetrikus vasalású keresztmetszet teherbírási görbéjének 9 pontját mutatja be. Az első részben

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

A befogott tartóvég erőtani vizsgálatához II. rész

A befogott tartóvég erőtani vizsgálatához II. rész A befogott tartóvég erőtani vizsgálatához II. rész A második feladat Az első feladat alapfeltevése az volt, hogy a gerendavég kellően merev, így a terhelések hatására is egyenes marad. A valóságos testek

Részletesebben

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA

ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA ALAPOGALMAK ERŐRENDSZEREK EREDŐJÉNEK MEGHATÁROZÁSA Egy testre általában nem egy erő hat, hanem több. Legalább két erőnek kell hatni a testre, ha az erő- ellenerő alaptétel alapján járunk el. A testek vizsgálatához

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 1. tétel A. Ismertesse az anyagok tűzveszélyességi, valamint az építmények kockázati osztályba sorolását! B. Ismertesse a szerelési

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 1212 ÉRETTSÉGI VIZSGA 2012. május 25. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 25. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban)

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) Készítették: Dr. Kiss Rita és Klinka Katalin -1- A

Részletesebben

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban

Részletesebben

LINEÁRIS ALGEBRA.

LINEÁRIS ALGEBRA. LINEÁRIS ALGEBRA Bércesné Novák Ágnes Honlap: http://digitus.itk.ppke.hu/~b_novak Követelményrendszer: http://digitus.itk.ppke.hu/~b_novak/la/4_la_kovetelmeny.doc Gauss elimináció Vektoralgebra: http://digitus.itk.ppke.hu/~b_novak/dmat/vektorfolcop.pdf

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 0921 ÉRETTSÉGI VIZSGA 2010. május 14. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS

Részletesebben

A karpántokról, a karpántos szerkezetekről I. rész. Bevezetés

A karpántokról, a karpántos szerkezetekről I. rész. Bevezetés A karpántokról, a karpántos szerkezetekről I. rész Bevezetés Ezek a régi faépítészetből ismert szerkezeti elemek ma is sok helyen feltűnnek. Egy díszes megvalósítása az 1. ábrán látható. Forrása: http://www.motivumfa.hu/termekeink-karpantok.html.

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 1021 ÉRETTSÉGI VIZSGA 2011. május 13. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS

Részletesebben

Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra.

Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Tisztelt Hallgatók! Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Az, hogy valaki egy korábbi vizsga megoldását

Részletesebben

A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA

A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA A FÖDÉMSZERKEZET: helyszíni vasbeton gerendákkal alátámasztott PK pallók. STATIKAI VÁZ:

Részletesebben

az eredő átmegy a közös ponton.

az eredő átmegy a közös ponton. M Műszaki Mechanikai Tanszék STTIK dr. Uj József c. egetemi tanár g közös ponton támadó koncentrált erők (centrális erőrendszer) Két erő eredője: = +, Több erő eredője: = + ++...+ n, az eredő átmeg a közös

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek emelt szint 0812 ÉRETTSÉGI VIZSGA 2010. október 18. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Nyomott oszlopok számítása EC2 szerint (mintapéldák)

Nyomott oszlopok számítása EC2 szerint (mintapéldák) zéhenyi István Egyetem zerkezetépítési és Geotehnikai Tanszék yomott oszlopok számítása E szerint 1. Központosan nyomott oszlop Központosan nyomott az oszlop ha e = 0 (e : elsőrendű, vagy kezdeti külpontosság).

Részletesebben

1. Határozzuk meg az alábbi tartó vasalását, majd ellenőrizzük a tartót használhatósági határállapotokra!

1. Határozzuk meg az alábbi tartó vasalását, majd ellenőrizzük a tartót használhatósági határállapotokra! 1. Határozzuk meg az alábbi tartó vasalását majd ellenőrizzük a tartót használhatósági határállapotokra! Beton: beton minőség: beton nyomószilárdságnak tervezési értéke: beton húzószilárdságának várható

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2006. február 20. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. február 20. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A) Teszt jellegű

Részletesebben

Segédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15.

Segédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15. Segédlet: Kihajlás Készítette: Dr. Kossa ttila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2012. május 15. Jelen segédlet célja tömören összefoglalni a hosszú nyomott rudak kihajlásra történő ellenőrzését.

Részletesebben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 14. Határozzuk meg a nyírásból adódó csúsztatófeszültség

Részletesebben

Ez egy kísérlet a konnektivista pedagógiai koncepció megvalósítására! Önálló Alkalmazás Feladatlap megírása önálló

Ez egy kísérlet a konnektivista pedagógiai koncepció megvalósítására! Önálló Alkalmazás Feladatlap megírása önálló 8.3. A jó gyakorlatok gyűjtése, a tudás megosztása. Közös fejlesztés hálózati együttműködés formájában! Ez a fejezet opcionális (nem kötelező) és külső tanárok (vezető tanárok, szakképzésben oktató mérnöktanárok)

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. október 24. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 0621 ÉRETTSÉGI VIZSGA 2007. május 25. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 1621 ÉRETTSÉGI VIZSGA 2016. október 17. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐORRÁSOK MINISZTÉRIUMA ontos

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS

ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS Miskolci Egyetem Bányászati és Geotechnikai Intézet Bányászati és Geotechnikai Intézeti Tanszék ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS Oktatási segédlet Szerző: Dr. Somosvári Zsolt DSc professzor emeritus Szerkesztette:

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához Ismétlés Erőhatás a testek mechanikai kölcsönhatásának mértékét és irányát megadó vektormennyiség. jele: mértékegysége: 1 newton: erőhatás következménye: 1N 1kg

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek emelt szint 0921 ÉRETTSÉGI VIZSGA 2010. május 14. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. október 19. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÉRETTSÉGI VIZSGA 2009. október 19. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Hajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban

Hajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban Hajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban /Határnyomaték számítás/ 4. előadás A számítást III. feszültségi állapotban végezzük. A számításokban feltételezzük, hogy: -a rúd

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

A csigáról és annak működéséről

A csigáról és annak működéséről A csigáról és annak működéséről Az alábbiakban az ismert egyszerű géppel: a csigával foglalkozunk egy kicsit. Úgy tűnik, az történt, hogy valamit magától értetődőnek vettünk, ami nem is az. Most erről

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 0921 ÉRETTSÉGI VIZSGA 2010. május 14. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 1221 ÉRETTSÉGI VIZSGA 2013. május 23. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 1011 ÉRETTSÉG VZSGA 2010. október 18. ÉPÍTÉSZET ÉS ÉPÍTÉS ALAPSMERETEK KÖZÉPSZNTŰ ÍRÁSBEL ÉRETTSÉG VZSGA JAVÍTÁS-ÉRTÉKELÉS ÚTMUTATÓ NEMZET ERŐFORRÁS MNSZTÉRUM

Részletesebben

Alapmőveletek koncentrált erıkkel

Alapmőveletek koncentrált erıkkel Alapmőveletek koncentrált erıkkel /a. példa Az.7. ábrán feltüntetett, a,5 [m], b, [m] és c,7 [m] oldalú hasábot a bejelölt erık terhelk. A berajzolt koordnátarendszer fgyelembevételével írjuk fel komponens-alakban

Részletesebben

A -Y és a Y- átalakítás bemutatása. Kiss László április havában

A -Y és a Y- átalakítás bemutatása. Kiss László április havában A -Y és a Y- átalakítás bemutatása Kiss László 2011. április havában -Y átalakítás ohmos ellenállásokra Mint ismeretes, az elektrotechnikai gyakorlatban többször előfordul olyan kapcsolási kép, ami a megszokott

Részletesebben

Schöck Isokorb W. Schöck Isokorb W

Schöck Isokorb W. Schöck Isokorb W Schöck Isokorb Schöck Isokorb Schöck Isokorb típus Konzolos faltárcsákhoz alkalmazható. Negatív nyomaték és pozitív nyíróerő mellett kétirányú horizontális erőt tud felvenni. 115 Schöck Isokorb Elemek

Részletesebben

Dr. MOGA Petru, Dr. KÖLL7 Gábor, GU9IU :tefan, MOGA C;t;lin. Kolozsvári M=szaki Egyetem

Dr. MOGA Petru, Dr. KÖLL7 Gábor, GU9IU :tefan, MOGA C;t;lin. Kolozsvári M=szaki Egyetem Többtámaszú öszvértartók elemzése képlékeny tartományban az EUROCODE 4 szerint Plastic Analysis of the Composite Continuous Girders According to EUROCODE 4 Dr. MOGA Petru, Dr. KÖLL7 Gábor, GU9IU :tefan,

Részletesebben

52 524 01 0100 31 01 Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője

52 524 01 0100 31 01 Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 0811 ÉRETTSÉGI VIZSGA 008. május 6. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos

Részletesebben

4. MECHANIKA-MECHANIZMUSOK ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.)

4. MECHANIKA-MECHANIZMUSOK ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) SZÉHNYI ISTVÁN YTM LKLMZOTT MHNIK TNSZÉK. MHNIK-MHNIZMUSOK LŐÁS (kidolgozta: Szüle Veronika, egy. ts.) yalugép sebességábrája: F. ábra: yalugép kulisszás mechanizmusának onalas ázlata dott: az ábrán látható

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 1521 ÉRETTSÉGI VIZSGA 2015. október 12. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK 1. feladat 1 pont (Feleletválasztás) Témakör: Közlekedési ismeretek Húzza alá a helyes választ, vagy karikázza be annak betűjelét!

Részletesebben

TARTÓK STATIKÁJA I. Statikai modell felvétele és megoldása a ConSteel szoftver segítségével (alkalmazási segédlet)

TARTÓK STATIKÁJA I. Statikai modell felvétele és megoldása a ConSteel szoftver segítségével (alkalmazási segédlet) Statikai modell felvétele és megoldása a ConSteel szoftver segítségével (alkalmazási segédlet) 1. A program telepítése A ConSteel program telepítő fájlja a www.consteelsoftware.com oldalról tölthető le

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 1211 ÉRETTSÉGI VIZSGA 2013. május 23. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK

Részletesebben

Fizika 1X, pótzh (2010/11 őszi félév) Teszt

Fizika 1X, pótzh (2010/11 őszi félév) Teszt Fizika X, pótzh (00/ őszi félév) Teszt A sebessé abszolút értékének időszerinti interálja meadja az elmozdulást. H Az átlayorsulás a sebesséváltozás és az eltelt idő hányadosa. I 3 A harmonikus rező mozást

Részletesebben

1. A komplex számok ábrázolása

1. A komplex számok ábrázolása 1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 016. OKTÓBER KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 016. OKTÓBER 1. feladat Témakör: Közlekedési ismeretek Milyen találmány fűződik John

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek emelt szint 0621 ÉRETTSÉGI VIZSGA 2007. május 25. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. október 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉSTECHNIKA)

KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉSTECHNIKA) ÉRETTSÉGI VIZSGA 2014. május 20. KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉSTECHNIKA) KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek emelt szint 1621 ÉRETTSÉGI VIZSGA 2016. október 17. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 1221 ÉRETTSÉGI VIZSGA 2013. október 14. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. május 22. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÉRETTSÉGI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben