Fajhő mérése. Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fajhő mérése. Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport"

Átírás

1 Fajhő mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 0/05/20 Beadás ideje: 0/2/20

2 . A mérés rövid leírása Mérésem során egy alumínium (-es) minta fajhőjét kellett megmérnem. Ennek meghatározásához egy nem-izotermikus, úgy nevezett izoperibol kalorimétert használtam. Először ki kellett a vízértéket mérnem, azaz a kaloriméter hőkapacitását. Ezt követően kellett két módszerrel meghatároznom a minta fajhőjét. Az első módszer során a már egyensúlyban lévő kaloriméterbe ejtjük bele a mintát és 5 percig mérjük a hőmérséklet változását. A második módszernél a minta a mérés kezdetétől fogva a kaloriméterben van és a kettőt együtt fűtjük. A mért adatokra egy laborprogram segítségével illesztettünk exponenciális görbéket, melyekből meg tudtam határozni a fajhőt. 2. Méréshez használt eszközök -es alumínium minta (tömege és színe alapján) izoperibol kaloriméter Fűtőszál, ismert 7.07 ± 0.0 Ω-s ellenállással és digitális voltméterrel Hőkulcs Számítógép hőmérő és illesztő programokkal 3. Rövid elméleti összefoglaló A kaloriméter vízértékenek meghatározása volt az első feladat. Az üres kalorimétert 2 3 C-kal megmelegítjük (ugyanis nagyobb hőmérsékletváltozásra már a mérésünk nem lenne kellően pontos), majd a lehűlést vizsgáljuk. A rendszerbe a fűtés (t) ideje alatt bejuttatott oule-hő: Q = U 2 R t. Innen meghatározható a vízérték, azaz, hogy a felvett hőmennyiség hatására mekkora hőmérsékletváltozás történt: v = Q T. 2

3 Itt azonban figyelembe kell vennünk, hogy a rendszer nem tökéletesen zárt termodinamikai értelemben, azaz figyelembe kell vennünk a környezettel történő hőcserét is. Ezért kénytelenek vagyunk a modellünkbe korrekciós tagokat behozni. A kaloriméter és a mintha hőfelvevő képességét is a hőkapacitásukkal jellemezhetjük. Ezt ha a tömegükkel lenormáljuk megkapjuk a fajhőjüket. A kaloriméter hőkapacitását az előbbiek alapján jelölje v, a mintáét pedig w, ahol w = cm. A két test közötti hőátadást (hőfluxust) is jellemeznünk kell (ez ugye az adott két tesből álló rendszert fogja csak jellemezni). elölje k a minta és a kaloriméter közötti hőátadási együtthatót és h a környezet és a kaloriméter közöttit. A minta a környezettel a gyakorlatban nem cserél hőt, mivel ezt egy, a minta felé helyezett zárósipkával megakadályoztam. ól megtervezett kaloriméter esetén, mint amivel dolgoztam fennáll, hogy k h. Ezen kívül legyen a külső hőmérséklet T k, a kaloriméteré T = T (t), a mintáé pedig T m = T m (t). Felhasználva a termodinamika I. főtételét és a Newton-féle lehűlési törvényt írhatjuk a két rendszerbeli elemre: v dt dt = dq dt k(t T m) h(t T k ), w dt m dt = k(t m T ). A fenti differenciálegyenleteket a mérés során három szakaszra kell bontanunk. Az előszakaszban a kaloriméter egyensúlyban van a környezettel. Ezt követően a mintát beleejtve vagy fűtés hatására megváltozik a hőmérséklet. Ez a főszakasz. Az utószakasz kezdete pedig, amikor a rendszer elkezd ismét hűlni. Az utószakasz és a beejtős módszernél a főszakasz is exponenciális görbe jellegét mutatja. Az exponens együtthatókat rendre jelöljék: ε 0 a kaloriméter minta nélküli mérésénél lévő utószakaszt jellemzőt, ε az együttes rendszer utószakaszát jellemzőt, ε pedig ennek a rendszernek a főszakaszát jellemzőt. A fentebbi differenciálegyenletek vizsgálata segítéségével kifejezhetőek a hővezetési együtthatók.: k = εε w ε 0, h = ε 0 v. A vízéréték meghatározásánál a differenciálegyenlet üres kaloriméterre vonatkozó alakját kell vennünk. Itt az integrál 0 tól t ig megy. Innen a rendszer által felvett hő: v (T T k ) + ε 0 t 0 (T (τ) T k )dτ = Q. 3

4 Vezessük be a korrigált hőmérséklet fogalmát. Ez az a hőmérséklet, amire ideális, környezettel való hőcsere nélkül a kaloriméter melegedne: T (t) = T + ε 0 t 0 (T (τ) T k )dτ. Innen a vízérték már kifejezhető a korrekcióval: v = Q T T k. Hasonló módon járjunk most el a minta esetében is, azaz vezessük be arra is a korrigált hőmérsékletet: T m = T k + ε ε ε 0 (T T k ). Innen a fajhő: c = v T T k m T m (0) Tm A beejtős mérésnél máshogy kell eljárnunk. Itt T k egyensúlyi hőmrésékletről, a vízérték meghatározásánál látottak szerint kezdjük el a rendszert fűteni. t idő alatt a rendszerbe Q hőt juttatunk. Mivel az utószakaszban kialakuló állapot egyensúlyinak tekintett, így ekkor a minta és a kaloriméter korrigált hőmérséklete egyaránt állandóvá válik. Ezek alapján a minta fajhője egyszerűen származtatható: c = Q v(t T k ). m Tm T k A formulák részletes levezetését lásd a [] könyvben. 4. Mérési eredmények 4.. A minta, a kaloriméter és a fűtőegység adatai A minta száma A minta tömege Fűtőszál ellenállása Fűtőfeszültség, vélhetően alumíniumból készült henger ± g 7.07 ± 0.0 Ω 84 ± mv 4

5 4.2. A vízérték meghatározása A vízérték meghatározását úgy végeztem, hogy az üres kaloriméter hőmérsékletét, a hőkulcsot behelyezve hagytam beállni az egyensúlyi hőmérsékletre. Ezután kivettem a hőkulcsot, helyére a zárosipkát helyeztem, majd 2 percet vártam. Utána elindítottam a fűtést és 2 3 C-ot fűtöttem rajta t = ± 0.0 s ideig, majd a fűtést lekapcsoltam. A teljes mérést 5 percen keresztül végeztem, majd az adatokra a fajho3.exe segédprogram segítségével a [] könyvben leírtak alapján, a megfelelő pontokat megkeresve a kívánt exponenciális görbét illesztettem. Ezek után kiszámoltam a kaloriméter vízértékét: ( v = v 2 v = t = ± 0.0 s, T k = 7.63 ± 0.0 C, T = ± 0.0 C, ε 0 = ± 0.00 Q = U 2 t = ± 0.9, R U U Q = ± 0.9 T T k K, ) + R R + T + T k T T k = 0.9 K. 5

6 . ábra. A mérési eredmények kiértékelt grafikonja (#) A grafikonból a mérés során illesztett változatot a jegyőkönyv mellé csatoltam (#-es lap). T i -nek a hőmérsékletingadozásának a félértékét vettem. 5. Minta fajhőjének mérése 5.. Beejtős módszer (a) A víz hőértékének meghatározása után a hőkulcsot visszahelyeztem a kaloriméterbe. Az egyensúly beállta után, a hőkulcsot kivettem, a mintatartót felé helyeztem. A 2 perces előszakasz után a mintát beleejtettem a kaloriméterbe, majd 5 percig mértem. A minta beejtését követően látható volt, hogy egy exponenciális görbe mentén melegszik a rendszer, majd egy maximum elérése után egy másik exponenciális görbe mentén cseng le. A mérés kiértékelését 6

7 itt is a már fentebb említett laborprogram segítségével végeztem: c = c ( v v T m (0) = 34.0 ± 0. C, T k = 7.63 ± 0.02 C, T = 20.6 ± 0.0 C, ε 0 = ± 0.00 ε = 3.28 ± 0.00 T m = T k + ε ε ε 0 (T T k ) = ± 0.34 C, c = v T T k = ± m T m (0) Tm kg K, ) + m m + (T T k ) T T k + (T m (0) Tm) T m (0) Tm = kg K. 2. ábra. A mérési eredmények kiértékelt grafikonja (#2) A grafikonból a mérés során illesztett változatot a jegyőkönyv mellé csatoltam (#2-es lap). A mért adatból látszik, hogy a minta tényleg alumínium. Az alumínium fajhőjének katalógusbeli értéke c kat = 897. Ettől az általunk 7 kg K

8 mért érték 3.55%-kal tér el, ami jó eredmény. Láthatjuk továbbá, hogy az itt mért ε 0 eredmény nem egyezik meg az üres kaloriméternél mérttel, ezt azzal magyarázhatjuk, hogy egy idegen test, a minta került a rendszerbe, ami befolyásolta ezt a paramétert Együtt fűtős módszer (b) A mintát az előző mérés után a kaloriméterben hagytam. Ezt követően a kettőt együtt beállítottam az egyensúlyi hőmérsékletre. A hőkulcsot kivéve indítottam a mérést. 2 perces előszakasz után bekapcsoltam a fűtést. A főszakaszban itt már lineáris görbét kaptam, az utószakaszban megmaradt az exponenciális, úgy, ahogy vártuk. A fajhőt két módon kell kiszámolnom, az első módszerben az előző mérés során meghatározott ε értéket kell felhasználnom, a másodikban pedig a T m = T közelítést kellett használnom. Az így számolt fajhőket jelölje rendre: c ε és c T m. Az így mért adatok és számolt mennyiségek: Az első módszerrel számolva: t = 96.3 ± 0.0 s, T k = 7.44 ± 0.02 C, T = 20.9 ± 0.02 C, ε 0 = ± 0.00 Q = U 2 t = 94. ± R ε = 3.28 ± 0.00 T m = T k + ε ε ε 0 (T T k ) = 2 ± 0.33 C, c ε = Q v(t T k ) m T m T k = ± c ε = kg K. kg K, 8

9 A második módszerrel: T m = T = 20.9 ± 0.02 C, c T m = Q v(t T k ) m T m T k = ± c T m = kg K. kg K, 3. ábra. A mérési eredmények kiértékelt grafikonja (#3) A grafikonból a mérés során illesztett változatot a jegyőkönyv mellé csatoltam (#3-es lap). Látható, hogy ez a mérés pontatlanabb, mint az első. Ennek oka vélhetően az lehet, hogy az előző mérésből áthozott ε nem pontosan ugyanannyi a két mérés során, illetve a T m = T közelítés is csak becslés. 9

10 6. Hővezetési együtthatók A mért és számolt adatok segítségével megadhatóak a hővezetési együtthatók: ε = w = cm = 4.2 ± 0.2 K, h = ε 0 v =.90 ± 0.04 perc K, h = 0.07 ± v + w ε ε ε 0 k = εε w ε 0 = 3 ±.49 Látható tehát, hogy a k h jól teljesül. perc K. 7. Egyéb diszkutálandó feladatok Az együtt melegítős módszernél a mérőpáromnál a grafikonon látható volt egy humpli a görbe tetején, az én mérésemnél viszont nem. Ez azért van így, mert Ő réz mintát kapott, aminek nagyobb a hőkapacitása, így ez a jelenség, amit tapasztaltunk láthatóvá vált. A jelenségnek az az oka, hogy, a minta és a tartó közötti hőkontaktus nem tökéletes így a minta egy kis időnyi lemaradással (delay) tudja csak követni a tartó hőmérsékletét (amit fűtünk). A fűtés megszüntekor a tartó ugyan el kezd hűlni, viszont a minta még egy darabig továbbra is melegszik. Ezt az alumínium mintánál azért nem tapasztaltam, mivel annak kisebb a hőkapacitása, ezért sokkal gyorsabban tudja lekövetni a tartó hőmérsékletváltozását, mint a másik minta. Ezen kívül az én fűtőszálam ellenállása is nagyobb volt, tehát eleve a fűtés is lomhább volt. Ezen kívül meg kell említenünk, hogy az első mérésnél jelentős pontatlanságot okoz az, hogy a minta kezdeti hőmérsékletét és a beejtés utánit két különböző hőmérő segítségével határoztuk meg, illetve, hogy az esés is véges idő alatt zajlik le, ami alatt a rendszer zártsága még kevésbé teljesül. Hivatkozások [] Havancsák Károly: Mérések a klasszikus fizika laboratóriumban, ELTE Eötvös kiadó, Budapest,

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje:

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje: Fajhő mérése Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: 206. 0. 20. egyzőkönyv leadásának ideje: 206.. 0. Bevezetés Mérésem során az -es számú minta fajhőjét kellett megmérnem.

Részletesebben

5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 5. Fajhő mérése jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 10. 08. Leadás dátuma: 2008. 10. 15. 1 1. A mérési összeállítás A mérés során a 6-os számú minta fajhőjét akarjuk meghatározni.

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Fázisátalakulások vizsgálata Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/12/2011 Beadás ideje: 10/19/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása

Részletesebben

Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18.. 1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk

Részletesebben

Klasszikus Fizika Laboratórium V.mérés. Fajhő mérése. Mérést végezte: Vanó Lilla VALTAAT.ELTE. Mérés időpontja:

Klasszikus Fizika Laboratórium V.mérés. Fajhő mérése. Mérést végezte: Vanó Lilla VALTAAT.ELTE. Mérés időpontja: Klasszikus Fizika Laboratóriu V.érés Fajhő érése Mérést égezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.11. 1. Mérés röid leírása A érés során egy inta fajhőjét kellett eghatározno. Ezt legkönnyebben

Részletesebben

A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel

A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina

Részletesebben

Fényhullámhossz és diszperzió mérése

Fényhullámhossz és diszperzió mérése Fényhullámhossz és diszperzió mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/09/011 Beadás ideje: 11/16/011 1 1. A mérés rövid leírása

Részletesebben

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése Rugalmas állandók mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/30/2011 Beadás ideje: 12/07/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

Peltier-elemek vizsgálata

Peltier-elemek vizsgálata Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre

Részletesebben

TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása

TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása TANULÓI KÍSÉRLET (párban végzik-45 perc) Kalorimetria: A szilárd testek fajhőjének meghatározása A kísérlet, mérés megnevezése, célkitűzései: A kalorimetria (jelentése: hőmennyiségmérés) (http://ttk.pte.hu/fizkem/etangyakpdf/1gyak.pdf)

Részletesebben

Kiegészítő leírás 05 (2014)

Kiegészítő leírás 05 (2014) Kiegészítő leírás 05 (2014) SÓK OLDÁSHŐJÉNEK MEGHATÁROZÁSA ANIZOTERM KALORIMÉTERREL A mérést a Szalma Láng Péter: Alapvető fizikai kémiai mérések és a kísérleti adatok feldolgozása c. jegyzet alapján végezzük

Részletesebben

Jegyzőkönyv. fajhő méréséről 5

Jegyzőkönyv. fajhő méréséről 5 egyzőkönyv a fajhő méréséről 5 Készíee: Tüzes Dániel Mérés ideje: szerda 14 18 óra egyzőkönyv elkészüle: 8 9 4 A mérés célja A felada egy szilárd anyag fém fajhőjének közelíő meghaározása. Ugyan ma már

Részletesebben

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7) Jegyzőkönyv a mágneses szuszceptibilitás méréséről (7) Készítette: Tüzes Dániel Mérés ideje: 8-1-1, szerda 14-18 óra Jegyzőkönyv elkészülte: 8-1-8 A mérés célja A feladat egy mágneses térerősségmérő eszköz

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés

Részletesebben

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.26. A mérés száma és címe: 12. Infravörös spektroszkópia Értékelés: A beadás dátuma: 2005.11.09. A mérést végezte: Orosz Katalin Tóth Bence 1 A mérés során egy

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc. Mérés dátuma: 28... Leadás dátuma: 28.. 8. . Mérések ismertetése A Peltier-elemek az. ábrán látható módon vannak elhelyezve

Részletesebben

Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja. ρ = m V.

Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja. ρ = m V. mérés Faminták sűrűségének meghatározása meg: Homogén anyageloszlású testek sűrűségét m tömegük és V térfogatuk hányadosa adja ρ = m V Az inhomogén szerkezetű faanyagok esetén ez az összefüggés az átlagsűrűséget

Részletesebben

Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás

Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 04/24/2012 Beadás ideje: 04/29/2012 Érdemjegy: 1 1. A

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3) Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

Jegyzőkönyv. fázisátalakulás vizsgálatáról (6)

Jegyzőkönyv. fázisátalakulás vizsgálatáról (6) Jegyzőkönyv a fázisátalakulás vizsgálatáról (6) Készítette: Tüzes Dániel Mérés ideje: szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-10-01 A mérés célja A feladat egy szilárd anyag (fém) fázisátalakulásának

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv (-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk

Részletesebben

Modern Fizika Laboratórium Fizika és Matematika BSc 14. Holográfia

Modern Fizika Laboratórium Fizika és Matematika BSc 14. Holográfia Modern Fizika Laboratórium Fizika és Matematika BSc 14. Holográfia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/06/2012 Beadás ideje: 05/22/2012 (javítás) Érdemjegy:

Részletesebben

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján

Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Készítette: Zsélyné Ujvári Mária, Szalma József; 2012 Előadó: Zsély István Gyula, Javított valtozat 2016 Laborelőkészítő előadás,

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Lemezeshőcserélő mérés

Lemezeshőcserélő mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás. 2010/2011.BSc.II.évf.

HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás. 2010/2011.BSc.II.évf. HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás 2010/2011.BSc.II.évf. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók 1.Ellenállás változáson alapuló

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás 2016.02.01.

5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás 2016.02.01. 5. Sók oldáshőjének meghatározása kalorimetriás módszerrel Előkészítő előadás 2016.02.01. Célja: hő mérése A kalorimetriás mérések Használatával meghatározható: átalakulási hő reakcióhő anyagok hőkapacitása

Részletesebben

Hőmérséklet mérése. Sarkadi Tamás

Hőmérséklet mérése. Sarkadi Tamás Hőmérséklet mérése Sarkadi Tamás Hőtáguláson alapuló hőmérés Gázhőmérő Gay-Lussac törvények V1 T 1 V T 2 V 2 T 2 2 V T 1 1 P1 T 1 P T 2 P T 2 2 2 P T 1 1 Előnyei: Egyszerű, lineáris Érzékeny: dt=1c dv=0,33%

Részletesebben

A Mössbauer-effektus vizsgálata

A Mössbauer-effektus vizsgálata A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES

Részletesebben

Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar

Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar Folyamatirányítás Számítási gyakorlatok Gyakorlaton megoldandó feladatok Készítette: Dr. Farkas Tivadar 2010 I.-II. RENDŰ TAGOK 1. feladat Egy tökéletesen kevert, nyitott tartályban folyamatosan meleg

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési

Részletesebben

Országos Középiskolai Tanulmányi Verseny FIZIKA, I. kategória Harmadik forduló Szegedi Tudományegyetem, Szeged, 2006. április 22.

Országos Középiskolai Tanulmányi Verseny FIZIKA, I. kategória Harmadik forduló Szegedi Tudományegyetem, Szeged, 2006. április 22. Országos Középiskolai Tanulmányi Verseny FIZIKA, I. kategória Harmadik forduló Szegedi Tudományegyetem, Szeged, 2006. április 22. Hőtani jellemzők meghatározása fűtési és hűlési kinetikákból Először olvassa

Részletesebben

29. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika 2014. február 27 28. 9. osztály

29. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika 2014. február 27 28. 9. osztály 9. Nagy László Fizikaverseny 014. február 7 8. 1. feladat Adatok: H = 5 m, h = 0 m. A H magasságban elejtett test esési idejének (T 13 ) és a részidők (T 1, T 3 ) meghatározása: H g 13 13 = = =,36 s H

Részletesebben

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1 MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi

Részletesebben

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora

Részletesebben

Hőtan 2. feladatok és megoldások

Hőtan 2. feladatok és megoldások Hőtan 2. feladatok és megoldások 1. Mekkora a hőmérséklete 60 g héliumnak, ha első energiája 45 kj? 2. A úvárok oxigénpalakjáan 4 kg 17 0C-os gáz van. Mekkora a első energiája? 3. A tanulók - a fizika

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

Ideális gáz és reális gázok

Ideális gáz és reális gázok Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:

Részletesebben

EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA

EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA EGY DOBOZ BELSŐ HŐMÉRSÉKELTÉNEK BEÁLLÍTÁSA ÉS MEGARTÁSA Az elektronikával foglalkozó emberek sokszor építenek házilag erősítőket, nagyrészt tranzisztorokból. Ehhez viszont célszerű egy olyan berendezést

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

A szuperkritikus metán hőtani anomáliáinak vizsgálata. Katona Adrienn Energetikai mérnök BSc hallgató

A szuperkritikus metán hőtani anomáliáinak vizsgálata. Katona Adrienn Energetikai mérnök BSc hallgató A szuperkritikus metán hőtani anomáliáinak vizsgálata Katona Adrienn Energetikai mérnök BSc hallgató katona.adrienn@eszk.org Nyomás [MPa] Normál és szuperkritikus fluid régiók Régió hagyományos határa:

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással Fizika feladatok 014. december 8. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-3) Határozzuk meg egy 0 cm hosszú, 4 cm átmérőjű hengeres vörösréz rúdon

Részletesebben

4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban

4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban Energetika 1 4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban Energodinamikai rendszerek vizsgálata során elsősorban gáznemű halmazállapot esetén lényeges az állapotváltozásokat megkülönböztetni.

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok

Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok Modern Fizika Laboratórium Fizika BSc 18. Granuláris anyagok Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/08/2012 Beadás ideje: 05/11/2012 Érdemjegy: 1 1. A mérés

Részletesebben

A hőterjedés dinamikája vékony szilikon rétegekben. Gambár Katalin, Márkus Ferenc. Tudomány Napja 2012 Gábor Dénes Főiskola

A hőterjedés dinamikája vékony szilikon rétegekben. Gambár Katalin, Márkus Ferenc. Tudomány Napja 2012 Gábor Dénes Főiskola A hőterjedés dinamikája vékony szilikon rétegekben Gambár Katalin, Márkus Ferenc Tudomány Napja 2012 Gábor Dénes Főiskola Miről szeretnék beszélni: A kutatás motivációi A fizikai egyenletek (elméleti modellek)

Részletesebben

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA Három követelményszint: az épületek összesített energetikai jellemzője E p = összesített energetikai jellemző a geometriai viszonyok függvénye (kwh/m

Részletesebben

Kiegészítő tudnivalók a fizikai mérésekhez

Kiegészítő tudnivalók a fizikai mérésekhez Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók

Részletesebben

Méréstechnika. Hőmérséklet mérése

Méréstechnika. Hőmérséklet mérése Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű

Részletesebben

A hangfrekvenciás solásban sban. BME Villamos Energetika Tanszék Villamos Művek M

A hangfrekvenciás solásban sban. BME Villamos Energetika Tanszék Villamos Művek M A hangfrekvenciás fogyasztói i befolyásol solásban sban rejlő lehetőségek Raisz Dávid, Dr. Dán D n András BME Villamos Energetika Tanszék Villamos Művek M és s Környezet K Csoport Előzm zmények MEH munka

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése 2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

A kedvezményes mennyiség éves elszámolása a naptári év végét követő első elszámoló számlában, azaz az éves leolvasást követően történik meg.

A kedvezményes mennyiség éves elszámolása a naptári év végét követő első elszámoló számlában, azaz az éves leolvasást követően történik meg. 1.) A részszámlázást választott fogyasztóinknál a tényleges fogyasztás elszámolási időszaka a két leolvasás közötti 12 hónap, ezzel szemben a kedvezményes árral elszámolható fogyasztás a jogszabály alapján

Részletesebben

3. Hangfrekvenciás mechanikai rezgések vizsgálata

3. Hangfrekvenciás mechanikai rezgések vizsgálata 3. Hangfrekvenciás mechanikai rezgések vizsgálata Tóth Bence fizikus,. évfolyam 005.03.04. péntek délelőtt beadva: 005.03.. . A mérés első részében a megvastagított végű rúd (a D jelű) felharmonikusait

Részletesebben

Hajdú Angéla

Hajdú Angéla 2012.02.22 Varga Zsófia zsofiavarga81@gmail.com Hajdú Angéla angela.hajdu@net.sote.hu 2012.02.22 Mai kérdés: Azt tapasztaljuk, hogy egy bizonyos fajta molekulának elkészített oldata áteső napfényben színes.

Részletesebben

A szükségesnek ítélt, de hiányzó adatokat keresse ki könyvekben, segédletekben, rendeletekben, vagy vegye fel legjobb tudása szerint.

A szükségesnek ítélt, de hiányzó adatokat keresse ki könyvekben, segédletekben, rendeletekben, vagy vegye fel legjobb tudása szerint. MESZ, Energetikai alapismeretek Feladatok Árvai Zita KGFNUK részére A szükségesnek ítélt, de hiányzó adatokat keresse ki könyvekben, segédletekben, rendeletekben, vagy vegye fel legjobb tudása szerint.

Részletesebben

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II.

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II. Oktatási Hivatal A 8/9. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja FIZIKÁBÓL II. kategóriában Feladat a Fizika Országos Középiskolai Tanulmányi Verseny harmadik fordulójára.

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv (-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

Előrejelzett szélsebesség alapján számított teljesítménybecslés statisztikai korrekciójának lehetőségei

Előrejelzett szélsebesség alapján számított teljesítménybecslés statisztikai korrekciójának lehetőségei Előrejelzett szélsebesség alapján számított teljesítménybecslés statisztikai korrekciójának lehetőségei Brajnovits Brigitta brajnovits.b@met.hu Országos Meteorológiai Szolgálat, Informatikai és Módszertani

Részletesebben

Erdélyi Barna geofizikus mérnök, geotermikus szakmérnök és Kiss László gépészmérnök, geotermikus szakmérnök

Erdélyi Barna geofizikus mérnök, geotermikus szakmérnök és Kiss László gépészmérnök, geotermikus szakmérnök Lanna Kft. 2525 Máriahalom, Petőfi u. 23. Fax: 33/481-910, Mobil: 30/325-4437 Web: www.zoldho.hu E-mail: lannakft@gmail.com Thermal Response Test - Földhőszondás hőszivattyús rendszerek földtanilag megalapozott

Részletesebben

Korszerű -e a hő h tá ro s? T th ó Zsolt

Korszerű -e a hő h tá ro s? T th ó Zsolt Korszerű-e ű a hőtárolás? Tóth Zsolt 1. Mikor beszélünk hőtárolásról? 1.Könnyűszerkezet 2.Nehéz szerkezet 1. Fogalmak? 1. Hőtároló tömeg 2. Hő kapacitás 3. Hővezető képesség 4. Aktív tömeg 5. Hő csillapítás

Részletesebben

Hőmérsékletmérés. Hőmérsékletmérés. TGBL1116 Meteorológiai műszerek. Hőmérő test követelményei. Hőmérő test követelményei

Hőmérsékletmérés. Hőmérsékletmérés. TGBL1116 Meteorológiai műszerek. Hőmérő test követelményei. Hőmérő test követelményei Hőmérsékletmérés TGBL1116 Meteorológiai műszerek Bíróné Kircsi Andrea Egyetemi tanársegéd DE Meteorológiai Tanszék Debrecen, 2007/2008 II. félév A hőmérsékletmérés a fizikai mennyiségek mérései közül az

Részletesebben