A van der Waals-gáz állapotegyenlete és a Joule Thompson-kísérlet Kiegészítés fizikus hallgatók számára

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A van der Waals-gáz állapotegyenlete és a Joule Thompson-kísérlet Kiegészítés fizikus hallgatók számára"

Átírás

1 van der Waals-gáz állaotegyenlete és a Joule homson-kísérlet Kiegészítés fizikus hallgatók számára Cserti József Eötvös Loránd udományegyetem, Komlex Rendszerek Fizikája anszék 006. december. van der Waals-állaotegyenlet: + an bn = nr, ahol n = m/m a gáz mólszáma, és a, illetve b anyagtól függő állandók. z. táblázatban megadtuk néhány anyagra az a és b állandókat. nyag a Pa m /mól b m /mól c K c MPa c m N H Co táblázat. an der Waals állandók néhány gázra, illetve a megfelelő c kritikus hőmérséklet, c kritikus nyomás és c kritikus térfogat. kritikus ontban =c =c = an nr c = 0, bn = 6an + nr c = 0. bn z - egyenletekből egyszerűen adódik: c = bn, c = a 7 b, 5 R c = 8 a 7 b. 6 z. táblázatban megadtuk néhány anyagra a kritikus hőmérsékletet, nyomást és a térfogatot. Bevezetve a ˆ = c, ˆ = c és a ˆ = c dimenziótlan változókat, az egyenlet a következő alakba írható: ˆ + ˆ ˆ = 8 ˆ. 7 z állaotegyenlet univerzális, minden gázra ugyanaz az állaotegyenlet, nem függ az a és b anyagi állandóktól. Ez a megfelelő állaotok törvénye an der Waals, 880, és 90-ben Nobel-díjat kaott. továbbiakban célszerű ezzel az állaotegyenlettel számolni. z. ábrán a van der Waals állaotegyenlet egy tiikus izotermája, illetve a háromdimenziós ábrája látható.

2 = a b. ábra. a van der Waals állaotegyenletből számolt izoterma ˆ = 0.9 esetén a síkon. b van der Waals állaotegyenlet háromdimenziós ábrája néhány izotermával. görbéket a ˆ, ˆ és ˆ dimenziótlan változók szerint ábrázoltuk. kritikus hőmérséklet alatt ˆ < az izoterma minimuma és maximuma között a gáz mechanikailag instabil. komresszibilitás, κ = < 0 negatív. z izotermának ezt a nem fizikai részét az ún. Maxwellkonstrukcióval távolíthatjuk el. Ez a folyadék- és gőzfázis szearálodásához vezet. Gibbs-otenciál megváltozása dg, = Sd + d, és ha egy izotermát tekintünk d = 0, akkor a Gibbs-otenciál megváltozása az izoterma két ontja között G G = d, 8 azaz a. ábrán látható görbe alatti terület.. ábrán látható a G, Gibbs-otenciál -től való függése van 5 B D E F G H I C. ábra. van der Waals állaotegyenletből számolt izoterma a síkon. DEF szakasz mechanikailag instabil állaotoknak felelnek meg. z EFGE és CDEC zárt tartományok területét, illetve -vel jelöltük. z izoterma két ontja között a görbe alatti terület a Gibbs-otenciál megváltozásával egyenlő. görbét ˆ és ˆ dimenziótlan változók szerint ábrázoltuk ˆ = 0.9 izotermán. der Waals gázra és rögzített hőmérsékleten. 8 egyenletben szerelő integrált legegyszerűbben úgy számolhatjuk ki, hogy d = 0 mellett a 7 egyenletből kaott d-t d = 6ˆ ˆ ˆ beírjuk a 8 egyenletbe, és a -szerinti integrált elemi úton elvégezzük: G ˆ, ˆ G ˆ, ˆ ˆ = ˆ dˆ = ˆ 6ˆ ˆ ˆ d ˆ = 6ˆ + d ˆ, 9 8 ˆ ˆ 8 ˆ ln ˆ. 0

3 0.6 G D I C, G 0. F ábra. van der Waals állaotegyenletből számolt Gibbs-otenciál függvényében rögzített hőmérsékleten ˆ = 0.9. G értéke egy konstans érték erejéig határozatlan. égül a különböző ˆ -re adott ˆ mellett kiszámolt G-t a 7 egyenlet alaján a ˆ és ˆ értékeiből számolt ˆ nyomás függvényében ábrázoljuk.. ábrán látható, hogy a Gibbs-otenciál növekszik, és konkáv függvény az D, illetve az FI görbéken. Ugyanakkor a DF görbén csökken, és konvex. DF görbén az állaotok mechanikailag instabilak hiszen a mechanikai stabiltás megköveteli, hogy a Gibbs-otenciál konkáv függvény legyen. Másrészt, csak az CI görbén lévő állaotok lehetnek termodinamikai egyensúlyban, mert ezekre az állaotokra lesz a Gibbs-otenciál minimumban. FCD görbén lévő állaotok metastabil állaotok. Így egyensúlyi állaotban azok az állaotok lesznek, amelyek az CI görbén vannak. síkon lévő izotermán lásd a. ábrát a C és G ontok között egy egyenest kell húznunk a nyomás állandó. Ez az egyetlen mód, hogy a Gibbs-otenciál állandó maradjon miközben a gáz állaota a C ontból a G ontba kerül.. ábrán a fizikailag megvalósuló izoterma az BCEGHI görbe lesz. z izotermák fenti megszerkesztéséhez még meg kell határoznunk, hogy hol van a CG egyenes. C és G ontokban a Gibbs-otenciál azonos, ezért 0 = G C d = D C d + E D d + F E d + melyet átrendezve kajuk, hogy a. ábrán jelölt és területek egyenlőek: = D C d D E d = E F d G G F d, F d =. Ez a nevezetes Maxwell-konstrukció. folyadék-gőz fázisátalakulásnál a C és G ontokban az anyag gőz, illetve folyadék fázisban van. CG egyenesen a két fázis együtt van jelen. Maxwell-konstrukció segítségével minden egyes izotermához ˆ < esetén meghatározhatjuk a síkon a C és G térfogatokat, és a hozzájuk tartozó nyomást. Célszerű a Gibbs-otenciált és függvényében számolni a 0 kifejezés alaján. Ekkor írhatjuk, hogy G ˆ, ˆ C = G ˆ, ˆ G, ˆ ˆ, ˆ C = ˆ ˆ, ˆ G második egyenlet a nyomások egyenlőségét fejezi ki, és a 7 egyenletből számolhatjuk ki. fenti két egyenlet nemlineáris C és G -ben, de rögzített ˆ mellett numerikusan könnyen megoldhatjuk. z eredmény a. ábrán látható. z egyes izotermák C és G végontjai egy görbét határoznak meg, melyet koegzisztencia görbének neveznek a. ábrán a kék vonal. fentiek alaján ábrázolhatjuk a nyomás hőmérékletfüggését is a kritikus hőmérsélet alatt. Megoldva a - egyenleteket C -re és G -re, majd beírva a -be megkajuk a nyomás ˆ -től való függését. z eredmény az 5. ábrán látható. nyomás monoton növekszik növelésével egészen a kritikus ontig. Ez a görbe választja el a folyadék fázist a gőz fázistól a síkon. égül érdemes megvizsgálni, hogy a gőz, illetve folyadék fázis térfogatának különbsége hogyan változik a hőmérseklettel. - egyenletek numerikus megoldásából a 6. ábra mutatja az eredményt. hogy a hőmérséklettel tartunk a kritikus hőmérséklet felé < c értékek felöl a két fázis térfogatkülönbsége zérushoz tart. Megmutatható, hogy c közelében ˆ C ˆ G = ε /, 5 ahol ε = c / c. 6. ábrán ez jól látható. Ugyanakkor, a kísérletek szerint a fenti egyenletben szerelő /-es kitevő helyett inkább / kitevőt figyeltek meg. van der Waals állaotegyenlet kvalitatíve jól írja le az elsőrendű fázisátalakulást, de a kritikus ont környékén taasztalható másodrendű fázisátalakulást már nem.

4 ábra. Gázok van der Waals állaotegyenletéből számolt izotermái iros görbék és a koegzisztencia görbe kék vonal a síkon. görbéket a ˆ és ˆ dimenziótlan változók szerint ábrázoltuk, és a hőmérsékletek rendre ˆ = 0.85, 0.9, 0.95,.0,.05,.. kritikus ont ábra. folyadék-gőz fázist elválasztó görbe van der Waals állaotegyenlet alaján. görbe bal felén a folyadék, míg a jobb felén a gőz fázis van ˆ < esetén. görbét a ˆ és ˆ dimenziótlan változók szerint ábrázoltuk. Gay Lussac- és a Joule homson-kísérlet Reális gázok állaotegyenlete eltér az ideális gáz állaotegyenletétől. Ezt először a Gay Lussac-, illetve a Joule homson-kísérletekben mutatták ki. Gay Lussac-kísérletben egy adiabatikusan elzárt tartályban lévő gázt az elválasztó fal hirtelen kivételével hagyjuk szabadon tágulni. kísérletben a reális gázok lehűlnek, míg ideális gázra nem változik a gáz hőmérséklete. Számítsuk ki a gáz hőmérsékletcsökkenését! gáz belső energiája nem változik, mert nincs munkavégzés és hőcsere sem a tartály adiabatikusan elzárt. Így a következő deriváltat érdemes kiszámítani: = U U U = C = S S = = C = C + α κ = C ακ. harmadik átalakításnál egy Maxwell-relációt Sd d alkalmaztunk. Ideális gáz esetén α = és κ =, így a fenti derivált értéke zérus. an der Waals gáznál célszerű a harmadik átalakításnál kaott kifejezésből kiindulni: =. U C gáz nyomása az egyenlet szerint = nr bn an, így = nr. Ezt behelyettesítve a fenti kifejezésbe: bn = an U. C

5 .5 C G ε 6. ábra. numerikusan számolt görbe van der Waals állaotegyenlet alaján iros görbe. függőleges tengelyen ˆ C ˆ G, míg a vízszintes tengelyen az ε = c / c van ábrázolva. függvény közelítő görbéje fekete vonal jól egyezik a numerikusan egzakt eredménnyel 0 ε esetén. fenti derivált értéke szabad tágulásra negatív, és így a Gay Lussac-kísérletben a van der Waals gáz hőmérséklete csökken. Joule homson-kísérletben hasonlóan ideális gázra nincs hőmérsékletváltozás, de reális gázokra a gáz hőmérsékletétől függően a gáz melegedhet, illetve hűlhet a kísérletben. hűtési effektust a gázok csefolyósítására is alkalmazzák. kísérletben egy orózus fal egyik felén adott nyomású gáz van, melyet egy dugattyúval lassan átnyomnak a orózus falon keresztül a másik térfélre úgy, hogy közben a nyomása nem változik. z egész rendszer adiabatikusan el van zárva. Ismét számítsuk ki a gáz hőmérsékletváltozását! Legyen a gáz nyomása és térfogata kezdetben és, míg a végállaotban < és! külső erők munkája W = =, a hőcsere zérus, és így U U =, 6 azaz a H = U + entalia a kezdő és végállaotban azonos. Így érdemes kiszámítani a hőmérséklet szerinti deriváltját állandó H entalia mellett. Felhasználva az entalia dhs, = ds + d teljes derivált alakját, egyszerű átalakítással adódik a Joule homson-együtthatóra: H S + = = + = = α, 7 H C C H S ahol α = a térfogati hőtágulási együttható. Ideális gáz esetén α =, és így a kérdéses derivált értéke zérus. Reális gázokra a derivált előjele határozza meg, hogy a Joule homson-kísérletben a berendezés hűt vagy fűt. taasztalat szerint ez az előjel a gáz hőmérsékletétől és a nyomásától függ. dott nyomás mellett, ha a gáz hőmérséklete kisebb egy bizonyos, ún. inverziós hőmérsékletnél, akkor a gáz a folyamat során hűlni fog. Határozzuk meg az inverziós hőmérsékletet van der Waals gázra! 7 egyenlet szerint ki kell számolni az α hőtágulási együtthatót. Deriváljuk le az egyenlet mindkét oldalát szerint = állandó mellett: an bn + + an = nr, 8 ahonnan = nr = an bn + + an Ezt az alakot írjuk be a 7 egyenletbe! Elemi átalakítások után kajuk: = H C an R bn an R nr an bn + nr bn. 9 bn bn. 0 Megmutatható, hogy a derivált akkor vált előjelet, ha a fenti kifejezés számlálója előjelet vált. nevezője mindig ozitív a gázok kísérleti körülményei mellett. Jelöljük i -vel az inverziós hőmérsékletet, azaz ahol a 0 egyenlet számlálója előjelet vált! Ismét célszerű dimenziótlan állaotjelzőkkel számolni. 0 egyenlet számlálóját átírhatjuk a dimenziótlan ˆ és ˆ változókkal: i c ˆ i = 7 ˆ. 5

6 Ezt az alakot írjuk be a 7 állaotegyenletbe! kaott egyenlet / ˆ -ben másodfokú egyenletre vezet, melynek fizikailag reális megoldása: ˆ = ˆ/9. Jegyezzük meg, hogy ez az egyenlet csak az inverziós ontban érvényes. gyakorlatban az inverziós hőmérséklet nyomásfüggését mérik. Ezt a fentiek alaján könnyen megkahatjuk, ha / ˆ -t beírjuk a egyenletbe: ˆ i = ˆ. z eredményt a fázisátalakulásoknál megszokott diagrammon szokás ábrázolni. függvény inverzét is könnyen meghatározhatjuk: ˆ = 8 ˆ i ˆ i 9, vagy visszatérve a = ˆ c és = ˆ c fizikai változókra: = ari b b R i b a b ábrán látható a gáz nyomása az inverziós hőmérséklet függvényében, illetve a korábban van der Waals gázra számolt fázisgörbe lásd a 6. ábrát. i inverziós görbe alatti részen a gáz hűl a kísérletben = < 0, ezért hűtés akkor fordul elő, ha a Joule homson-együttható ozitív, míg a görbe fölött melegszik a gáz K i 7. ábra. i inverziós görbe kék vonal és az 5. ábrán látható fázisgörbe iros vonal. z inverziós görbe alatti részen a gáz hűl, míg fölötte melegszik. gáz a hűtés előtt a K ontban van. görbét a ˆ és ˆ dimenziótlan változók szerint ábrázoltuk. Ha a gázt más módszerrel kellően lehűtöttük, úgy hogy a hőmérséklete kisebb az adott nyomáshoz tartozó i inverziós hőmérsékletnél az 5. ábrán a K ont, és a nyomása kisebb a kritikus c nyomásnál, akkor a Joule homsonfolyamattal a K ontból állandó eljuthatunk a fázisgörbéig, ahol a gáz csefolyósódik. Ez az alaelve a Joule homson-berendezéssel való csefolyósításnak. mérések szerint az inverziós hőmérséklet kis nyomásokon jelentősen eltér a van der Waals gáz alaján kaott értéktől. Például N -re a mérésből i = 6 K, míg a fentiekből a van der Waals-modellel 865 K adódik. Jobb az egyezés H -re, mérés szerint i = 05 K, míg a modellből K-t kaunk. Széndioxidra CO viszont tökéletes az egyezés, i = 050 K. Léteznek a van der Waals állaotegyenlettől eltérő közelítő állaotegyenletek, melyek a gáz bizony állaotait jobban közelítik. égül megjegyezzük, hogy a Joule homson-effektus komoly bajt is okozhat. Nagy nyomásra összesűrített H gáz, melynek alacsony az inverziós hőmérséklete, könnyen begyulladhat, ha a tartály megsérül, és a keletkező kis lyukon a gáz kiszivárog, ugyanis a Joule homson-effektus miatt a gáz melegszik. 6

5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet

5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet 5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet Ideális gáz Az ideális gáz állapotegyenlete pv=nrt empírikus állapotegyenlet, a Boyle-Mariotte (pv=konstans) és

Részletesebben

Ideális gáz és reális gázok

Ideális gáz és reális gázok Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:

Részletesebben

Gáztörvények tesztek

Gáztörvények tesztek Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

6. Termodinamikai egyensúlyok és a folyamatok iránya

6. Termodinamikai egyensúlyok és a folyamatok iránya 6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

Tiszta anyagok fázisátmenetei

Tiszta anyagok fázisátmenetei Tiszta anyagok fázisátenetei Fizikai kéia előadások 4. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

Műszaki hőtantermodinamika. Műszaki menedzsereknek. BME Energetikai Gépek és Rendszerek Tanszék

Műszaki hőtantermodinamika. Műszaki menedzsereknek. BME Energetikai Gépek és Rendszerek Tanszék Műszaki hőtantermodinamika Műszaki menedzsereknek Termodinamikai rendszer Meghatározott anyagmennyiség, agy/és Véges térrész. A termodinamikai rendszert a környezetétől tényleges agy elkézelt fal álasztja

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Az ideális Fermi-gáz termodinamikai mennyiségei

Az ideális Fermi-gáz termodinamikai mennyiségei Az ideális Fermi-gáz termodinamikai mennyiségei Kiegészítés III. éves BSc fizikusok számára Cserti József Eötvös Loránd udományegyetem, Komplex Rendszerek Fizikája anszék 2017. március 1. Néhány alapvető

Részletesebben

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév) . Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait! Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: Z) a) (x 1) (x + 1) 7x + 1 = x (4 + x) + 2 b) 1 2 [5 (x 1) (1 + 2x) 2 4x] = (7 x) x c) 2 (x + 5) (x 2) 2 + (x + 1) 2 = 6 (2x + 1) d) 6 (x 8)

Részletesebben

Fázisok. Fizikai kémia előadások 3. Turányi Tamás ELTE Kémiai Intézet. Fázisok

Fázisok. Fizikai kémia előadások 3. Turányi Tamás ELTE Kémiai Intézet. Fázisok Fázisok Fizikai kéia előadások 3. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív állaotjelzők

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

Paraméteres és összetett egyenlôtlenségek

Paraméteres és összetett egyenlôtlenségek araméteres és összetett egyenlôtlenségek 79 6 a) Minden valós szám b) Nincs ilyen valós szám c) c < vagy c > ; d) d # vagy d $ 6 a) Az elsô egyenlôtlenségbôl: m < - vagy m > A második egyenlôtlenségbôl:

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

5 = nr. nrt V. p = p p T T. R p TISZTA FÁZISOK TERMODINAMIKAI FÜGGVÉNYEI IDEÁLIS GÁZOK. Állapotegyenletbl levezethet mennyiségek. Az állapotegyenlet:

5 = nr. nrt V. p = p p T T. R p TISZTA FÁZISOK TERMODINAMIKAI FÜGGVÉNYEI IDEÁLIS GÁZOK. Állapotegyenletbl levezethet mennyiségek. Az állapotegyenlet: IZA FÁZIOK ERMODINAMIKAI FÜGGÉNYEI IDEÁLI GÁZOK Állaotegyenletbl levezethet ennyiségek Az állaotegyenlet: Moláris térfogat egváltozása: R R R R eroinaikai függvények Bels energia onoatoos ieális gázra

Részletesebben

Nagy Krisztián Analízis 2

Nagy Krisztián Analízis 2 Nagy Krisztián Analízis 2 Segédanyag a második zárthelyi dolgozathoz Tartalomjegyzék Deriválási alapok... 3 Elemi függvények deriváltjai... 3 Deriválási szabályok műveletekre... 4 Első feladat típus...

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál

8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál 8. első energia, entalpia és entrópia ideális és nem ideális gázoknál első energia első energia (U): a vizsgált rendszer energiája, DE nem tartozik hozzá - a teljes rendszer együttes mozgásából adódó mozgási

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van!

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van! TÖKOMPONENS RENDSZEREK FÁZISEGYENSÚLYI II Ismerjük fel hogy többkomonens fázisegyensúlyokban a folyadék fázisnak kitüntetett szeree van! Eddig: egymásban korátlanul oldódó folyadékok folyadék-gz egyensúlyai

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

A BELS ENERGIÁRA VONATKOZÓ ALAPVET EGYENLET. du=w+q

A BELS ENERGIÁRA VONATKOZÓ ALAPVET EGYENLET. du=w+q AZ I. É II. FÉEL EGYEÍÉE A BEL ENERGIÁRA ONAKOZÓ ALAPE EGYENLE ekintsük a D. I. ftételét: Mi a jelentése? wq a egy egyszer zárt (nincs anyagcsere) D-i renszert vizsgálunk és a renszer változásai (h és

Részletesebben

Második zárthelyi dolgozat megoldásai biomatematikából * A verzió

Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Második zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mit értünk eponenciális üggvényen? Adjon példát alulról korlátos szigorúan monoton csökkenő eponenciális üggvényre.

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

Konvexitás, elaszticitás

Konvexitás, elaszticitás DIFFERENCIÁLSZÁMÍTÁS ALKALMAZÁSAI Konveitás, elaszticitás Tanulási cél A másodrendű deriváltat vizsgálva milyen következtetéseket vonhatunk le a üggvény konveitására vonatkozóan. Elaszticitás ogalmának

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 6. MÉRÉS Fázisátalakulások vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. szeptember 28. Szerda délelőtti csoport 1. A mérés célja A mérés

Részletesebben

2.11. A kétkomponensű rendszerek fázisegyensúlyai

2.11. A kétkomponensű rendszerek fázisegyensúlyai Fejezetek a fizikai kémiából 2.11. kétkomonensű rendszerek fázisegyensúlyai kétkomonensű rendszerekben (C=2), amikor mind a nyomás, mint a hőmérséklet befolyásolja a rendszer állaotát (n=2), Gibbs törvénye

Részletesebben

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).

Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg). Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok

Részletesebben

KÉPZÉS: 2N-00 2N-0E 2NK00 2LK00

KÉPZÉS: 2N-00 2N-0E 2NK00 2LK00 ENERGEIKAI GÉPEK ÉS RENDSZEREK ANSZÉK A vastagon bekeretezett részt vizsgázó tölti ki!... név (a személyi igazolványban szerelő módon) HELYSZÁM: Hallgatói azonosító (NEPUN): KÉPZÉS: N-00 N-0E NK00 LK00

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Maple: Deriváltak és a függvény nevezetes pontjai

Maple: Deriváltak és a függvény nevezetes pontjai Maple: Deriváltak és a függvény nevezetes pontjai Bevezető Tudjuk, hogy a Maple könnyűszerrel képes végrehajtani a szimbólikus matematikai számításokat, ezért a Maple egy ideális program differenciál-

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat szeptember 26. Termelés 2: Költség

Műszaki folyamatok közgazdasági elemzése Előadásvázlat szeptember 26. Termelés 2: Költség Műszaki folyamatok közgazdasági elemzése Előadásvázlat 2011. szetember 26. Termelés 2: öltség I. öltségek A termeléshez termelési tényezőket használunk fel, ezekért fizetni kell ebből adódnak a költségek.

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz

Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz Szá molá si feládáttí pusok á Ko zgázdásá gtán I. (BMEGT30A003) tá rgy zá rthelyi dolgozátá hoz 1. feladattípus a megadott adatok alapján lineáris keresleti, vagy kínálati függvény meghatározása 1.1. feladat

Részletesebben

A derivált alkalmazásai

A derivált alkalmazásai A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható émiai egyensúly Fizikai kémia előadások 6. Tuányi Tamás ELTE émiai Intézet Sztöchiometiai együttható ν sztöchiometiai együttható általános kémiai eakció: (a temokémiában használtuk előszö) ν A 0 ν A eaktánsa

Részletesebben

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 9. (XI. 23)

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 9. (XI. 23) ELE II. Fizikus, 005/006 I. félév KISÉRLEI FIZIKA Hıtan 9. (XI. 3) Kémiai reakciók Gázelegyek termodinamikája 1) Dalton törvény: Azonos hımérséklető, de eltérı anyagi minıségő és V térfogatú gázkeverékben

Részletesebben

Paraméteres és összetett egyenlôtlenségek

Paraméteres és összetett egyenlôtlenségek araméteres és összetett egyenlôtlenségek 79 6 a) Minden valós szám b) Nincs ilyen valós szám c) c < vagy c > ; d) d # vagy d $ 6 a) Az elsô egyenlôtlenségbôl: m < - vagy m > A második egyenlôtlenségbôl:

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

Exponenciális és logaritmikus kifejezések Megoldások

Exponenciális és logaritmikus kifejezések Megoldások Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása

Részletesebben

(2006. október) Megoldás:

(2006. október) Megoldás: 1. Állandó hőmérsékleten vízgőzt nyomunk össze. Egy adott ponton az edény alján víz kezd összegyűlni. A gőz nyomását az alábbi táblázat mutatja a térfogat függvényében. a)ábrázolja nyomás-térfogat grafikonon

Részletesebben

Egyenletek, egyenlőtlenségek V.

Egyenletek, egyenlőtlenségek V. Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

Munkaközegek. 1. Előadás Fázisok, fázisátmenetek és állapotegyenletek

Munkaközegek. 1. Előadás Fázisok, fázisátmenetek és állapotegyenletek Munkaközegek 1. Előadás Fázisok, fázisátmenetek és állapotegyenletek Fázisok, fázisátmenetek, fázisegyensúlyok Halmazállapotok: folyadék, légnemű/gáz, szilárd, (plazma) Alap fázisok: folyadék, gáz/gőz,

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

1. Görbe illesztés a legkissebb négyzetek módszerével

1. Görbe illesztés a legkissebb négyzetek módszerével GÖRBE ILLESZTÉS A LEGKISSEBB ÉGYZETEK MÓDSZERÉVEL. Görbe illesztés a legkissebb négyzetek módszerével Az előző gyakorlaton megismerkedtünk a korrelációs együttható fogalmával és számítási módjával. A korrelációs

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS

MŰSZAKI TERMODINAMIKA 1. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS MŰSZAKI TERMODINAMIKA. ÖSSZEGZŐ TANULMÁNYI TELJESÍTMÉNYÉRTÉKELÉS 207/8/2 MT0A Munkaidő: 90 perc NÉV:... NEPTUN KÓD: TEREM HELYSZÁM:... DÁTUM:... KÉPZÉS Energetikai mérnök BSc Gépészmérnök BSc JELÖLJE MEG

Részletesebben

5. fejezet. Differenciálegyenletek

5. fejezet. Differenciálegyenletek 5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y

Részletesebben

Közgazdaságtan I. Számolási feladat-típusok a számonkérésekre 1. hét. 2018/2019/I. Kupcsik Réka

Közgazdaságtan I. Számolási feladat-típusok a számonkérésekre 1. hét. 2018/2019/I. Kupcsik Réka Közgazdaságtan I. Számolási feladat-típusok a számonkérésekre 1. hét 2018/2019/I. Témakörök I. Bevezetés II. Horizontális összegzés 1. III. Horizontális összegzés 2. IV. Piaci egyensúly V. Mennyiségi adó

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

számot a Z felosztáshoz tartozó integrálközelít összegnek nevezzük. Jelöljük Z-vel a s i -számok leghosszabbikát.

számot a Z felosztáshoz tartozó integrálközelít összegnek nevezzük. Jelöljük Z-vel a s i -számok leghosszabbikát. MEMIKI KÖZBEEÉ: INERÁLÁ I. Bronstejn-zemengyajev: Matematikai Zsebkönyv Elsfajú görbementi integrálok Legyen K szakaszonként sima görbedarab, kezdontja, végontja B és uf(x,y) a K görbét tartalmazó tartományban

Részletesebben

Kompresszorok energetikai és üzemviteli kérdései Czékmány György, Optimus Plus Kft.

Kompresszorok energetikai és üzemviteli kérdései Czékmány György, Optimus Plus Kft. Kompresszorok energetikai és üzemviteli kérdései Czékmány György, Optimus Plus Kft. 1. A kompresszorok termodinamikája Annak érdekében, hogy teljes egészében tisztázni tudjuk a kompresszorok energetikai

Részletesebben

Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai

Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Mona Tamás Időjárás előrejelzés speci 3. előadás 2014 Differenciál, differencia Mi a különbség f x és df dx között??? Differenciál, differencia

Részletesebben

Szakmai fizika Gázos feladatok

Szakmai fizika Gázos feladatok Szakmai fizika Gázos feladatok 1. *Gázpalack kivezető csövére gumicsövet erősítünk, és a gumicső szabad végét víz alá nyomjuk. Mennyi a palackban a nyomás, ha a buborékolás 0,5 m mélyen szűnik meg és a

Részletesebben

Mivel foglalkozik a hőtan?

Mivel foglalkozik a hőtan? Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:

Részletesebben

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja: Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet

Részletesebben

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk. A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?

Részletesebben

MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK

MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI MŰSZAKI HŐAN I.. ZÁRHELYI Név: Kézési kód: _N_ Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Both Ambrus Dr. Cséfalvay Edit Györke Gábor Lengyel Vivien Pa Máté Gábor

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Gyakorló feladatok a 2. zh-ra MM hallgatók számára

Gyakorló feladatok a 2. zh-ra MM hallgatók számára Gyakorló feladatok a. zh-ra MM hallgatók számára 1. Egy vállalat termelésének technológiai feltételeit a Q L K függvény írja le. Rövid távon a vállalat 8 egységnyi tőkét használ fel. A tőke ára 000, a

Részletesebben

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21. Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10

Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10 9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;

Részletesebben