Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III."

Átírás

1 Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5.

2 Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak a vizsgálata. A jelenséghez tartozó formulák kísérleti ellenırzése. Mérés kivitelezése: A mérésnél a fotonok forrásának 137 Cs izotópot használunk, mert a radioaktív bomlása során a 137 Ba gerjesztett bomlástermékébıl 66 kev energiájú fotonok lépnek ki. Ezeket a fotonokat vezetjük rá egy ólom kollimátorral a céltárgyra, egy plasztik szcintillátorra, ami egyben az elektronok detektálására is szolgál. A Compton-szóródott fotonokat egy változtatható helyzető NaI(Tl) anyagú szcintillációs detektorral érzékeljük. A mérés során az olyan fotonokat fogjuk számolni, amik egyszerre, koincidenciában érkeznek a meglökött elektronnal. A mérési elrendezés látható az 1. ábrán. 1. ábra Mérési összeállítás A mérési összeállítás méretei: a kollimátor hossza l=13,9 cm, a kollimátor csövének átmérıje r=0,56 cm, a plasztik szcintillátor átmérıje d=1,57 cm, a céltárgy és a fotodetektor távolsága L=17,9 cm, a fotodetektor átmérıje R=4,8 cm. A 137 Cs forrás aktivitása ma: egy régi aktivitásértékbıl az exponenciális bomlási törvény alapján számolhatjuk ki a mai aktivitást napja az aktivitás 486,55 MBq volt, és a felezési idı 30,17 év=11019 nap. Ezek alapján ma az aktivitás: A ma = A t / t 1/ 0 = 165, 98 MBq A geometriából kiszámolható mennyi aktivitás éri a plasztik szcintillátort: (1) r Aki = Ama = 16, 838kBq () 4l

3 Kalibráció A csatornaszám és az energia közötti összefüggés meghatározásához koincidencia nélkül mérjük a direkt fotonok spektrumát 0 -ban elhelyezett detektor esetén. Ebbıl a teljes energiás 66 kev-os csúcs helyzetét tudjuk illesztéssel meghatározni. A csúcs az illesztett görbével látható a. ábrán. Az illesztéshez a következı alakú függvényt használtuk: f(x) = a ( x x ) 0 exp + mx +b (3) σ Ebbıl a kalibrációhoz x 0 -ra van szükségünk, mert ahhoz a csatornaszámhoz tartozik a 66 kev energia. Az illesztésbıl x = 94, 4 0,1. 1 ±. ábra 66 kev-os fotonok csúcsa A kalibrációhoz még egy pontra szükségünk van. Ehhez az ólom 75 kev-os K α vonalát használjuk fel úgy, hogy körülbelül 5 fokkal elforgatjuk a detektort. A legkisebb energiás csúcs tartozik a 75 kev-hoz, ami a 3. ábrán látható az illesztett függvénnyel. Az illesztés alapján a 75 kev-hoz tartozó csatornaszám x = 1, 64 0,07. ± Az elızıek alapján a csatornaszám és az energia közötti összefüggés: E ( kev ) = ( 7,18 ± 0,01) kev csatornaszám ( 15, 75 ± 0,03)keV (4)

4 3. ábra 75 kev-os fotonok csúcsa Szórt fotonok energiájának szögfüggése A Compton-szóródott fotonok energiája és kilépési szöge közötti összefüggés ellenırzéséhez mértük különbözı detektorhelyzetekben a fotonok spektrumát. Minden szöghelyzetnél található egy jól azonosítható csúcs, amire ismét Gauss-függvényt illesztünk lineáris háttérrel. Ezek a csúcsok az illesztett görbékkel láthatóak a következı ábrákon. 4. ábra 30 -os detektorhelyzetben a mért csúcs

5 5. ábra 40 -os detektorhelyzetben a mért csúcs 6. ábra 50 -os detektorhelyzetben a mért csúcs

6 7. ábra 60 -os detektorhelyzetben a mért csúcs 8. ábra 70 -os detektorhelyzetben a mért csúcs

7 9. ábra 80 -os detektorhelyzetben a mért csúcs 10. ábra 100 -os detektorhelyzetben a mért csúcs

8 11. ábra 10 -os detektorhelyzetben a mért csúcs Az illesztés paraméterei a hibákkal együtt találhatók a következı táblázatban: φ ( ) a a x 0 x 0 σ σ m m b b 30 17,6 4,8 78,87 0,91 4,0 1,0-0,09 0,3 8,78 1, ,71,6 71,3 0,5 3,35 0,64-0,0 0,14 3,3 9,3 50 6,66 3,15 64,67 0,40 3,06 0,54-0,9 0,19 0,89 13, ,7 1,77 57,65 0,6 3,99 0,36-0,18 0,09 9,6 4, ,49,97 51,80 0,31 3,6 0,4-0,59 0,19 3,66 11, ,35 5,45 47,08 0,38,59 0,66-0,0 0,51 13,58 4, ,78 9,58 39,31 0,50,03 0,70-0,9 1,47 4,51 67, ,0,03 34,31 0,13 1,19 0,13-0,5 0,14 0,46 5, A kalibráció és a csúcs helye alapján kiszámolhatjuk a megfelelı szögeknél a mért energiákat, illetve a következı formulából a számolt energiákat. E = + E 0 1 mec E 0 = 66keV ( 1 cosϕ) 1+ ( 1 cosϕ) Az eredmények találhatóak a következı táblázatban. A mért energia hibáját a csúcs helyének illesztésébıl kapott hibájából és a kalibráció hibájából számoltam. (5)

9 φ ( ) x 0 x 0 Eφ (kev) E (kev) E (kev) 30 78,87 0,91 564,09 550,50 7, ,3 0,5 508,0 495,65 4, ,67 0,40 45,57 448,55 3, ,65 0,6 401,76 398,15, ,80 0,31 357,37 356,15, ,08 0,38 319,7 3,6 3, ,31 0,50 6,65 66,48 3, ,31 0,13 4,9 30,58 1,38 A szóródás szöge és a szórt foton energiája közti összefüggésre illesszünk az elızı formula segítségével függvényt úgy, hogy az elektron nyugalmi tömegét választjuk illesztési paraméternek. Ez látható a 1. ábrán. 1. ábra A szórt foton energiája a szórási szög függvényében Az elektron nyugalmi tömegére az illesztésbıl hibán belül megkaptuk az ismert tömeget: ( 517 ± 7) m e = kev/c. Egy mérés alapján lehet vizsgálni, hogy egy összefüggés hibás-e. Ehhez a χ -et kell kiszámolni a következı formulával: χ = n i= 1 yi f y ( x ) i i, ahol y i a mért eredmény, y i a mért eredmény hibája és f ( x i ) az illesztett formula alapján számolt érték. Ennél a mérésnél a

10 χ értékére 8,7 jött ki, amire a χ -próba 0,000-t ad eredményül 7 szabadsági fokú problémára. Egy ilyen eredménnyel meg lehetne cáfolni az elméletet, de mivel az elektron tömegére jó eredmény jött ki, ezért a χ nagy értéke a hibák rossz becslésének köszönhetı. A mért eredmények és az illesztések alapján kiszámolható a szórt fotonok száma a csúcs területébıl, és a differenciális hatáskeresztmetszet is. A számolásokhoz a következı formulákat használjuk fel: dσ = dω N t 1 η 1 1 j A dx ρ M N A Z 1 Ω Az elızı kifejezésben az N a szórt fotonok száma, amit az illesztett Gauss-görbe területébıl számoltam a következı módon az elsı táblázatban szereplı adatokból: (6) N = π aσ (7) A (6) egyenletben t a mérési idı, j A=16838 a fotonok fluxusa () alapján, dx=1,57 cm a szcintillátor átmérıje, ρ=1,03 g/cm 3 a sőrősége, N A az Avogadro-szám, Z=8 az átlagos rendszám, M=14 g/mol az átlagos atomtömeg, Ω=R /L =0,056 a detektor térszöge és végül η a detektor hatásfoka, amit adott energiára a következı empirikus formula határoz meg. 4,7E(MeV) η = 0,98 e + 0,05 E(MeV) (8) Az elızıekbıl számolt eredmények találhatóak a következı táblázatban. A hatáskeresztmetszet hibáját az N hibájából lehet megbecsülni, ami elég jelentıs a többihez képest. φ ( ) N N t (s) η dσ/dω (10-7 cm ) hiba (10-7 cm ) ,71 96, ,10 5,75 3, ,11 5, ,1 4,17 1, ,49 60, ,14,91 0, ,75 45, ,17 3,53 0, ,01 61, ,0,33 0, ,04 85, ,3 1,65 0, ,71 104, ,9 1,50 0, ,75 11, ,34 1,40 0,3 A Compton-szórás hatáskeresztmetszetét a Klein-Nishina formula határozza meg a szög függvényében. Ez (10) alakú, ahol bevezetjük a következı jelölést: P = E0 1+ m c e 1 ( 1 cosϕ) (9)

11 dσ = dω 1 3 ( P P ( ϕ) + P ) r0 sin Ezt a formulát úgy ellenırizzük, hogy a mért eredményekre a szög függvényében illesztünk úgy, hogy az r 0 klasszikus elektronsugár értékét vesszük szabad paraméternek. A mért eredmények és az illesztett függvény látható a következı 13. ábrán. (10) 13. ábra A Klein-Nishina formula ellenırzése Az illesztésbıl a klasszikus elektronsugár értékére a következıt kaptuk: 14 ( 9,4 ± 0,3) Ez nagyságrendileg megegyezik az irodalmi értékkel, ami r0 = 10 cm (11),8 10 Ebben az esetben is kiszámolható a χ értéke, ami az illesztett függvény és a hatáskeresztmetszet hibája alapján 4,7-nek adódott. Erre a χ -próba 0,7 vagyis ez a számolás nem cáfolja meg az elméletet. 13 cm.

Magspektroszkópiai gyakorlatok

Magspektroszkópiai gyakorlatok Magspektroszkópiai gyakorlatok jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Deák Ferenc Mérés dátuma: 010. április 8. Leadás dátuma: 010. április 13. I. γ-spekroszkópiai mérések A γ-spekroszkópiai

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

A COMPTON-EFFEKTUS VIZSGÁLATA

A COMPTON-EFFEKTUS VIZSGÁLATA A COMPTON-EFFEKTUS VIZSGÁLATA. A Compton-effektus elméleti leírása A Compton-effektus során az elektromágneses sugárzás kvantuma részecskének tekinthető, és rugalmasan szóródik szabad (avagy a sugárzás

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Abszolút és relatív aktivitás mérése

Abszolút és relatív aktivitás mérése Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés

Részletesebben

A Compton-effektus vizsgálata

A Compton-effektus vizsgálata A Compton-effektus vizsgálata Csanád Máté 2017. március 30. 1. A Thomson-szórás Az elektromágneses sugárzás atomokra gyakorolt hatása a XX. század elején intenzíven kutatott terület volt, elég csak az

Részletesebben

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban

Részletesebben

Modern Fizika Labor. 21. PET (Pozitron Annihiláció vizsgálata) Fizika BSc. A mérés száma és címe: A mérés dátuma: nov. 15.

Modern Fizika Labor. 21. PET (Pozitron Annihiláció vizsgálata) Fizika BSc. A mérés száma és címe: A mérés dátuma: nov. 15. Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 15. A mérés száma és címe: 21. PET (Pozitron Annihiláció vizsgálata) Értékelés: A beadás dátuma: 2011. nov. 30. A mérést végezte: Németh Gergely

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. április 20. A mérés száma és címe: 20. Folyadékáramlások 2D-ban Értékelés: A beadás dátuma: 2009. április 28. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Sugárvédelmi és dozimetriai gyakorlatok. Rakyta Péter. Bornemisza Györgyné. leadás időpontja: május 9.

Sugárvédelmi és dozimetriai gyakorlatok. Rakyta Péter. Bornemisza Györgyné. leadás időpontja: május 9. Mérési jegyzőkönyv: Sugárvédelmi és dozimetriai gyakorlatok Rakyta Péter mérőtársak: Mezei Márk és Pósfai Márton mérés időpontja: 27. április 26. leadás időpontja: 27. május 9. Mérésvezető: Bornemisza

Részletesebben

Elektronspin rezonancia

Elektronspin rezonancia Elektronspin rezonancia jegyzıkönyv Zsigmond Anna Fizika MSc I. Mérés vezetıje: Kürti Jenı Mérés dátuma: 2010. november 25. Leadás dátuma: 2010. december 9. 1. A mérés célja Az elektronspin mágneses rezonancia

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

9. Fényhullámhossz és diszperzió mérése jegyzőkönyv

9. Fényhullámhossz és diszperzió mérése jegyzőkönyv 9. Fényhullámhossz és diszperzió mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 008. 11. 1. Leadás dátuma: 008. 11. 19. 1 1. A mérési összeállítás A méréseket speciális szögmérő eszközzel

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. március 2. A mérés száma és címe: 5. Elektronspin rezonancia Értékelés: A beadás dátuma: 2009. március 5. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

A gamma-sugárzás kölcsönhatásai

A gamma-sugárzás kölcsönhatásai Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok

Részletesebben

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás

Részletesebben

Nehézségi gyorsulás mérése megfordítható ingával

Nehézségi gyorsulás mérése megfordítható ingával Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL

3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL 3. GAMMA-SUGÁRZÁS ENERGIÁJÁNAK MÉRÉSE GAMMA-SPEKTROMETRIAI MÓDSZERREL A gamma-sugárzás elektromágneses sugárzás, amely vákuumban fénysebességgel terjed. Anyagba ütközve kölcsönhatásba lép az anyag alkotóelemeivel,

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

A Mössbauer-effektus vizsgálata

A Mössbauer-effektus vizsgálata A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának

Részletesebben

Mag-mágneses rezonancia

Mag-mágneses rezonancia Mag-mágneses rezonancia jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csorba Ottó Mérés dátuma: 2010. március 25. Leadás dátuma: 2010. április 7. Mérés célja A labormérés célja a mag-mágneses

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. február 23. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2009. március 2. A mérést végezte: Zsigmond Anna Márton Krisztina

Részletesebben

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

7. Mágneses szuszceptibilitás mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 7. Mágneses szuszceptibilitás mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 22. Leadás dátuma: 2008. 11. 05. 1 1. A mérési összeállítás A mérési összeállítás sematikus ábrája

Részletesebben

19. A fényelektromos jelenségek vizsgálata

19. A fényelektromos jelenségek vizsgálata 19. A fényelektromos jelenségek vizsgálata PÁPICS PÉTER ISTVÁN csillagász, 3. évfolyam Mérőpár: Balázs Miklós 2006.04.19. Beadva: 2006.05.15. Értékelés: A MÉRÉS LEÍRÁSA Fontos megállapítás, hogy a fénysugárzásban

Részletesebben

Szilárd Leó Fizikaverseny Számítógépes feladat

Szilárd Leó Fizikaverseny Számítógépes feladat Szilárd Leó Fizikaverseny 2006. Számítógépes feladat A feladat során 10 B atommagok gerjesztett állapotának (rövid) élettartamát fogjuk megmérni. Egy gyorsító-berendezéssel 10 B ionokat (atommagokat) gyorsítunk,

Részletesebben

1. Gauss-eloszlás, természetes szórás

1. Gauss-eloszlás, természetes szórás 1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális

Részletesebben

Termoelektromos hűtőelemek vizsgálata

Termoelektromos hűtőelemek vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja

Részletesebben

IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN

IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN ! " #! " 154 IDTÁLLÓ GONDOLATOK MOTTÓK NAGY TERMÉSZET TUDÓSOK BÖLCS GONDOLATAIBÓL A TUDOMÁNY ÉS A MINDEN NAPI ÉLET VONAKOZÁSÁBAN (Ludwig Boltzman) (James Clerk Maxwell)!" #!!$ %!" % " " ( Bay Zoltán )

Részletesebben

5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 5. Fajhő mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 08. Leadás dátuma: 2008. 10. 15. 1 1. A mérési összeállítás A mérés során a 6-os számú minta fajhőjét akarjuk meghatározni.

Részletesebben

Line aris f uggv enyilleszt es m arcius 19.

Line aris f uggv enyilleszt es m arcius 19. Lineáris függvényillesztés 2018. március 19. Illesztett paraméterek hibája Eddig azt néztük, hogy a mérési hiba hogyan propagál az illesztett paraméterekbe, ha van egy konkrét függvényünk. a hibaterjedés

Részletesebben

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-16/14-M Dr. Szalóki Imre, egyetemi docens Radócz Gábor, PhD

Részletesebben

Hőmérsékleti sugárzás

Hőmérsékleti sugárzás Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása

Részletesebben

Modern Fizika Laboratórium Fizika és Matematika BSc 12. Infravörös spektroszkópia

Modern Fizika Laboratórium Fizika és Matematika BSc 12. Infravörös spektroszkópia Modern Fizika Laboratórium Fizika és Matematika BSc 1. Infravörös spektroszkópia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/0/01 Beadás ideje: 03/4/01 Érdemjegy:

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Atomi er mikroszkópia jegyz könyv

Atomi er mikroszkópia jegyz könyv Atomi er mikroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc III. Mérés vezet je: Szabó Bálint Mérés dátuma: 2010. október 7. Leadás dátuma: 2010. október 20. 1. Mérés leírása A laboratóriumi mérés

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése

RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése RADIOKÉMIAI MÉRÉS Laboratóriumi neutronforrásban aktivált-anyagok felezési idejének mérése A radioaktív bomlás valószínűségét kifejező bomlási állandó (λ) helyett gyakran a felezési időt alkalmazzuk (t1/2).

Részletesebben

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv (-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

A tau lepton felfedezése

A tau lepton felfedezése A tau lepton felfedezése Szabó Attila András ELTE TTK Kísérleti mag- és részecskefizikai szeminárium 2014.12.04. Tartalom 1 Előzmények(-1973) e-μ probléma e+e- annihiláció kísérletekhez vezető út 2 Felfedezés(1973-1976)

Részletesebben

Fényhullámhossz és diszperzió mérése

Fényhullámhossz és diszperzió mérése Fényhullámhossz és diszperzió mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/09/011 Beadás ideje: 11/16/011 1 1. A mérés rövid leírása

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA

3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA 3. RADIOAKTÍV MINTÁK AKTIVITÁSÁNAK MEGHATÁROZÁSA 1. Az aktivitásmérés jelentosége Modern világunk mindennapi élete számtalan helyen felhasználja azokat az ismereteket, amelyekhez a fizika az atommagok

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

Az elektron-foton kölcsönhatás (folyamatok)

Az elektron-foton kölcsönhatás (folyamatok) Az elektron-foton kölcsönhatás (folyamatok) Itten most a Compton-szórás hatáskeresztmetszetét kell kiszámolni, felhasználva a QED-ben és úgy általában a kvantumtérelméletben ismert dolgokat (Feynman-szabályok,

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés

Részletesebben

Fényhullámhossz és diszperzió mérése

Fényhullámhossz és diszperzió mérése KLASSZIKUS FIZIKA LABORATÓRIUM 9. MÉRÉS Fényhullámhossz és diszperzió mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 19. Szerda délelőtti csoport 1. A mérés célja

Részletesebben

Radioaktív sugárzás elnyelődésének vizsgálata

Radioaktív sugárzás elnyelődésének vizsgálata 11. fejezet Radioaktív sugárzás elnyelődésének vizsgálata Az ólomtorony és a szcintillációs számláló A természetes radioaktív anyagok esetében háromféle sugárzást lehet megkülönböztetni. Erre egyszerű

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Magsugárzások (α, β, γ) kölcsönhatása atomi rendszerekkel (170-174, 540-545 o.) Direkt és

Részletesebben

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével

Részletesebben

Radioaktív sugárzások abszorpciója

Radioaktív sugárzások abszorpciója Radioaktív sugárzások abszorpciója Bevezetés A gyakorlat során különböző sugárforrásokat két β-sugárzót ( 204 Tl és 90 Sr), egy tiszta γ-forrást ( 60 Co) és egy β- és γ-sugárzást is kibocsátó preparátumot

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

Modern Fizika Laboratórium Fizika és Matematika BSc 11. Spektroszkópia

Modern Fizika Laboratórium Fizika és Matematika BSc 11. Spektroszkópia Modern Fizika Laboratórium Fizika és Matematika BSc 11. Spektroszkópia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 02/28/2012 Beadás ideje: 03/05/2012 Érdemjegy:

Részletesebben

11. tétel - Elektromágneses sugárzás és ionizáló sugárzás kölcsönhatása kondenzált anyaggal, áthatolóképesség, záporjelenségek.

11. tétel - Elektromágneses sugárzás és ionizáló sugárzás kölcsönhatása kondenzált anyaggal, áthatolóképesség, záporjelenségek. 11. tétel - Elektromágneses sugárzás és ionizáló sugárzás kölcsönhatása kondenzált anyaggal, áthatolóképesség, záporjelenségek. Ionizáció Bevezetés Ionizációra minden töltött részecske képes, de az elektront

Részletesebben

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba BME NTI 1997 2 Tartalom 1. BEVEZETÉS... 3 2. ELMÉLETI ÖSSZEFOGLALÁS... 3 2.1. Töltéshordozók keletkezése (ionizáció) töltött részecskéknél...

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

ODE SOLVER-ek használata a MATLAB-ban

ODE SOLVER-ek használata a MATLAB-ban ODE SOLVER-ek használata a MATLAB-ban Mi az az ODE? ordinary differential equation Milyen ODE megoldók vannak a MATLAB-ban? ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, stb. A részletes leírásuk

Részletesebben

RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN

RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN Bujtás T., Ranga T., Vass P., Végh G. Hajdúszoboszló, 2012. április 24-26 Tartalom Bevezetés Radioaktív hulladékok csoportosítása, minősítése A minősítő

Részletesebben

Atomenergetikai alapismeretek

Atomenergetikai alapismeretek Atomenergetikai alapismeretek 2. előadás Dr. Szieberth Máté Dr. Sükösd Csaba előadásanyagának felhasználásával Négyfaktor formula (végtelen kiterjedésű n-sokszorozó közeg) n Maghasadás (gyors neutronok)

Részletesebben

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Elméleti bevezetés PANNONPALATINUS regisztrációs code PR/B10PI0221T0010NF101 A radon a 238 U bomlási sorának tagja, a periódusos rendszer

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21. Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Izotópok. Izotópok. diagnosztikai alkalmazásai. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ

Izotópok. Izotópok. diagnosztikai alkalmazásai. diagnosztikai alkalmazásai. Képalkotó eljárásokkal nyerhető információ Izotópok Izotópok diagnosztikai alkalmazásai diagnosztikai alkalmazásai Izotópdiagnosztikai eljárás lépései Alkalmas, radioaktív molekulák bejuttatása Az aktivitás eloszlásának, változásának követése Képalkotó

Részletesebben

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc. Mérés dátuma: 28... Leadás dátuma: 28.. 8. . Mérések ismertetése A Peltier-elemek az. ábrán látható módon vannak elhelyezve

Részletesebben

Radioaktivitás és mikrorészecskék felfedezése

Radioaktivitás és mikrorészecskék felfedezése Radioaktivitás és mikrorészecskék felfedezése Mag és részecskefizika 1. előadás 2017. Február 17. A félév tematikája 1. Mikrorészecskék felfedezése 2. Kvark gondolat bevezetése, béta-bomlás, neutrínóhipotézis

Részletesebben

Az asztrofizikai p-folyamat kísérleti vizsgálata befogási reakciókban

Az asztrofizikai p-folyamat kísérleti vizsgálata befogási reakciókban Az asztrofizikai p-folyamat kísérleti vizsgálata befogási reakciókban Zárójelentés az F 043408 ifjúsági OTKA pályázatról Témavezető: Gyürky György A vasnál nehezebb elemek izotópjai a csillagfejlődés előrehaladott

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

Radioaktív bomlási sor szimulációja

Radioaktív bomlási sor szimulációja Radioaktív bomlási sor szimulációja A radioaktív bomlásra képes atomok nem öregszenek, azaz nem lehet sem azt megmondani, hogy egy kiszemelt atom mennyi idıs (azaz mikor keletkezett), sem azt, hogy pontosan

Részletesebben

Gamma-spektrometria HPGe detektorral

Gamma-spektrometria HPGe detektorral Gamma-spektrometria HPGe detektorral 1. Bevezetés A gamma-spektrometria az atommagból valamilyen magfolyamat következtében (radioaktív bomlás, mesterséges vagy természetes magreakció) kilépő gamma sugárzás

Részletesebben

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez 1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján

Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Készítette: Zsélyné Ujvári Mária, Szalma József; 2012 Előadó: Zsély István Gyula, Javított valtozat 2016 Laborelőkészítő előadás,

Részletesebben

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag

Részletesebben

A radioaktív bomlás típusai

A radioaktív bomlás típusai A radioaktív bomlás típusai Párhuzamos negatív és pozitív bétabomlás/elektronbefogás 40 19 K kb.89% 0.001%, kb.11% EX 40 40 Ca Ar Felszabaduló energia Ca-40: 1311 kev Ar-40: 1505 kev Felezési idő P-40

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

Szikes talajok szerkezete és fizikai tulajdonságai

Szikes talajok szerkezete és fizikai tulajdonságai Szikes talajok szerkezete és fizikai tulajdonságai Rajkai Kálmán, 2014 A talajvízforgalom modellezése Copyright 1996-98 Dale Carnegie & Associates, Inc. 1 A szikes talajok szerkezetének jellemzői A talaj

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis. 2008. április 22.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis. 2008. április 22. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. április 22. A mérés száma és címe: 9. mérés: Röntgen-fluoreszcencia analízis Értékelés: A beadás dátuma: 28. május 5. A mérést végezte: Puszta Adrián,

Részletesebben

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

Modern Fizika Laboratórium Fizika és Matematika BSc 8. Alkáli spektrumok

Modern Fizika Laboratórium Fizika és Matematika BSc 8. Alkáli spektrumok Modern Fizika Laboratórium Fizika és Matematika BSc 8. Alkáli spektrumok Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/7/0 Beadás ideje: 04/0/0 Érdemjegy: . A mérés

Részletesebben

Mag- és neutronfizika 5. elıadás

Mag- és neutronfizika 5. elıadás Mag- és neutronfizika 5. elıadás 5. elıadás Szcintillációs detektorok (emlékeztetı) Egyes anyagokban fényfelvillanás (szcintilláció) jön létre, ha energiát kapnak becsapódó részecskéktıl. Anyagát tekintve

Részletesebben

Atommagok alapvető tulajdonságai

Atommagok alapvető tulajdonságai Atommagok alapvető tulajdonságai Mag és részecskefizika 5. előadás 017. március 17. Áttekintés Atommagok szerkezete a kvarkképben proton szerkezete, atommagok szerkezete, magerő Atommagok összetétele izotópok,

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben