A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

Save this PDF as:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András"

Átírás

1 Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat nagyságát a következmény és valószínűsége együtt fejezi ki. A károsodás, betegség vagy a halál bizonyos körülmények között fennálló valószínűsége. Számszerűleg a kockázatot 0 (amely annak bizonyosságát fejezi ki, hogy ártalom nem következik be) és (amely azt a bizonyosságot fejezi ki, hogy a kár bekövetkezik) közötti számmal fejezhetjük ki. (US EPA, 992) szeptember A kockázat fogalma Annak a valószínűsége, hogy valamilyen kémiai vagy fizikai hatás okozta ártalmas esemény (halál, károsodás vagy valamilyen veszteség) előfordulhat adott körülmények között. (Duffus, 993) Annak a valószínűsége, hogy egy kedvezőtlen esemény bekövetkezik egy veszélyes anyag adott dózisának vagy koncentrációjának kitett személy, csoport vagy egy ökológiai rendszer esetében, vagyis a valószínűség a veszélyes anyag toxicitásának mértékétől és az expozíció nagyságától függ. Értéke 0 (biztos, hogy egy következmény nem fordul elő) és (biztos, hogy egy következmény bekövetkezik) között változhat. (ACDH, 996) szeptember. 7. 3

2 A kockázat fogalma [Kindler: A kockázat döntéselméleti megközelítése, 987] A kockázat cselekvéshez kapcsolódik következmény negatív következmény bizonytalan A kockázat egy cselekvési változat lehetséges (nem biztosan bekövetkező) negatívan értékelt következményeinek teljes leírása, beleértve a következmények súlyának és bekövetkezési valószínűségének megmutatását is. [Kindler J.] szeptember A kockázat definíciói magyar jogszabályokban Egy adott területen adott időtartamon belül, meghatározott körülmények között bekövetkező, egészséget, illetve környezetet károsító veszély megvalósulásának valószínűsége. [Forrás: 999. évi LXXIV. törvény 3. ] A veszély megvalósulásának a valószínűsége. [Forrás: 25/2000. (IX. 30.) EüM-SzCsM együttes rendelet 3. ] Az ökoszisztéma, illetőleg az emberi egészség romlásának, károsodásának várható mértéke és bekövetkezési valószínűsége [Forrás: 33/2000. (III. 7.) Korm. rendelet 3. ] szeptember Kockázatmenedzsment Def: a vezetési elvek, tapasztalatok és eljárások rendszeres alkalmazása a kockázatok azonosítására, megfigyelésére, elemzésére, felmérésére és csökkentésére szeptember

3 Bizonytalanság (Def.) az igaznak tekintett - akár kvantitatív, akár kvalitatív - pontos ismeret hiánya Mit lehet tenni esetén? Hogyan lehet a ot kezelni? Hogyan lehet a ot megértetni? szinonimák? változékonyság, meghatározatlanság, szakértők szerepe szeptember Fő jellemzők A elkerülhetetlen A információ! Hol kell a vizsgálódást folytatni? Mi a legrosszabb eset? A jelentőségét általában alábecslik általában statisztikai eljárásokkal elégítik ki szeptember Fénysebesség From Henrion and Fischhoff (986) Expected value with standard error Recommended value with reported uncertainty value Year of experiment szeptember

4 Néhány gondolat Valószínűség nem létezik (Morgan and Henrion, 990) X miatt vagy meghalsz vagy sem. A kockáztatelemzés kutatását eszköznek kell tekinteni a ok megértésére, és nem feltétlenül a csökkentésükre. (Finkel, 990) szeptember A elhanyagolásának következményei Az ózonréteg vékonyodásáról szóló jelentésben meg sem próbálták megbecsülni a változási sebességből vagy a kémiai folyamatok figyelmen kívül hagyásából származó rendszeres hibákat. Az ilyen becslések hiányában a döntéshozók szabadon ítélkezhetnek a modell kritikátlan elfogadásától a teljes érdektelenségig, mivel így semmi esélyük arra, hogy igazuk lehetne. Morgan and Henrion szeptember. 7. Felosztások Finkel Paraméter Model Döntési szabály Smithson nem-számszerűsíthető /holisztikus nézőpont összetevő elhanyagolásából Boholm A a kockázat nem kiszámítható része megfelelő stratégiák: hit elővigyázatosság elkerülés szeptember

5 Típusok (Morgan and Henrion 990). Véletlen hibák és statisztikus eltérések 2. Rendszeres hibák és szubjektív megítélés 3. Nyelvi ok 4. Változékonyság 5. Rendszertelenség és előrejelezhetetlenség 6. Szakértői 7. Közelítések 8. Modell 9. (Ismeret hiánya) szeptember Kvalitatív jellemzés Ismert források vizsgálata Lehetséges/kézenfekvő további források vizsgálata Bizonytalanság jelentőségének vizsgálata szeptember Becslések Mert nem kaphatjuk azt az adatot amit akarunk, becslésekhez folyamodunk Használható módszerek Gyakoriságok Eloszlások Görbe-illesztés szeptember

6 Pl.: Normál eloszlás Lakások Number száma of homes Radon szint level (pci/liter) szeptember Eloszlások jellemzése Empirikusan hisztogram Eloszlás, ill sűrüségfüggvénnyel Eloszlás típusa (diszkr., folytonos) sok! Paraméteresen: Középponti átlag, módus, medián stb. Szóródás szórás, konf. intervallumok, tartomány, percentilisek stb Ferdeség ferdeségi együttható Lapultság lapultsági együttható Általánosan: momentumokkal szeptember Mérési A mérési : "a mérési eredményhez társított azon paraméter, amely a mérendő mennyiségnek ésszerűen tulajdonítható értékek szóródását jellemzi." (VIM 3.9) A mérési át meghatározásának módját a metrológiában nemzetközileg széles körben mértékadóként elfogadott dokumentum, az ÚTMUTATÓ A MÉRÉSI BIZONYTALANSÁG MEGHATÁROZÁSÁHOZ (GUM) írja le. A GUM alapjait az EA-4/02 ajánlás fejti ki részletesen szeptember

7 Bizonytalanság-felfogások Rendkívül korlátozott ismeretek arról, hogy általában hogyan értékelik a ot Lehetséges összefüggések és szavahihetőség és bizalom szeptember Jövő hétre: Az érték Téma: az érték - az emberi élet értéke mérhető? számolható? több ember élete? szeptember

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Kockázatmenedzsment. dióhéjban Puskás László. Minőségügyi szakmérnök Magyar Minőség Társaság

Kockázatmenedzsment. dióhéjban Puskás László. Minőségügyi szakmérnök Magyar Minőség Társaság Kockázatmenedzsment dióhéjban Puskás László Minőségügyi szakmérnök Magyar Minőség Társaság Kockázatalapú gondolkodásmód ISO 9001:2015 0.3.3 egy szervezetnek intézkedéseket kell megterveznie és végrehajtania

Részletesebben

Döntéselmélet KOCKÁZAT ÉS BIZONYTALANSÁG

Döntéselmélet KOCKÁZAT ÉS BIZONYTALANSÁG Döntéselmélet KOCKÁZAT ÉS BIZONYTALANSÁG Bizonytalanság A bizonytalanság egy olyan állapot, amely a döntéshozó és annak környezete között alakul ki és nem szüntethető meg, csupán csökkenthető különböző

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011. Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában

Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2010 Iskolai jelentés 10. évfolyam szövegértés Szövegértési-szövegalkotási kompetenciaterület A fejlesztés célja Kommunikáció-központúság Tevékenység centrikusság Rendszeresség Differenciáltság Partnerség

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

XXVII. Magyar Minőség Hét Konferencia

XXVII. Magyar Minőség Hét Konferencia XXVII. Magyar Minőség Hét Konferencia 2018. november 6. Dr. Fekete István Ügyvezető SzigmaSzervíz Üzleti Kockázatelemző Kft. TARTALOM Kockázatmenedzsmenttel kapcsolatos alapfogalmak Kockázatmenedzsment

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció:

3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció: Biostatisztika = Biometria = Orvosi statisztika Biomatematika 2. előadás Néhány egyszerű definíció: A statisztika olyan tudomány, amely a tömegjelenségekkel kapcsolatos tapasztalati törvényeket megfigyelések

Részletesebben

Kockázatkezelés és biztosítás 1. konzultáció 2. rész

Kockázatkezelés és biztosítás 1. konzultáció 2. rész Kockázatkezelés és biztosítás 1. konzultáció 2. rész Témák 1) A kockázatkezelés eszközei 2) A kockázatkezelés szakmai területei 3) A kockázatelemzés nem holisztikus technikái 4) Kockázatfinanszírozás 5)

Részletesebben

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis

4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis 1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Hidak építése a minőségügy és az egészségügy között

Hidak építése a minőségügy és az egészségügy között DEBRECENI EGÉSZSÉGÜGYI MINŐSÉGÜGYI NAPOK () 2016. május 26-28. Hidak építése a minőségügy és az egészségügy között A TOVÁBBKÉPZŐ TANFOLYAM KIADVÁNYA Debreceni Akadémiai Bizottság Székháza (Debrecen, Thomas

Részletesebben

ÉMI-TÜV SÜD Kft. Kockázatok és dilemmák az új ISO EN 9001:2015 szabvány szellemében

ÉMI-TÜV SÜD Kft. Kockázatok és dilemmák az új ISO EN 9001:2015 szabvány szellemében ÉMI-TÜV SÜD Kft. Kockázatok és dilemmák az új ISO EN 9001:2015 szabvány szellemében XXII. Nemzeti Minőségügyi Konferencia Előadó: Bolya Árpád ISO FORUM előadás, 2015.09.17. ÉMI-TÜV SÜD SÜD 2015.05.14.

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

A minőség és a kockázat alapú gondolkodás kapcsolata

A minőség és a kockázat alapú gondolkodás kapcsolata Mottó: A legnagyobb kockázat nem vállalni kockázatot A minőség és a kockázat alapú gondolkodás kapcsolata DEMIIN XVI. Katonai Zsolt 1 Ez a gép teljesen biztonságos míg meg nem nyomod ezt a gombot 2 A kockázatelemzés

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?

Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk? Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

A 9001:2015 a kockázatközpontú megközelítést követi

A 9001:2015 a kockázatközpontú megközelítést követi A 9001:2015 a kockázatközpontú megközelítést követi Tartalom n Kockázat vs. megelőzés n A kockázat fogalma n Hol található a kockázat az új szabványban? n Kritikus megjegyzések n Körlevél n Megvalósítás

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak 1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok

Részletesebben

1/8. Iskolai jelentés. 10.évfolyam matematika

1/8. Iskolai jelentés. 10.évfolyam matematika 1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

Kockázatkezelés az egészségügyben

Kockázatkezelés az egészségügyben Kockázatkezelés az egészségügyben Varga Tünde Emese XVI. Ker. KESZ/Int.vez. főnővér MBM hallgató 2018.02.15. Előadás célja 1. Kockázattal kapcsolatos fogalmak bemutatása 2. Releváns jogszabályok ismertetése

Részletesebben

Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével

Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Kockázatalapú változó paraméterű szabályozó kártya kidolgozása a mérési bizonytalanság figyelembevételével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési

Részletesebben

Statisztikai becslés

Statisztikai becslés Kabos: Statisztika II. Becslés 1.1 Statisztikai becslés Freedman, D. - Pisani, R. - Purves, R.: Statisztika. Typotex, 2005. Reimann J. - Tóth J.: Valószínűségszámítás és matematikai statisztika. Tankönyvkiadó,

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

korreferátum prof. Dr. Veress Gábor előadásához

korreferátum prof. Dr. Veress Gábor előadásához Munkavédelemkockázat értékelés korreferátum prof. Dr. Veress Gábor előadásához Készítette: Almássy Erika minőségügyi szakmérnök, felsőfokú munkavédelmi szakember +36-20-9606845 erikaalmassy@gmail.com 2016.10.19.

Részletesebben

A GDP hasonlóképpen nem tükrözi a háztartások közötti munka- és termékcseréket.

A GDP hasonlóképpen nem tükrözi a háztartások közötti munka- és termékcseréket. FŐBB MUTATÓK A regionális GDP adatok minősége alapvetően 3 tényezőtől függ: az alkalmazott számítási módszertől a felhasznált adatok minőségétől a vizsgált területi egység nagyságától. A TERÜLETI EGYENLŐTLENSÉGEK

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész 2011.

Gyártástechnológia alapjai Méréstechnika rész 2011. Gyártástechnológia alapjai Méréstechnika rész 2011. 1 Kalibrálás 2 Kalibrálás A visszavezethetőség alapvető eszköze. Azoknak a műveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén

Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén Kockázatok és mérési bizonytalanság kezelése a termelésmenedzsment területén Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és ködtetése konvergencia program Projekt

Részletesebben

Least Squares becslés

Least Squares becslés Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

1. ábra: Magyarországi cégek megoszlása és kockázatossága 10-es Rating kategóriák szerint. Cégek megoszlása. Fizetésképtelenné válás valószínűsége

1. ábra: Magyarországi cégek megoszlása és kockázatossága 10-es Rating kategóriák szerint. Cégek megoszlása. Fizetésképtelenné válás valószínűsége Bisnode Minősítés A Bisnode Minősítést a lehető legkorszerűbb, szofisztikált matematikai-statisztikai módszertannal, hazai és nemzetközi szakértők bevonásával fejlesztettük. A Minősítés a múltra vonatkozó

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

Iránymutatás az egészségbiztosítási katasztrófakockázati részmodulról

Iránymutatás az egészségbiztosítási katasztrófakockázati részmodulról EIOPA-BoS-14/176 HU Iránymutatás az egészségbiztosítási katasztrófakockázati részmodulról EIOPA Westhafen Tower, Westhafenplatz 1-60327 Frankfurt Germany - Tel. + 49 69-951119-20; Fax. + 49 69-951119-19;

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

ISO/DIS MILYEN VÁLTOZÁSOKRA SZÁMÍTHATUNK?

ISO/DIS MILYEN VÁLTOZÁSOKRA SZÁMÍTHATUNK? ISO/DIS 45001 MILYEN VÁLTOZÁSOKRA SZÁMÍTHATUNK? MIÉRT KELL SZABVÁNYOS IRÁNYÍTÁSI RENDSZER? Minden 15 másodpercben meghal egy dolgozó Minden 15 másodpercben 135 dolgozó szenved balesetet 2,3 m halálos baleset

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

EPIDEMIOLÓGIA I. Alapfogalmak

EPIDEMIOLÓGIA I. Alapfogalmak EPIDEMIOLÓGIA I. Alapfogalmak TANULJON EPIDEMIOLÓGIÁT! mert része a curriculumnak mert szüksége lesz rá a bármilyen tárgyú TDK munkában, szakdolgozat és rektori pályázat írásában mert szüksége lesz rá

Részletesebben

A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9

A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 Név: Pitlik László Mérés dátuma: 2014.12.04. Mérőtársak neve: Menkó Orsolya Adatsorok: M24120411 Halmy Réka M14120412 Sárosi

Részletesebben

Borsod-Abaúj-Zemplén Megyei Közgyűlés ELNÖKÉTŐL

Borsod-Abaúj-Zemplén Megyei Közgyűlés ELNÖKÉTŐL Borsod-Abaúj-Zemplén Megyei Közgyűlés ELNÖKÉTŐL 3525 MISKOLC, Városház tér 1. Telefon: (46) 517-700*, (46) 517-750, (46) 323-600 Telefax: (46) 320-601 http://www.baz.hu elnok@hivatal.baz.hu Iktatószám:

Részletesebben

Szövegértés. Xántus János Két Tanítási Nyelvű Gimnázium és Szakgimnázium OM azonosító: Telephelyi jelentés Telephely kódja: 001

Szövegértés. Xántus János Két Tanítási Nyelvű Gimnázium és Szakgimnázium OM azonosító: Telephelyi jelentés Telephely kódja: 001 Országos kompetenciamérés 2017 22 1a Átlageredmények A telephelyek átlageredményeinek összehasonlítása Az Önök eredményei a 4 évfolyamos gimnáziumi telephelyek eredményeihez viszonyítva A szignifikánsan

Részletesebben

Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka

Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka Geokémia gyakorlat 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek Geológus szakirány (BSc) Dr. Lukács Réka MTA-ELTE Vulkanológiai Kutatócsoport e-mail: reka.harangi@gmail.com ALAPFOGALMAK:

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Matematikai alapok és valószínőségszámítás. Normál eloszlás

Matematikai alapok és valószínőségszámítás. Normál eloszlás Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak

Részletesebben

Statisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI

Statisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI Statisztikai alapfogalmak a klinikai kutatásban Molnár Zsolt PTE, AITI Bevezetés Research vs. Science Kutatás Tudomány Szerkezeti háttér hiánya Önkéntesek (lelkes kisebbség) Beosztottak (parancsot teljesítő

Részletesebben

Mérési bizonytalanság becslése (vizsgálólaboratóriumok munkája során)

Mérési bizonytalanság becslése (vizsgálólaboratóriumok munkája során) III. Roncsolásmentes Anyagvizsgáló Konferencia és Kiállítás Eger, 2003. április 7-11. Szóbeli előadás kézirat Előadó: Pintér László tudományos osztályvezető, Építésügyi Minőségellenőrző Innovációs Kht.

Részletesebben

CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15.

CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15. CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15. 1 3.3.3 Minősítési rendszerek és a kockázatok számszerűsítése Minősítések hozzárendelése PD, LGD, CF meghatározása Közös vizsgálati

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem

Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE

Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Matematika. Xántus János Két Tanítási Nyelvű Gimnázium és Szakgimnázium OM azonosító: Telephelyi jelentés Telephely kódja: 001

Matematika. Xántus János Két Tanítási Nyelvű Gimnázium és Szakgimnázium OM azonosító: Telephelyi jelentés Telephely kódja: 001 Országos kompetenciamérés 2017 3 1a Átlageredmények A telephelyek átlageredményeinek összehasonlítása Az Önök eredményei a 4 évfolyamos gimnáziumi telephelyek eredményeihez viszonyítva A szignifikánsan

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

Statisztikai módszerek a skálafüggetlen hálózatok

Statisztikai módszerek a skálafüggetlen hálózatok Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti

Részletesebben

Kockázatmenedzsment

Kockázatmenedzsment Kockázatmenedzsment Az ember olyan szelepet szeretne szerkeszteni, amelyik nem szivárog, és mindent megpróbál a kifejlesztésére. De a valóságban csak olyan szelepek vannak, amelyek szivárognak. Így el

Részletesebben

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT

Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Minőségmenedzsment (módszerek) BEDZSULA BÁLINT Bedzsula Bálint gyakornok Menedzsment és Vállalatgazdaságtan Tanszék Q. épület A.314. bedzsula@mvt.bme.hu http://doodle.com/bedzsula.mvt Az előző előadás

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben